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INTRODUCTION

In the current era of the internet of things 
(IoT), object identification technology plays a 
crucial role in various aspects of life, contribut-
ing to significant advancements and innovation. 
With the growing demand for effective local-
ization solutions, particularly in complex and 
dynamic environments, precise position deter-
mination is becoming a crucial element in many 
processes and applications.

The numerous Bluetooth low energy (BLE) 
beacon-based positioning systems have opened 
opportunities for practical implementation across 
various industrial sectors. In healthcare envi-
ronments, asset tracking systems utilizing BLE 

technology enable hospitals to precisely locate 
critical medical equipment [1] or even patients 
[2]. This way of localization reduces equipment 
retrieval time and improves operational efficien-
cy. Construction sites have increasingly adopt-
ed indoor positioning solutions for monitoring 
worker safety and tracking locations [3]. That al-
lows supervisors to ensure compliance with safe-
ty protocols and respond quickly to emergencies 
in complex building structures.

Warehouse and logistics operations leverage 
BLE-based positioning systems for compre-
hensive asset management, enabling real-time 
tracking of inventory, automated guided ve-
hicles, and personnel movement optimization 
throughout large storage facilities [4]. While 
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mobile robots typically incorporate autonomous 
location mechanisms [5], BLE applications of-
fer particular value in Industry 4.0 contexts by 
providing precise localization data that supports 
automated manufacturing processes, predictive 
maintenance scheduling, and seamless IoT eco-
system integration [6].

Smart City infrastructure projects have also 
embraced indoor positioning technologies to 
enhance navigation services in complex public 
buildings such as airports, shopping malls, and 
transportation hubs [7]. Valuable data is collect-
ed for optimizing space utilization and managing 
crowds. The versatility and cost-effectiveness 
of BLE beacon systems make them particularly 
suitable for large-scale deployments in industrial 
facilities where traditional GPS signals are un-
available or unreliable. BLE beacons are small 
devices that emit radio signals received via Blue-
tooth connection. When a mobile device with the 
appropriate application installed and running ap-
pears within a radius of up to several dozen me-
ters, the user receives information in real-time. 
Beacons enable precise positioning of resources 
in rooms or areas where traditional methods, such 
as GPS systems, often fail due to weak or unavail-
able satellite signals [8].

This article aims to examine and evaluate the 
use of BLE beacon solutions for determining the 
position of resources in various environments, to 
design and implement a dedicated system archi-
tecture, and to develop a practical solution that 
can be applied in real-life conditions.

BACKGROUND

Indoor localization using trilateration and 
received signal strength indication (RSSI) sig-
nals is an intensively developing research area. 
Research presented in [9] showed that under 
controlled conditions, trilateration achieves an 
average error of 2.30 m, while extending the 
system to multilateration allows a reduction of 
this error to 1.83 m. The authors of [10] empha-
sized the importance of incorporating noise sig-
nals in localization research and used noise sim-
ulation in their study. A significant breakthrough 
in the field was the discovery of the significant 
impact of antenna orientation on localization ac-
curacy. The research team presented in [11] con-
ducted a detailed analysis of this phenomenon, 
proving that considering antenna orientation 

in localization algorithms leads to a significant 
improvement in positioning accuracy. BLE bea-
con technology has emerged as a particularly 
promising solution for indoor positioning appli-
cations. Research [12] demonstrated that BLE-
based positioning systems can achieve sub-me-
ter accuracy in controlled environments, with 
their proposed algorithm showing significant 
improvements over traditional proximity-based 
methods. The study highlighted the importance 
of environmental calibration and adaptive signal 
processing for different indoor scenarios. In the 
area of signal processing, an advanced convolu-
tional network architecture with a self-attention 
mechanism are also proposed [13]. This solution 
achieved a 37.4% improvement in channel state 
information reconstruction accuracy in indoor 
conditions and 32.5% in outdoor conditions. The 
impact of electromagnetic interference on indoor 
positioning accuracy has been studied in [14]. 
Researchers investigated how various sources 
of interference, including Wi-Fi networks, elec-
tronic devices, and building infrastructure, affect 
RSSI-based localization systems. Their findings 
revealed that interference patterns are often pre-
dictable and can be compensated through adap-
tive filtering techniques, leading to improved 
positioning stability in complex electromagnetic 
environments. Significant progress has also been 
made in the field of hybrid solutions. In article 
[15], authors developed a novel approach com-
bining classical trilateration methods with ma-
chine learning models. The described system 
not only demonstrated excellent adaptation to 
embedded device hardware limitations but also 
significantly improved localization accuracy in 
challenging environmental conditions. An inter-
esting solution utilizing ensemble learning for 
indoor positioning has demonstrated remarkable 
potential for enhancing localization reliability. 
In [16], a multi-classifier ensemble approach 
is proposed that combines different positioning 
algorithms and sensor modalities, achieving 
positioning accuracies comparable to those pre-
sented in this research. Their ensemble method 
demonstrated particular effectiveness in environ-
ments with varying interference levels, showing 
improved robustness compared to single-algo-
rithm approaches. Mobile robot-assisted local-
ization represents another promising approach 
for wireless sensor networks. Research has 
demonstrated that mobile robots equipped with 
GPS can effectively reduce localization costs 
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while improving accuracy through strategic path 
planning algorithms. Studies have shown that 
dynamic algorithms, such as LDF (least distance 
first) and MMNF (maximum marginal neigh-
bouring first), can achieve better performance 
than traditional static path methods, with LDF 
demonstrating superior precision in node local-
ization tasks [17]. The latest trends in indoor 
localization indicate the growing importance of 
transformer architectures [18]. The presented re-
sults showed that transformers are particularly 
effective in capturing complex temporal-spatial 
dependencies in RSSI signals, which translates 
into better localization accuracy in dynamically 
changing conditions.

Trilateration-based techniques are very often 
used in the process of improving localization accu-
racy, as described in [19]. Trilateration is a meth-
od of determining the position of a point in space 
or on a plane by measuring distances from three 
known reference points [20]. In the context of node 
localization using Bluetooth beacons, three access 
points with known coordinates are used to deter-
mine the position of the end device [21].

Mathematically, the problem can be repre-
sented as a system of equations:

	 (x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (1)

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (2)

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (3)

where:	 (x, y) – sought position, (xᵢ, yᵢ) – known 
beacon coordinates, dᵢ – distances calcu-
lated based on RSSI.

Distances are calculated according to the for-
mula [11]:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
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	 (4)

where:	RSSI – received signal strength value in 
dB, n – attenuation coefficient, 57 is the 
reference RSSI value read from the bea-
con’s UI at 1 meter distance.

To solve the nonlinear system of Equations 
1–3, linearization is performed by subtracting 
Equation 3 from Equations 1 and 2, resulting in:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
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This linearized system can be expressed in 
matrix form as AX = B, where:
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	 (7)

	 𝑋𝑋 = [𝑥𝑥𝑦𝑦] 	 (8)

	 𝐵𝐵 = [(𝑑𝑑1
2 − 𝑑𝑑32) − (𝑥𝑥12 − 𝑥𝑥32) − (𝑦𝑦12 − 𝑦𝑦32)

(𝑑𝑑22 − 𝑑𝑑32) − (𝑥𝑥22 − 𝑥𝑥32) − (𝑦𝑦22 − 𝑦𝑦32)
] 

 

	 (9)

The solution of the equation system X = A⁻¹B 
can be found using the matrix inversion method, 
which is implemented in the numpy library [22]. 
The solution of this equation makes it possible to 
finally determine the (x, y) of the localized device.

It is very important to precisely define the role 
of RSSI at this stage. RSSI is a measure of the ra-
dio signal power received by a device. In the con-
text of an indoor localization project, RSSI plays a 
key role in determining the approximate distance 
between a mobile device and Bluetooth beacons 
[23]. RSSI is expressed in decibel-milliwatts (dB) 
and typically takes negative values, where values 
closer to zero indicate a stronger signal. For ex-
ample, -50 dB indicates a stronger signal than -70 
dB. The relationship between RSSI and distance 
is not linear and can be disrupted by various en-
vironmental factors, such as physical obstacles 
or electromagnetic interference [24]. To improve 
localization accuracy, the system uses advanced 
algorithms that process raw RSSI values.

However, traditional RSSI-based localization 
methods suffer from significant limitations that 
affect their practical applicability. The inherent 
variability and instability of RSSI measurements, 
combined with multipath propagation effects and 
signal attenuation in indoor environments, often 
result in poor localization accuracy and unrelia-
ble position estimates. Additionally, the non-lin-
ear relationship between RSSI and distance 
makes it challenging to establish consistent dis-
tance-to-signal strength mappings across differ-
ent environmental conditions. 

The main contributions of this manuscript in-
clude: the ensample algorithm based on a deep 
neural network, specifically designed to process 
RSSI fingerprinting data and automatically learn 
complex spatial patterns in indoor environments; 
the introduction of an adaptive signal processing 
framework that compensates for temporal varia-
tions and environmental interference in real-time; 
comprehensive experimental validation demon-
strating significant accuracy improvements. 
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Therefore, this article proposes the use of 
deep neural networks to address these limita-
tions and improve the robustness and accuracy 
of indoor localization systems by learning com-
plex patterns in RSSI data and automatically 
compensating for environmental disturbances. 

This new method allows to improve the ac-
curacy of localization in environments where 
there are a lot of sources of interference, the 
RSSI signal intensity varies over time at a given 
point and thus the process of localizing an object 
may be subject to unacceptable error. The meth-
od proposed in the paper was compared in real 
conditions with the classical triliteration-based 
localization method. In addition, the model used 
in the proposed approach was compared with 
three models known from the literature.

PROPOSED METHODS OPTIMIZING 
POSITION DETERMINATION

Accurate indoor positioning is a key tech-
nical challenge in the field of localization sys-
tems. The presented system integrates tradition-
al signal processing methods with modern deep 
learning solutions. RSSI signals are character-
ized by significant variability over time, which 
is particularly noticeable in the indoor environ-
ment. In the mobile application implementation, 
a moving average technique was applied as the 
first stage of RSSI signal processing. The appli-
cation collects readings from BLE beacons in re-
al-time and performs smoothing of RSSI values 
using a time window of 5 samples, where each 
sample represents a single RSSI measurement 
taken at discrete time intervals.

Another important aspect that has a key 
impact on improving localization accuracy is 
Outlier Exclusion. In indoor localization, prop-
er handling of outliers plays a key role. The 
outlier identification system is based on the 
z-score method applied to position predictions 
from ensemble models [25]. For each predic-
tion, a z-score coefficient is calculated, which 
determines its deviation from the mean of all 
predictions.

The outlier exclusion algorithm performs the 
following mathematical operations:

	• Collecting predictions from ensemble models:

	
P = {pos₁, pos₂,..., posₙ}, 

C = {conf₁, conf₂,..., confₙ} 

 

	 (10)

where:	posi = (xi, yi) represents the predicted 2D 
coordinates from the i-th model and confᵢ 
represents the confidence score of the i-th 
prediction.

	• Detecting outliers using the z-score method:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
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(x − x₃)² + (y − y₃)² = d₃² (3) 
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where:	μ is the average of all predicted coordi-
nates, and σ is the standard deviation of 
all predicted positions

	• Filtering outliers:
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0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (12)

where:	 positions with z-score ≥ 2 are considered 
outliers and removed (applying the 2-sig-
ma rule for outlier detection).

	• Aggregating results considering prediction 
certainty:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (13)

where only filtered positions from step 3 are used 
in the weighted average calculation.

	• Calculating the final position:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

	 (14)

where:	posfinal represents the final estimated coor-
dinates obtained as a weighted sum of all 
filtered predictions, with each prediction 
posᵢ multiplied by its corresponding nor-
malized weight wᵢ from Equation 13.

	• Estimating the uncertainty of the final result:

	

(x − x₁)² + (y − y₁)² = d₁² (1) 
  

(x − x₂)² + (y − y₂)² = d₂² (2) 
  

(x − x₃)² + (y − y₃)² = d₃² (3) 
 
 

𝑑𝑑 =  10
−57−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

10𝑛𝑛  
 
 

2(x₃ - x₁)x + 2(y₃ - y₁)y =  
= (d₁² - d₃²) + (x₃² - x₁²) + (y₃² - y₁²) 

 
 

2(x₃ - x₂)x + 2(y₃ - y₂)y =  
= (d₂² - d₃²) + (x₃² - x₂²) + (y₃² - y₂²) 

 
 

 

 

𝐴𝐴 = [−2(𝑥𝑥1 −  𝑥𝑥3) −2(𝑦𝑦1 −  𝑦𝑦3)
−2(𝑥𝑥2 −  𝑥𝑥3) −2(𝑦𝑦2 − 𝑦𝑦3)] 

 

𝐵𝐵 =  [(𝑑𝑑12 −  𝑑𝑑32) − (𝑥𝑥12 −  𝑥𝑥32) −  (𝑦𝑦12 −  𝑦𝑦32)
(𝑑𝑑22 −  𝑑𝑑32) −  (𝑥𝑥22 −  𝑥𝑥32) −  (𝑦𝑦22 −  𝑦𝑦32)] 

 

P = {pos₁, pos₂,..., posₙ}, C = {conf₁, conf₂,..., confₙ} 

 

𝑧𝑧𝑖𝑖 =
|𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − μ|

σ  

 

𝑚𝑚𝑖𝑖 = { 1, 𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 < 2
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖×𝑚𝑚𝑖𝑖

∑ 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗×𝑚𝑚𝑗𝑗𝑁𝑁
𝑗𝑗=1

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑤𝑤𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 	 (15)

where:	 std(Pvalid) is the standard deviation of all 
filtered position predictions and confi-
dence is the final confidence score calcu-
lated using an exponential decay function 
that converts uncertainty into a confi-
dence value between 0 and 1.
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Positioning model design

In the proposed solution, a key component 
of the positioning optimization process is mod-
el training. The system architecture (Figure 1) is 
based on an ensemble approach, integrating vari-
ous modelling methods to ensure the highest pre-
cision and reliability of predictions.

This diagram illustrates a comprehensive 
ensemble system for bluetooth-based indoor po-
sitioning that combines multiple neural network 
architectures with sophisticated data processing 
techniques. The learning system construction is 
based on a hybrid ensemble model, combining 
an advanced neural network with expanded at-
tention blocks (Advanced Positioning Network, 
Figure 3) and transformer models (Figure 2) with 
different configurations. The implementation 
used both a multilayer network enriched with 
Multi Head Attention mechanisms and residual 
blocks, as well as dedicated transformer archi-
tectures with varying numbers of layers (4 and 6) 
and attention heads (4 and 8).

Enhanced Data Augmentation refers to ad-
vanced techniques for artificially expanding and 
improving the training dataset from the input 
RSSI and TRIL (trilateration) data. The system 
employs Gaussian Noise addition to simulate re-
al-world signal variations and measurement un-
certainties [26], Selective Dropout that randomly 
removes certain input features during training to 
improve model robustness and prevent overfitting 
[27], Signal Scaling that adjusts the amplitude 
and magnitude of RSSI values to simulate differ-
ent transmission powers or distances, and RSSI 
Shifting that systematically shifts RSSI values to 
account for environmental variations like inter-
ference or hardware differences.

Advanced Aggregation represents sophisti-
cated methods for combining predictions from 
multiple neural network models. Instead of sim-
ple averaging, this involves a weighted combi-
nation based on individual model confidence 
scores, attention-based aggregation that dynam-
ically determines which models to trust more for 
specific inputs, ensemble techniques that consid-
er model diversity and complementary strengths, 
and meta-learning approaches that learn optimal 
combination strategies.

The overall architecture trains four different 
neural networks in parallel, including two APN 
models with 256-dimensional layers and two 
Transformer models with the aforementioned 
varying configurations. Each model receives dif-
ferently augmented versions of the same input 
data, and their outputs are intelligently combined 
through weighted aggregation, followed by outlier 
detection and uncertainty estimation to produce the 
final position estimate with confidence intervals. 
This ensemble approach leverages the strengths of 
different architectures and data representations to 
achieve more robust and accurate indoor position-
ing than any single model could provide.

Figure 2 presents the detailed architecture 
of the transformer model used in the ensemble 
system for Wi-Fi-based indoor positioning. The 
model begins with input RSSI and TRIL data 
that undergoes input embedding through a linear 
transformation from the original dimensionality 
to 256 dimensions, followed by layer normaliza-
tion to stabilize training. The core processing oc-
curs through a transformer encoder consisting of 6 
layers, where each layer incorporates multi-head 
attention mechanisms with 8 attention heads that 
allow the model to focus on different aspects of 
the input signal patterns simultaneously.

Figure 1. Overall architecture of the ensemble system combining different models and
data augmentation techniques
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After the transformer encoder processing, 
the data flows through layer normalization and a 
feedforward network containing 1024 units, fol-
lowed by another layer normalization step. The 
architecture then branches into two parallel pro-
cessing paths that serve distinct purposes in the 
positioning task. The Position Decoder path pro-
cesses the transformed features through a linear 
layer that reduces dimensionality from 256 to 
128, applies layer normalization, passes through 
a ReLU activation function, and finally outputs 
the 2-dimensional position coordinates through a 
linear layer with 128 to 2 transformation.

Simultaneously, the Confidence Estimator 
path provides uncertainty quantification by pro-
cessing the same transformed features through 
its own linear layer, reducing from 256 to 64 di-
mensions, applying ReLU activation, then a lin-
ear transformation from 64 to 1 dimension, and 
finally a sigmoid activation function to produce a 
confidence score between 0 and 1. This dual-out-
put design enables the model to not only predict 
position coordinates but also estimate the reliabil-
ity of its predictions, which is crucial for practical 
indoor positioning applications where measure-
ment quality can vary significantly due to envi-
ronmental factors and signal interference.

Figure 3 illustrates the comprehensive archi-
tecture of the APN, which represents a sophisti-
cated neural network design that combines multi-
ple attention mechanisms with enhanced residual 
connections for Wi-Fi-based indoor positioning. 
The network processes input RSSI and TRIL 
data through separate pathways that eventually 
merge for comprehensive feature extraction and 
position estimation.

The architecture begins by splitting the input 
into two distinct processing streams. The RSSI 
features, containing 3 components, are processed 
through an RSSI Encoder consisting of a linear 
transformation to 256 dimensions, followed by 
layer normalization and an Enhanced Residual 
Block. Simultaneously, the TRIL features with 2 
components undergo processing through a TRIL 
Encoder with linear transformation to 128 di-
mensions, layer normalization, and their own En-
hanced Residual Block. Both streams then pass 
through Multi-Head Attention mechanisms that 
enable the network to focus on different aspects 
of the positioning-relevant information.

The two processed streams converge through 
a Feature Fusion layer that combines the rep-
resentations using a linear transformation from 
384 to 512 dimensions, followed by layer normal-
ization and another Enhanced Residual Block. 
The fused representation then undergoes Global 
Attention processing, which provides a compre-
hensive view of all features, followed by dropout 
regularization and additional Multi-Head Atten-
tion and Enhanced Residual Block layers for deep 
feature refinement.

The final stage employs a multi-decoder ar-
chitecture [28] where the processed features are 
distributed to three parallel decoders, each con-
taining linear transformations from 512 to 2 di-
mensions. The outputs from these decoders are 
averaged to produce the position estimate, while 
separate branches generate confidence estimation 
through a linear layer from 512 to 1 dimension 
and uncertainty estimation through another 512 to 
2 transformation. This multi-path approach with 
averaging provides robustness against individual 

Figure 2. Architecture of the transformer model used in the system
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decoder errors, while the confidence and uncer-
tainty estimation components enable the network 
to quantify the reliability of its predictions, mak-
ing it particularly suitable for real-world indoor 
positioning applications where signal quality and 
environmental conditions can vary significantly.

TESTING IN A REAL ENVIRONMENT

As part of the research, five measurement sce-
narios were conducted in different locations. The 
aim was to assess the impact of interference on 
the beacon signal measurement in various envi-
ronments. The selected locations were:
1.	Laboratory room F602 (Figure 4b,c,d) in 

building of Rzeszow University of Technology 
(PRz) – a room with servers, network equip-
ment and numerous computers generating 
electromagnetic interference.

2.	Corridor on the 6th floor in the PRz building 
– a place with interference from infrastructure 
installations.

3.	Open area between PRz campus buildings (P 
and L) – an open green space with minimal 
interference.

4.	Parking lot between Ikar Dormitory and build-
ing H – an open outdoor space.

5.	Laboratory room F604 in the PRz building – a 
room with a similar layout to room F602, but 
without a running server.

Each scenario was performed with the same 
arrangement of beacons and measurement points. 

In the Figure 4a, circles indicate beacons, and 
crosses indicate measurement points. In each sce-
nario, five measurement series were performed 
using four different devices: RMX2202 phone 
(REALME GT), RMX3085 phone (REALME 8), 
Samsung Galaxy S22 phone, SAMSUNG Galaxy 
Tab A9+ tablet.

Figure 5a) demonstrates severe trilateration 
degradation in a complex indoor environment. 
The positioning estimates exhibit maximum 
dispersion with a coordinate range spanning ap-
proximately (-1, -2) to (3, 3) meters, indicating 
positioning accuracy well beyond acceptable 
thresholds. The scatter plot shows no conver-
gence toward the true position (2.0, 1.0), with 
measurements distributed as isolated black dots 
indicating no statistical correlation.

The indoor propagation environment creates 
significant multipath fading with signal delays 
that corrupt ranging measurements. Signal block-
ing conditions dominate the transmission path, in-
troducing positive bias in distance estimates due 
to excess signal loss and timing errors. The bea-
con configuration at coordinates (0.0, 0.0), (3.0, 
0.0), and (3.0, 3.0) creates suboptimal triangula-
tion geometry, where measurement uncertainties 
are amplified by the positioning algorithm’s sen-
sitivity to range errors.

Figure 5b) illustrates improved trilateration 
performance with measurements showing tighter 
clustering. The black dots are concentrated in a 
more compact region around coordinates (1.5, 
1.0), demonstrating reduced scatter compared to 

Figure 3. Architecture of the advanced positioning network (APN)
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the previous scenario. This pattern reflects better 
signal propagation conditions that minimize rang-
ing errors. The concentrated distribution indicates 
that this environment provides more favourable 
conditions for trilateration, with reduced multipa-
th interference and improved signal quality that 
results in more consistent distance measurements 
and better positioning accuracy.

Figure 5c) shows trilateration measurements 
forming a distinct vertical clustering pattern. The 
black dots are arranged in a narrow vertical dis-
tribution around the x-coordinate 1.0, extending 
from approximately y = 0.5 to y = 2.5. This lin-
ear clustering suggests environmental constraints 
that affect positioning in one coordinate dimen-
sion more than the other. The vertical alignment 

of measurements indicates systematic effects in 
signal propagation that create directional bias in 
the positioning estimates, while maintaining rea-
sonable accuracy in the perpendicular direction.

Figure 5d presents trilateration results with 
moderate scatter around the coordinate space. The 
black dots show a broader distribution compared 
to Figures 5b and 5c, but are more controlled than 
Figure 5a. The measurements appear clustered in 
the lower portion of the coordinate system around 
(1.0, 0.5) to (2.5, 1.5). This distribution pattern 
suggests intermediate environmental conditions 
that provide acceptable but not optimal trilatera-
tion performance, with moderate multipath ef-
fects and signal interference.

Figure 4. a) Measurement scheme; b) and c) Laboratory room F602 with beacon placement
d) Full laboratory room F602
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Figure 5. a) RMX2202 phone in room F602, b) RMX3085 phone in corridor,
c) Samsung Galaxy S22 in open area, d) Samsung tablet on parking lot, e) RMX2202 phone in room F604

Figure 5e displays trilateration measure-
ments with extensive scatter across the coordinate 
space. The black dots are distributed over a wide 
area from approximately (0.5, 0.5) to (3.0, 2.5), 
indicating significant positioning uncertainty 
and poor trilateration accuracy. The widespread 
distribution reflects challenging environmental 
conditions similar to Figure 5a, where multipath 

interference and signal degradation severely im-
pact the reliability of distance measurements and 
consequently the positioning accuracy of the tri-
lateration method. For the remaining measure-
ment campaigns conducted across different envi-
ronmental conditions and device configurations, 
the trilateration performance exhibited similar 
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characteristic patterns consistent with the propa-
gation environments tested.

Model training

The positioning system was trained using 
an advanced ensemble architecture combining 
transformer models with specialized positioning 
networks. Training data comprised trilateration 
measurements from 30-second sessions conduct-
ed at 5 locations using 4 different devices, ensur-
ing exposure to diverse signal characteristics and 
hardware configurations.

This multi-device approach enables the mod-
els to generalize across different smartphone 
Wi-Fi chipsets, while multiple measurement lo-
cations provide comprehensive spatial coverage 
of the indoor environment. The diverse dataset 
captures the variability inherent in real-world po-
sitioning scenarios.

Training employed AdamW optimizer [29] 
(learning rate: 0.001, weight decay: 0.01) with 
Cosine Annealing scheduler and 5-fold cross-val-
idation. This methodology produces models ca-
pable of handling device heterogeneity and spa-
tial variations encountered in practical indoor 
positioning applications.

The trained models form the foundation for 
the performance analysis and comparison studies 
presented in subsequent sections (Table 1).

Test scenario with proposed method

Testing was conducted in room F602 using a 
single RMX2202 device to evaluate model per-
formance under maximum interference condi-
tions. This location was selected as it represents 
the most challenging signal environment identi-
fied during initial measurements.

The test scenario assesses whether the ensem-
ble model, trained on diverse multi-device data 
from 5 locations, can maintain accuracy when 

deployed with a single device in high-interference 
conditions. This approach validates the model’s 
generalization capabilities and robustness under 
real-world deployment constraints.

Figure 6a and Table 2 compare position-
ing accuracy between proposed and trilateration 
methods under controlled conditions replicating 
room F602’s interference environment, using a 
single RMX2202 device for consistency.

The deep learning method achieved signif-
icantly higher accuracy, estimating position at 
(3.036 m, 2.097 m) compared to the true location 
of (3.0 m, 2.8 m) – yielding errors of only 0.036 
m and 0.703 m respectively. Standard deviations 
of 0.092 m and 0.124 m indicate good precision.

In contrast, trilateration showed poor accura-
cy despite tight clustering, estimating (1.126 m, 
1.624 m) with substantial errors of 1.874 m and 
1.176 m. While standard deviations (0.258 m, 
0.108 m) suggest consistent measurements, the 
method appears to suffer from systematic bias un-
der interference conditions.

The results demonstrate that clustering alone 
does not indicate superior performance - accuracy 
relative to ground truth is the critical metric.

Figure 6b and Table 3 examine position-
ing performance at point (0.6, 2.12) under the 
same high-interference conditions in room 
F602, maintaining consistency with the single 
RMX2202 device setup.

The proposed method estimated position at 
(1.474 m, -1.352 m) compared to the true location 
of (0.6 m, 2.12 m), resulting in errors of 0.874 
m and 3.472 m, respectively. The standard devi-
ations of 0.515 m and 1.707 m reveal moderate 
precision, with notable variability, particularly in 
the y-axis measurements.

Conversely, trilateration achieved a position 
estimate of (2.671 m, 1.471 m) with errors of 
2.071 m and 0.649 m. The standard deviations 
(0.756 m, 0.505 m) demonstrate more consistent 
measurements than deep learning at this location, 
although both methods exhibit significant abso-
lute positioning errors.

Figure 6c and Table 4 present results for point 
(2.0 m, 1.0 m) under identical testing conditions, 
revealing contrasting performance patterns.

The deep learning method delivered excep-
tional accuracy, estimating (2.955 m, 0.997 m) 
with minimal errors of 0.955 m and 0.003 m, re-
spectively. The remarkable standard deviation of 
0.0m in the y-axis indicates perfect measurement 

Table 1. Model training metrics
Parameter Value

Number of epochs 15420

Final training loss 0.219

Final validation error 0.395

Average model confidence 0.974

Best validation error 0.360

Best epoch 662
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repeatability, while 0.706 m in the x-axis shows 
acceptable variability.

Trilateration estimated (1.564 m, 0.404 m) 
with errors of 0.436 m and 0.596 m. Standard de-
viations of 0.192 m and 1.496 m reveal excellent 
x-axis precision but significant y-axis instability, 
highlighting inconsistent performance across co-
ordinate dimensions.

For the remaining measurement campaigns 
conducted using the proposed method across dif-
ferent environmental conditions, the positioning 
performance exhibited similar characteristic pat-
terns with consistently superior accuracy com-
pared to conventional trilateration methods.

In addition to testing in a real environment, as 
part of our work we also conducted a comparison 

Figure 6. Example comparison of deep learning vs trilateration method results at point:
a) (3, 2.8), b) (0.6, 2.12), c) (2, 1)

Table 2. Measurement metrics at point (3, 2.8) in the test scenario
Parameter Proposed method Trilateration method

Average trilateration at point x 3.036 m 1.126 m

Average trilateration at point y 2.097 m 1.624 m

Standard deviation at point x 0.092 m 0.258 m

Standard deviation at point y 0.124 m 0.108 m

Average RSSI for beacon 00 -76.7 dB -58.0 dB

Average RSSI for beacon 30 -70.8 dB -65.6 dB

Average RSSI for beacon 33 -59.0 dB -63.967 dB
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of the developed model with solutions proposed 
in the literature. The results of this comparison 
are presented in Table 5.

It should be noted the differences in which 
data were collected in the various experiments 
summarized in Table 5. The research conducted 
for the proposed method was carried out in a lab-
oratory with a large number of working laboratory 
equipment, network systems and a large number 
of computers. The developed model was inten-
tionally tested in such an environment in order to 
best evaluate its performance under real operating 
conditions. In the case of the systems described in 
papers [15, 30, 31], the tests were conducted under 
controlled conditions, without significant environ-
mental interference from external sources. Despite 
this, the model presents very good performance 
for a highly disturbed environment in which the 
majority of validation errors are in the range of 

0.35 m to 0.44 m, and the maximum model er-
ror does not exceed 0.50 m. In order to achieve 
such results in a variable, real-world measurement 
environment, it may be necessary to increase the 
density of the number of beacons.

CONCLUSIONS

The conducted research has shown that a BLE 
beacon-based localization system can achieve an 
average positioning accuracy of 0.35–0.44 me-
ters under optimal conditions, which was con-
firmed during the model training session, where 
the best validation error was 0.360. However, this 
accuracy varies significantly depending on envi-
ronmental conditions and beacon arrangement. 
The best results were obtained when all beacons 
were located in a single room, without physical 

Table 3. Measurement metrics at point (0.6, 2.12) in the test scenario
Parameter Proposed method Trilateration method

Average trilateration at point x 1.474 m 2.671 m

Average trilateration at point y -1.352 m 1.471 m

Standard deviation at point x 0.515 m 0.756 m

Standard deviation at point y 1.707 m 0.505 m

Average RSSI for beacon 00 -59.6 dB -78.1 dB

Average RSSI for beacon 30 -70.1 dB -70.5 dB

Average RSSI for beacon 33 -83.0 dB -68.3 dB

Table 4. Measurement metrics at point (2, 1) in the test scenario
Parameter Proposed method Trilateration method

Average trilateration at point x 2.955 m 1.564 m

Average trilateration at point y 0. 997 m 0.404 m

Standard deviation at point x 0.706 m 0.192 m

Standard deviation at point y 0.0 m 1.496 m

Average RSSI for beacon 00 -77.3 dB -68.4 dB

Average RSSI for beacon 30 -63.0 dB -67.5 dB

Average RSSI for beacon 33 -71.0 dB -72.67 dB

Table 5. Measurement metrics at point (2, 1) in the test scenario
Method Testing setting Reported error

Proposed method F602 laboratory room, 3 beacons, 0.35–0.44 m

[15] Experiment No. 1 (baseline) 31m2 apartament, 5 beacons, 
RSSI→ML→multilateration 0.65 m average

[15] Experiment No. 23 (optimized) 31m2 apartament, tuned DNN + TFLite + 
multilateration 0.339 m average

[30] 36 m2 closed room, Feed‐forward neural network 1.86 m RMSE 
(best model, closed-room)
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obstacles between them. Under such conditions, 
the standard deviation of measurements was the 
smallest, reaching values of 0.092–0.124 m, as 
observed at point (3, 2.8) during tests in room 
F604. Analysis of results from various test sce-
narios revealed that the greatest challenges for 
the system are electromagnetic interference gen-
erated by electronic devices, physical obstacles 
between beacons and the receiving device, heter-
ogeneity of the signal propagation environment, 
and variability of RSSI signal strength over time. 
The research results suggest that to achieve op-
timal accuracy in a typical office or laboratory 
room, it is recommended to place a minimum of 
4–5 beacons in an area of approximately 25 m², 
maintaining appropriate distances between them 
(approximately 3–4 meters). The implementation 
of an ensemble model using transformer archi-
tectures proved to be an effective approach to the 
localization problem, achieving high prediction 
confidence (0.974) while maintaining an accept-
able error level. Based on the achieved position-
ing accuracy of 0.35–0.40 meters and the insights 
gained from testing in various environmental 
conditions, several promising avenues for future 
investigation emerge. The research demonstrates 
that while sub-meter accuracy is achievable with 
proper beacon placement, significant improve-
ments can still be made. The study showed that 
the developed method using an advanced ensem-
ble architecture combining transformer models 
with specialized positioning network improves 
localization accuracy compared to the classic tri-
lateration-based method. In addition, the model 
used in the proposed approach was compared 
with three models known from the literature and 
showed comparable or better localization accu-
racy. It should be noted that, unlike the methods 
considered in the benchmarking, the model was 
tested on data collected in a real environment in 
which there were numerous sources of RSSI sig-
nal interference.

Future work should focus on developing 
adaptive environmental calibration systems that 
can automatically adjust to specific environmen-
tal characteristics, particularly addressing the 
electromagnetic interference challenges observed 
in server rooms. Advanced deep learning archi-
tectures, including LSTM networks for temporal 
RSSI pattern recognition and Graph Neural Net-
works for modelling spatial beacon relationships, 
could further enhance the current ensemble trans-
former model’s performance.

The integration of multi-modal sensor fusion 
combining RSSI data with accelerometer, gyro-
scope, and magnetometer readings would pro-
vide more robust localization, especially given 
the observed signal variability. Real-time imple-
mentation optimization through model compres-
sion and edge computing deployment is essen-
tial for practical applications, while uncertainty 
quantification techniques using Bayesian neural 
networks could provide confidence intervals for 
position estimates.

An important direction for future research 
involves replacing the current advanced aggrega-
tion methods with more sophisticated aggregation 
operators. The Choquet integral and its generali-
zations could provide enhanced fusion capabili-
ties for combining multiple positioning estimates 
from different algorithms or sensor modalities. 
Particularly promising are the enhanced smooth 
quadrature-inspired generalized Choquet integral 
operators, which could better handle the nonline-
ar relationships and dependencies between vari-
ous information sources in the ensemble model. 
That could potentially lead to an improved posi-
tioning accuracy and robustness in challenging 
electromagnetic environments.

The integration with emerging technologies 
such as 5G/6G and Wi-Fi 6 could provide addi-
tional data sources for improved accuracy, while 
energy efficiency optimization remains crucial 
for battery-powered beacon infrastructure. Fi-
nally, standardization efforts for interoperability 
between different beacon manufacturers and the 
development of adaptive algorithms for handling 
the varying signal propagation characteristics ob-
served in different environments (indoor vs. out-
door) represent critical research directions for the 
widespread adoption of beacon-based deep learn-
ing localization systems.
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