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INTRODUCTION 

Hydraulic systems remain essential in mod-
ern industry due to their reliability and ability to 
generate substantial force. Many different fields 
use these systems, like manufacturing, aerospace, 
robotics, heavy equipment, and automotive engi-
neering [1–3]. Most hydraulic systems, especial-
ly valve-controlled hydraulic systems (VHSs), 
direct fluid through valves to control actuator 
motion and provide force. However, VHSs have 
some problems, like polluting the environment 
when they leak, needing a lot of maintenance, 
being heavy, and having a lot of space to install 
[4]. To overcome the limitations associated with 
valve-based systems, pump-controlled EHAs 

have emerged as a popular alternative, particular-
ly in applications where accuracy and efficiency 
are crucial. EHAs are like power converters that 
use a bidirectional pump to change the high speed 
of an electric motor into hydraulic power for a hy-
draulic actuator. EHAs provide a more compact, 
cleaner, and energy-efficient solution for generat-
ing high force by directly controlling the actuator 
via the supply pump [5, 6].

Rotary actuators (RAs) play a critical role in 
industrial applications where high torque output 
is required within constrained spatial environ-
ments. Among these, vane-type actuators are 
particularly favored due to their ability to deliv-
er substantial torque in compact configurations, 
making them ideal for integration in robotics, 
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automated systems, and precision machinery [7–
8]. Despite their advantages, achieving precise 
position tracking with RAs remains a complex 
task. This difficulty stems from nonlinear fluid 
dynamics and system uncertainties, including 
fluid compressibility, pressure fluctuations, flow 
turbulence, and mechanical imperfections such as 
backlash, variable friction, and seal degradation. 
In addition, temperature and pressure variations 
can lead to changes in the effective bulk modulus 
of the hydraulic fluid, further complicating dy-
namic system behavior. These factors collectively 
hinder system stability and control accuracy, es-
pecially when the actuator is subjected to fluctu-
ating loads. Consequently, the design of control 
strategies that are both robust to nonlinearity and 
adaptive to uncertainty continues to be a major 
focus in the control of rotary actuators [9–11].

Controlling pump-driven EHAs presents chal-
lenges due to the tightly coupled dynamics of 
multiple system components. In contrast to valve-
based systems, where control efforts primarily tar-
get fluid flow modulation via a servo valve, pump-
controlled configurations must simultaneously 
account for the interaction between the bidirec-
tional pump, the associated control valve, and the 
hydraulic actuator itself [12]. The nonlinear pres-
sure–flow characteristics of the pump, along with 
variable motor speed and fluid compressibility, 
contribute to transient pressure fluctuations. These 
effects become especially prominent under varying 
load conditions. The performance of the system 
behavior becomes even more unpredictable due to 
internal leakage, friction, and sensitivity to thermal 
and pressure variations, all of which affect the bulk 
modulus of the hydraulic fluid. These time-varying 
and nonlinear effects make precise position control 
a challenging task, demanding more advanced and 
adaptive control strategies [13–15].

To address these complexities, several control 
approaches have been proposed. PID controllers 
remain popular due to their simplicity, but their 
fixed gains limit performance under variable op-
erating conditions. Fuzzy-PID controllers offer 
greater adaptability but rely heavily on expert-de-
fined rule sets, which may lack robustness outside 
expected conditions [16–21]. Sliding Mode Con-
trol (SMC) is known for its robustness to uncertain-
ties; however, its inherent high-frequency switch-
ing behavior can degrade actuator performance, 
particularly in precision-critical applications such 
as robotics and aerospace systems [22–24]. Adap-
tive backstepping, though effective in structured 

nonlinear systems, may lose performance if the 
system includes unmodeled dynamics or varying 
parameters [25–26]. More recently, model predic-
tive control (MPC) has shown potential, but its 
high computational load and strong dependence 
on accurate models can limit real-time embed-
ded systems [27–28]. These limitations indicate 
the need for a more resilient and flexible control 
framework tailored to the complex behavior of 
pump-driven EHAs in practical applications.

To overcome the above drawbacks, this paper 
proposes a position control strategy for pump-
driven EHRAs, aiming to improve tracking ac-
curacy and robustness under practical industrial 
conditions. The system is composed of a pump-
controlled unit and a vane-type rotary actuator, 
providing compact, high-torque rotational motion 
suitable for robotic and heavy-duty automation 
applications. To develop the control framework, 
a nonlinear dynamic model is established that 
captures the coupled behavior of the bidirectional 
pump, rotary actuator, and internal fluid dynam-
ics, while also accounting for disturbances such as 
friction, load variation, and temperature-induced 
changes in fluid properties. A hybrid controller is 
introduced, integrating a modified backstepping 
algorithm, iterative learning control (ILC), and a 
nonlinear state observer. The backstepping com-
ponent provides a stabilizing control law through 
recursive virtual inputs, supported by Lyapunov-
based analysis to ensure system stability. ILC 
enhances tracking performance by updating the 
control input across repetitive trajectories, im-
proving accuracy under cyclic motion conditions 
[29]. Since direct measurement of some internal 
states – such as chamber pressures – is imprac-
tical, a Luenberger-like observer is employed to 
estimate these variables using available position 
and velocity data [30]. While ILC has been ap-
plied in other domains, its combined use with 
backstepping and observation in EHA control 
remains limited. This study addresses that gap, 
validating the proposed approach through simu-
lations under various conditions, including load 
variations (up to 50%), external disturbances, and 
trajectory frequencies from 0.1 to 1 Hz. 

SYSTEM MODELING AND 		
PROBLEM STATEMENT

The EHRA system investigated in this study 
is a pump-driven system designed for precise 
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position control in industrial applications. The 
EHRA system consists of a gear pump, an addi-
tional valve system, and a bidirectional symmet-
rical hydraulic rotary cylinder. The gear pump, 
driven by an electric motor, delivers hydraulic 
power by controlling fluid flow to the actuator. 
To regulate pressure levels and maintain safe op-
eration across a range of load conditions, a valve 
system is integrated into the circuit. The rotary 
actuator then transforms the supplied hydraulic 
pressure into rotational motion, generating the 
torque required for the intended application. Fig-
ure 1 illustrates the system architecture, includ-
ing the functional connections between the pump, 
valves, and actuator.

The dynamics of the EHRA system are mod-
eled in state-space form to facilitate the design of 
the proposed control strategy. The state variables 
are defined as follows: 

	
𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (1)

where:	α1 represents the angular position of the 
rotary cylinder in radians (rad), α2 denotes 
the angular velocity in radians per second 
(rad/s) and α34 captures the scaled pressure 
difference in meters per second squared 
(m/s²), α3 = P1, α4 = P2 are the pressures in 
chambers 1 and 2, respectively. The state-
space representation of the EHRA system 
dynamics, as derived from first principles 
and simplified for control design, is given 
by the following equations:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (2)

where:	J – moment of inertia of the rotary sys-
tem (kg·m²), A – effective area param-
eter (related to DR / r , assumed consis-
tent with units), m – equivalent mass pa-
rameter adjusted for rotary motion (kg), 

rFd
m

= − ​ – external disturbance term (m/
s²), Fr – external force, β – effective bulk 

modulus (adjusted as 
eA

m
β

​​), leakagel
mk k
A

= ​ 
– scaled leakage coefficient, represent-
ing internal leakage between the cylinder 

chambers, D – pump displacement (m³/
rad), defining the volume of fluid dis-
placed per radian of pump rotation, ω – 
pump speed (rad/s, control input), which 
serves as the control input to the system, ​
V01, V02–initial chamber volumes (m³), 

1 2

01 1 02 1

v v
v

m Q QQ
A V A V A

β β
α α

 
= − + − 

 – valve flow 

term (assumed negligible or zero for sim-
plicity in this design), Qv1, and Qv2 are 
flow rates through valves v1, and v2 re-
spectively. The function encapsulates the 
nonlinear pressure dynamics of the sys-
tem and is defined as:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (3)

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (4)

To prevent numerical issues during simula-
tion, such as division by zero, the denomina-
tors are bounded by a small positive constant. 
Substituting f (α1) into the pressure dynamics 
equation, the evolution of the pressure dynam-
ics α34 becomes:

Figure 1. Structure of the EHRA system, source: 
https://www.boschrexroth.com
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𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (5)

This formulation highlights the nonlinear de-
pendency of the pressure dynamics on the angular 
position α1, as well as the direct influence of the 
control input ω on the performance of the system 
behavior. The presence of the uncertain parameter 
k1, which varies with operating conditions such 
as temperature and wear, and the external distur-
bance d, which may include unmodeled friction 
or load variations, further complicates the con-
trol design. The primary control objective is to 
design the pump speed ω such that the angular 
position α1 tracks a bounded desired trajectory α1d 
(t), which is assumed to be at least twice differ-
entiable with bounded derivatives. This ensures 
that the reference trajectory and its derivatives 
and acceleration are physically realizable for the 
EHRA system. In addition, the control strategy 
must adaptively estimate the uncertain parameter 
to account for leakage variations and robustly 
compensate for external disturbances d to main-
tain tracking performance under various operat-
ing conditions. Integrating a state observer, as 
part of the proposed hybrid control framework, 
further ensures that the unmeasured states are ac-
curately estimated, enabling effective feedback 
control despite the nonlinearities and uncertain-
ties of the system.

CONTROL DESIGN

The design of the adaptive robust iterative 
backstepping controller utilizes the backstep-
ping method, a recursive control technique that 
is particularly well suited to nonlinear systems in 
a strict feedback form, such as the EHRA system 
described by state-space equations [31-33]. This 
approach systematically constructs the control 
law by breaking down the system dynamics into 
a series of subsystems, identifying virtual control 
inputs and error variables at each level, and ensur-
ing global stability through the use of Lyapunov 
functions. Specifically, the backstepping design 
addresses the nonlinear dynamics of the EHRA by 
treating the states as a sequence, where each state 

is recursively stabilized relative to the previous 
state. To address the challenges posed by param-
eter uncertainty and external disturbances, the con-
troller integrates an adaptive mechanism for online 
parameter estimation and a disturbance observer 
for robust compensation. The adaptive mechanism 
employs a projection-based update law to estimate 
k1, ensuring that the estimated parameter remains 
within physically meaningful bounds, while the 
disturbance observer, designed using a nonlinear 
observer framework, provides an estimate of d to 
mitigate its impact on tracking performance. Fur-
thermore, to enhance the functionality of the con-
troller ability to track periodic trajectories, an itera-
tive learning scheme is incorporated, which adjusts 
the control input over successive iterations based 
on the tracking error, complementing the backstep-
ping and adaptive components. 

The primary control objective is to regulate 
the angular position α1 of the EHRA system to 
accurately track a predefined, bounded reference 
trajectory α1d, thereby ensuring high-precision 
motion control suitable for industrial environ-
ments. The reference trajectory α1d is assumed to 
be sufficiently smooth, specifically at least twice 
differentiable with bounded derivatives, to facili-
tate the derivation of the control law and ensure 
physical realizability of the desired motion. The 
EHRA system, as described by the state-space 
equations in previous section, is a third-order 
nonlinear system characterized by the state vari-
ables α1, α2, α34, which collectively capture the 
position, velocity, and pressure dynamics of the 
hydraulic rotary actuator. The backstepping de-
sign process, tailored for systems in strict feed-
back form, begins by stabilizing the outermost 
state α1, treating the subsequent state α2 as a vir-
tual control input to regulate the position error 
dynamics. This recursive approach ensures that 
the tracking error is systematically minimized 
while maintaining system stability through Ly-
apunov-based techniques. To quantify the track-
ing performance, the position error is defined as 
the deviation of the actual angular position from 
the desired trajectory:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (6)

To design the control law, compute the time de-
rivative of z1 to understand how the error evolves:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (7)
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Here, 1dα  is the desired angular velocity, as-
sumed to be known and computable from the ref-
erence trajectory α1d. The equation reveals that the 
evolution of the position error z1 depends directly 
on the actual velocity α2, which is the next state in 
the system hierarchy. In the backstepping frame-
work, α2 is treated as a virtual control input to sta-
bilize z1. The objective is to define a desired value 
for α2, denoted α2d, such that if α2 = α2d​, the error z1 
converges to zero. To achieve this, propose a vir-
tual control law inspired by feedback stabilization:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (8)

where:	k1 – positive control gain (k1 >
 0), to be 

selected later for tuning the convergence 
rate. Since α2 is a system state and not 
directly manipulable, define the velocity 
error as the difference between the actual 
velocity and the desired virtual control:

	

𝛼𝛼1 = 𝑦𝑦 
𝛼𝛼2 = 𝑦̇𝑦 

𝛼𝛼34 =
𝐴𝐴
𝑚𝑚 (𝛼𝛼3 − 𝛼𝛼4) 

 

𝛼̇𝛼1 = 𝛼𝛼2 
𝛼̇𝛼2 = 𝛼𝛼34 + 𝑑𝑑 

𝛼̇𝛼34 =
𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)

𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)
 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝑓𝑓(𝛼𝛼1) = 

= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)
𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)

 

 

1( )g f D=  

 

𝛼̇𝛼34 = 𝑓𝑓(𝛼𝛼1) 

(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑔𝑔𝑔𝑔 
= 𝑚𝑚𝑚𝑚(𝑉𝑉01+𝑉𝑉02)

𝐴𝐴(𝑉𝑉01+𝐴𝐴𝛼𝛼1)(𝑉𝑉02−𝐴𝐴𝛼𝛼1)
(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+ 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)𝐷𝐷𝐷𝐷
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1)

 

 

𝑧𝑧1 = 𝛼𝛼1 − 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧1 =
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼1 − 𝛼𝛼1𝑑𝑑) = 

= 𝛼̇𝛼1 − 𝛼̇𝛼1𝑑𝑑 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 

 

2 1 1 1d d k z = −  

 

2 2 2dz  = −  

 

	 (9)

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (10)

This resulting differential equation governs 
the dynamics of the position error z1, now ex-
pressed as a function of the velocity error z2 and 
a stabilizing term proportional to z1​. To ensure 
that the virtual control α2d stabilizes z1 when α2 = 
α2d (i.e., z2 = 0 ), construct a Lyapunov function 
candidate, which is a standard tool for assessing 
stability in control systems:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (11)

Compute its time derivative to evaluate the 
performance of the system behavior:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (12)

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (13)

This is negative definite, implying that z1 → 0 exponentially with a rate determined by k1. Spe-
cifically, the dynamics become:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (14)

The solution is:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (15)

Since k1 > 0, z1 → 0, confirming the effective-
ness of α2d as a stabilizing virtual control. Define 
the velocity error as the deviation of the actual 
angular velocity from the desired virtual control:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (16)

To design a control law for z2​, compute its 
time derivative:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (17)

This equation shows that ż2 depends on the 
pressure state α34, the disturbance d, and terms in-
volving z1 and z2, reflecting the performance of 
the system hierarchical structure. Treat α34 as a 
virtual control input to stabilize z2. The goal is to 
define a desired pressure difference α34d such that 
if α34 = α34d  z2 converges to zero, neutralizing the  

z1z2 term in 
1V ​. Propose:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (18)

where:	k2 > 0 is a positive control gain. How-
ever, since the disturbance d is unknown 
in practice, a nonlinear observer is in-
troduced to estimate it. Let d̂ denote the 
estimated disturbance. The virtual con-
trol law is then modified by substituting 
d̂  in place of the unknown d to ensure 
implementability:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (19)

Define the pressure error:

	

𝑧̇𝑧1 = 𝛼𝛼2 − 𝛼̇𝛼1𝑑𝑑 = 
= (𝑧𝑧2 + 𝛼𝛼2𝑑𝑑) − 𝛼̇𝛼1𝑑𝑑 = 
= 𝑧𝑧2 + (𝛼̇𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧1) − 

−𝛼̇𝛼1𝑑𝑑 = 𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1 

 

2
1 1

1
2

V z=  

 

𝑉̇𝑉1 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (1

2 𝑧𝑧1
2) = ∂𝑉𝑉1

∂𝑧𝑧1
𝑧̇𝑧1 = 

= 𝑧𝑧1𝑧̇𝑧1 = 𝑧𝑧1(𝑧𝑧2 − 𝑘𝑘1𝑧𝑧1) 

 

2
1 1 1V k z= −  

 

1 1 1z k z= −  

 

1
1 1( ) (0) k tz t z e−=  

 

2 2 2 2 1 1 1( )d dz k z   = − = − −  

 

𝑧̇𝑧2 = 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝛼𝛼2 − 𝛼𝛼2𝑑𝑑) = 𝛼̇𝛼2 − 𝛼̇𝛼2𝑑𝑑 

= 𝛼𝛼34 + 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 

− 𝑑𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

𝛼𝛼34𝑑𝑑 = −𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 

−𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1 

 

3 34 34dz  = −  

 

 

	 (20)

Substitute into the velocity error dynamics:

	

𝑧̇𝑧2 = (𝑧𝑧3 + 𝛼𝛼34𝑑𝑑) + 𝑑𝑑 − 

− 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 = 𝑧𝑧3 + 

+ (−𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘1
2𝑧𝑧1) + 

+ 𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘1
2𝑧𝑧1 = 

= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝑑𝑑 = 

= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 + 𝑑̃𝑑 

	(21)
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where:	  ˆd d d= −  is disturbance estimation er-
ror. To estimate d, design a disturbance 
observer assuming d is slowly varying 

( 0)d ≈ . Propose an observer dynamics:

	

𝑧̇𝑧2 = (𝑧𝑧3 + 𝛼𝛼34𝑑𝑑) + 𝑑𝑑 − 

−𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘12𝑧𝑧1 = 𝑧𝑧3 + 

+(−𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘12𝑧𝑧1) + 

+𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘12𝑧𝑧1 
= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝑑𝑑 = 

= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 + 𝑑̃𝑑 

 

34 2
ˆ ˆ( )d l d  = − + −  

 

ˆ( )d l d d ld= − − = −  

 

𝑉𝑉2 = 𝑉𝑉1 +
1
2 𝑧𝑧2

2 + 1
2𝑙𝑙 𝑑̃𝑑

2 = 

= 1
2 𝑧𝑧1

2 + 1
2 𝑧𝑧2

2 + 1
2𝑙𝑙 𝑑̃𝑑

2 

 

𝑉̇𝑉2 = −𝑘𝑘1𝑧𝑧12 − 𝑘𝑘2𝑧𝑧22 + 

+𝑧𝑧2𝑧𝑧3 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 

 

𝑉̇𝑉2 ≤ −𝑘𝑘1𝑧𝑧12 − (𝑘𝑘2 −
1
2) 𝑧𝑧2

2 + 

+𝑧𝑧2𝑧𝑧3 −
1
2 𝑑̃𝑑

2 

 

2 2 2
2 1 1 2 2

1 1( )
2 2

V k z k z d − − − −  

 

34 2
ˆ ˆ( )d l d  = − + −  

 

34 34
ˆ ˆ( ( ))d l d d = − + − +  

 

𝑉̇𝑉2 = −𝑘𝑘1𝑧𝑧12 − 𝑘𝑘2𝑧𝑧22 + 

+𝑧𝑧2𝑧𝑧3 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 

	 (22)

where:	  l > 0 is the observer gain. Compute the 
error dynamics:

	

𝑧̇𝑧2 = (𝑧𝑧3 + 𝛼𝛼34𝑑𝑑) + 𝑑𝑑 − 

−𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘12𝑧𝑧1 = 𝑧𝑧3 + 

+(−𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝛼̈𝛼1𝑑𝑑 − 𝑘𝑘1𝑧𝑧2 + 𝑘𝑘12𝑧𝑧1) + 

+𝑑𝑑 − 𝛼̈𝛼1𝑑𝑑 + 𝑘𝑘1𝑧𝑧2 − 𝑘𝑘12𝑧𝑧1 
= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 − 𝑑̂𝑑 + 𝑑𝑑 = 

= 𝑧𝑧3 − 𝑧𝑧1 − 𝑘𝑘2𝑧𝑧2 + 𝑑̃𝑑 

 

34 2
ˆ ˆ( )d l d  = − + −  

 

ˆ( )d l d d ld= − − = −  

 

𝑉𝑉2 = 𝑉𝑉1 +
1
2 𝑧𝑧2

2 + 1
2𝑙𝑙 𝑑̃𝑑

2 = 

= 1
2 𝑧𝑧1

2 + 1
2 𝑧𝑧2

2 + 1
2𝑙𝑙 𝑑̃𝑑

2 

 

𝑉̇𝑉2 = −𝑘𝑘1𝑧𝑧12 − 𝑘𝑘2𝑧𝑧22 + 

+𝑧𝑧2𝑧𝑧3 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 

 

𝑉̇𝑉2 ≤ −𝑘𝑘1𝑧𝑧12 − (𝑘𝑘2 −
1
2) 𝑧𝑧2

2 + 

+𝑧𝑧2𝑧𝑧3 −
1
2 𝑑̃𝑑

2 

 

2 2 2
2 1 1 2 2

1 1( )
2 2

V k z k z d − − − −  

 

34 2
ˆ ˆ( )d l d  = − + −  

 

34 34
ˆ ˆ( ( ))d l d d = − + − +  

 

𝑉̇𝑉2 = −𝑘𝑘1𝑧𝑧12 − 𝑘𝑘2𝑧𝑧22 + 

+𝑧𝑧2𝑧𝑧3 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 

	 (23)

This is a first-order system with solution 
( ) (0) ltd t d e−=  . Since l > 0, 0d →  expo-

nentially, ensuring d̂ d→  over time. In prac-
tice, 

2α  is approximated numerically (e.g., 

2 2
2

( ) ( )t t t
t

α αα − −∆
≈

∆
 ), which introduces minor 

estimation errors but is manageable with a small 
time step. Augment the Lyapunov function from 
Step 1 to include the velocity error and distur-
bance estimation error:

	 2 2 2 2 2
2 1 2 1 2

1 1 1 1 1
2 2 2 2 2

V V z d z z d
l l

= + + = + +  	(24)

Compute its derivative:

	 2 2 2
2 1 1 2 2 2 3 2V k z k z z z z d d= − − + + −  	 (25)

Bound the cross-term using Young’s inequality

(
2 2

2 2
a bab ≤ + ): 2 2

2 2
1 1
2 2

z d z d≤ + 

	 2 2 2
2 1 1 2 2 2 3

1 1( )
2 2

V k z k z z z d≤ − − − + −  	 (26) 

If 3 0z = and 2
1
2

k > :

	 2 2 2
2 1 1 2 2

1 1( )
2 2

V k z k z d≤ − − − −  	 (27)

The Lyapunov derivative shows that stability 
depends on controlling z3 and the estimation of 
the observer performance. The disturbance ob-
server ensures 0d → , mitigating the 2z d  term 
over time. The z2z3 term requires the next step, 
where α34 is regulated via the pump speed ω, in-
corporating adaptive estimation of k1. The gains 
k2 and l are chosen to ensure 2

1
2

k >  and fast distur-
bance rejection, balanced against noise sensitivity 

in practical implementation. This step advances 
the design by stabilizing the velocity subsystem, 
paving the way for the final pressure dynamics. 
Define the observer dynamics:

	 34 2
ˆ ˆ( )d l d α α= − + −

 	 (28)

Since 2α ​ is not directly measured, use the 
system equation:

	
34 34

ˆ ˆ( ( ))d l d dα α= − + − + 	 (29)

Substitute into 
2V ​:

	 2 2 2
2 1 1 2 2 2 3 2V k z k z z z z d d= − − + + −  	 (30)

Compute the time derivative of z3​:

	 3 34 34( )d
dz
dt

α α= − 	 (31)

From the system model:

	

3 34 34( )d
dz
dt

 = −  

 

𝛼̇𝛼34 = 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1) 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝛼̇𝛼34𝑑𝑑 = −𝑧̇𝑧1 − 𝑘𝑘2𝑧̇𝑧2 − 𝑑̇̂𝑑 + 

+𝛼𝛼1𝑑𝑑 − 𝑘𝑘1𝑧̇𝑧2 + 𝑘𝑘1
2𝑧̇𝑧1 

= 𝑘𝑘1(2 + 𝑘𝑘2 − 𝑘𝑘1
2)𝑧𝑧1 + 

+ (−1 + 𝑘𝑘2
2 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1

2)𝑧𝑧2 − 

−(𝑘𝑘1 + 𝑘𝑘2)𝑧𝑧3 + 

+ (−𝑘𝑘1 − 𝑘𝑘2 − 𝑙𝑙)𝑑̃𝑑 + 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧3 = 𝑓𝑓(𝛼𝛼1)(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+𝑔𝑔𝑔𝑔 − 𝛼̇𝛼34𝑑𝑑 

 

𝜔𝜔 = 1
𝑔𝑔 [ −𝑧𝑧2 − 𝑘𝑘3𝑧𝑧3 − 𝑓𝑓(𝛼𝛼1)

(−𝑘̂𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝛼̇𝛼34𝑑𝑑
] 

 

3 2 3 3 1 34( ) lz z k z f k = − − −  

 

2 2
3 2 3

1 1
2 2 lV V z k


= + +  

 

𝑉̇𝑉3 = −𝑘𝑘1𝑧𝑧1
2 − 𝑘𝑘2𝑧𝑧2

2 − 𝑘𝑘3𝑧𝑧3
2 − 

−𝑧𝑧3𝑓𝑓(𝛼𝛼1)𝑘̃𝑘𝑙𝑙𝛼𝛼34 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 + 𝑘̃𝑘𝑙𝑙𝑘̇̃𝑘𝑙𝑙
𝛾𝛾  

 

3 1 34( )l l
l

k k z f k 


=  

 

 

	 (32)

Differentiate:

	

3 34 34( )d
dz
dt

 = −  

 

𝛼̇𝛼34 = 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1) 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝛼̇𝛼34𝑑𝑑 = −𝑧̇𝑧1 − 𝑘𝑘2𝑧̇𝑧2 − 𝑑̇̂𝑑 + 

+𝛼𝛼1𝑑𝑑 − 𝑘𝑘1𝑧̇𝑧2 + 𝑘𝑘1
2𝑧̇𝑧1 

= 𝑘𝑘1(2 + 𝑘𝑘2 − 𝑘𝑘1
2)𝑧𝑧1 + 

+ (−1 + 𝑘𝑘2
2 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1

2)𝑧𝑧2 − 

−(𝑘𝑘1 + 𝑘𝑘2)𝑧𝑧3 + 

+ (−𝑘𝑘1 − 𝑘𝑘2 − 𝑙𝑙)𝑑̃𝑑 + 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧3 = 𝑓𝑓(𝛼𝛼1)(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+𝑔𝑔𝑔𝑔 − 𝛼̇𝛼34𝑑𝑑 

 

𝜔𝜔 = 1
𝑔𝑔 [ −𝑧𝑧2 − 𝑘𝑘3𝑧𝑧3 − 𝑓𝑓(𝛼𝛼1)

(−𝑘̂𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝛼̇𝛼34𝑑𝑑
] 

 

3 2 3 3 1 34( ) lz z k z f k = − − −  

 

2 2
3 2 3

1 1
2 2 lV V z k


= + +  

 

𝑉̇𝑉3 = −𝑘𝑘1𝑧𝑧1
2 − 𝑘𝑘2𝑧𝑧2

2 − 𝑘𝑘3𝑧𝑧3
2 − 

−𝑧𝑧3𝑓𝑓(𝛼𝛼1)𝑘̃𝑘𝑙𝑙𝛼𝛼34 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 + 𝑘̃𝑘𝑙𝑙𝑘̇̃𝑘𝑙𝑙
𝛾𝛾  

 

3 1 34( )l l
l

k k z f k 


=  

 

 

	 (33)

This exact form is complex for real-time com-
putation, so in practice, 34dα ​ is approximated nu-

merically (e.g., 34 34
34

( ) ( )d d
d

t t t
t

α αα − −∆
≈

∆
 . 

Substitute into ż3:

	 3 1 34 2 34( )( )l dz f k A gα α α ω α= − − + −  ​	 (34)

Design ω to stabilize z3

	

3 34 34( )d
dz
dt

 = −  

 

𝛼̇𝛼34 = 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1) 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝛼̇𝛼34𝑑𝑑 = −𝑧̇𝑧1 − 𝑘𝑘2𝑧̇𝑧2 − 𝑑̇̂𝑑 + 

+𝛼𝛼1𝑑𝑑 − 𝑘𝑘1𝑧̇𝑧2 + 𝑘𝑘1
2𝑧̇𝑧1 

= 𝑘𝑘1(2 + 𝑘𝑘2 − 𝑘𝑘1
2)𝑧𝑧1 + 

+ (−1 + 𝑘𝑘2
2 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1

2)𝑧𝑧2 − 

−(𝑘𝑘1 + 𝑘𝑘2)𝑧𝑧3 + 

+ (−𝑘𝑘1 − 𝑘𝑘2 − 𝑙𝑙)𝑑̃𝑑 + 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧3 = 𝑓𝑓(𝛼𝛼1)(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+𝑔𝑔𝑔𝑔 − 𝛼̇𝛼34𝑑𝑑 

 

𝜔𝜔 = 1
𝑔𝑔 [ −𝑧𝑧2 − 𝑘𝑘3𝑧𝑧3 − 𝑓𝑓(𝛼𝛼1)

(−𝑘̂𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝛼̇𝛼34𝑑𝑑
] 

 

3 2 3 3 1 34( ) lz z k z f k = − − −  

 

2 2
3 2 3

1 1
2 2 lV V z k


= + +  

 

𝑉̇𝑉3 = −𝑘𝑘1𝑧𝑧1
2 − 𝑘𝑘2𝑧𝑧2

2 − 𝑘𝑘3𝑧𝑧3
2 − 

−𝑧𝑧3𝑓𝑓(𝛼𝛼1)𝑘̃𝑘𝑙𝑙𝛼𝛼34 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 + 𝑘̃𝑘𝑙𝑙𝑘̇̃𝑘𝑙𝑙
𝛾𝛾  

 

3 1 34( )l l
l

k k z f k 


=  

 

 

	 (35)

	 3 2 3 3 1 34( ) lz z k z f kα α= − − −  	 (36) 

Augment the Lyapunov function:
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1 1
2 2 lV V z k

γ
= + + 

	
(37)

	

3 34 34( )d
dz
dt

 = −  

 

𝛼̇𝛼34 = 𝑚𝑚𝑚𝑚(𝑉𝑉01 + 𝑉𝑉02)
𝐴𝐴(𝑉𝑉01 + 𝐴𝐴𝛼𝛼1)(𝑉𝑉02 − 𝐴𝐴𝛼𝛼1) 

(𝐷𝐷𝐷𝐷 − 𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝑄𝑄𝑣𝑣 

 

𝛼̇𝛼34𝑑𝑑 = −𝑧̇𝑧1 − 𝑘𝑘2𝑧̇𝑧2 − 𝑑̇̂𝑑 + 

+𝛼𝛼1𝑑𝑑 − 𝑘𝑘1𝑧̇𝑧2 + 𝑘𝑘1
2𝑧̇𝑧1 

= 𝑘𝑘1(2 + 𝑘𝑘2 − 𝑘𝑘1
2)𝑧𝑧1 + 

+ (−1 + 𝑘𝑘2
2 + 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘1

2)𝑧𝑧2 − 

−(𝑘𝑘1 + 𝑘𝑘2)𝑧𝑧3 + 

+ (−𝑘𝑘1 − 𝑘𝑘2 − 𝑙𝑙)𝑑̃𝑑 + 𝛼𝛼1𝑑𝑑 

 

𝑧̇𝑧3 = 𝑓𝑓(𝛼𝛼1)(−𝑘𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 

+𝑔𝑔𝑔𝑔 − 𝛼̇𝛼34𝑑𝑑 

 

𝜔𝜔 = 1
𝑔𝑔 [ −𝑧𝑧2 − 𝑘𝑘3𝑧𝑧3 − 𝑓𝑓(𝛼𝛼1)

(−𝑘̂𝑘𝑙𝑙𝛼𝛼34 − 𝐴𝐴𝛼𝛼2) + 𝛼̇𝛼34𝑑𝑑
] 

 

3 2 3 3 1 34( ) lz z k z f k = − − −  

 

2 2
3 2 3
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2 2 lV V z k


= + +  
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2 − 𝑘𝑘2𝑧𝑧2

2 − 𝑘𝑘3𝑧𝑧3
2 − 

−𝑧𝑧3𝑓𝑓(𝛼𝛼1)𝑘̃𝑘𝑙𝑙𝛼𝛼34 + 𝑧𝑧2𝑑̃𝑑 − 𝑑̃𝑑2 + 𝑘̃𝑘𝑙𝑙𝑘̇̃𝑘𝑙𝑙
𝛾𝛾  

 

3 1 34( )l l
l

k k z f k 

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	 (38)

Let’s define: 

	 3 1 34( )l l
l

k k z f kα α
γ

=
 

 	 (39)

	 2 2 2 2
3 1 1 2 2 3 3 2V k z k z k z z d d= − − − + −  	 (40)

Bound d  as:

	 2 2
2 2

1 1
2 2

z d z d≤ +  	 (41)

	
2 2 2 2

3 1 1 2 2 3 3
1 1( )
2 2

V k z k z k z d≤ − − − − −  	 (42)

If 2
1
2

k > , 3 0V ≤ , ensuring all errors (z1,z2,z3,

1 2 3, , , , lz z z d k  ​) are bounded and converge to zero asymp-
totically. Employing a modified ILC scheme, the 
control signal for the EHA system in the kth itera-
tion is defined as follows:

	 *
( ) ( 1) ( )( ) ( ) ( )k k kt t tω ω ω−= Γ + 	 (43)

where:	 (0,1]Γ∈  is the adaptation gain, a scalar 
parameter that governs the influence of 
the previous iteration’s control input on 
the current iteration; ω(k–1) represents the 
control input (pump speed in rad/s) from 
the (k−1)th.

SYSTEM EVALUATION SETUP

To implement and evaluate the performance 
of the proposed controller, a co-simulation plat-
form integrating the EHRA system is established 
using AMESim and MATLAB/Simulink with an 
ODE solver. This co-simulation approach leverag-
es the strengths of both tools: AMESim provides 
a high-fidelity physical model of the hydraulic 
components, while MATLAB/Simulink facilitates 

the implementation and tuning of the advanced 
control algorithms. Figures 2 and 3 illustrate the 
structure of the evaluation system, highlighting 
the interconnection between the physical model 
developed in AMESim and the control algorithm 
implemented in MATLAB/Simulink. In this study, 
the EHRA system is modeled in AMESim, com-
prising a gear pump, a bidirectional symmetrical 
hydraulic rotary actuator, and a supplementary 
valve assembly. The gear pump, driven by an elec-
tric motor, regulates the hydraulic fluid supplied to 
the rotary actuator, while the valve system main-
tains pressure stability and ensures safe operation 
under varying load conditions.

In addition to the system modeling, several 
evaluation assumptions and controller settings 
were adopted to ensure consistency and practical 
relevance. The reference trajectory was defined 
as continuous, bounded, and twice differentiable 
to support Lyapunov-based analysis and iterative 
learning. External disturbances were modeled as 
bounded and slowly varying, while key param-
eters such as the bulk modulus and internal leak-
age were assumed to be bounded and estimable. 

Controller parameters were selected based 
on stability criteria and tuned through simula-
tion. Feedback gains k1, k2, k3 ​were chosen within 
5–100 to ensure convergence without overshoot. 
The observer gain l ranged from 10 to 100, and the 
ILC learning rate  was set within (0, 1], typically 
between 0.3 and 0.8. These values were validated 
under varying trajectories and load conditions.

In the co-simulation setup, the pump speed ω, 
which serves as the control input, directly governs 
the rotational motion of the hydraulic rotary cyl-
inder, as dictated by the dynamics in equation. To 
evaluate the robustness of the controller under re-
alistic operating conditions, external disturbances 
are introduced to the system. A variable load was 
applied using a torque generator connected to the 
rotary cylinder, capable of adjusting the external 
force Fr​, thereby influencing the disturbance term 

rFd m= − ​​, simulating real-world scenarios such 
as load variations in industrial applications. Ad-
ditionally, a friction model is incorporated into 
the AMESim simulation, with adjustable fric-
tion parameters to account for uncertainties in 
the contact. The motion of the rotary actuator 
is monitored using a high-precision angular en-
coder, which provides real-time measurements of 
the angular position α1 and velocity α2, while a 
pressure sensor measures the pressures P1 and P2 
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in the cylinder chambers to compute the scaled 
pressure difference α34​. These measurements are 
fed back to the MATLAB/Simulink environment 
for use in the state observer and control law com-
putation. The designed control method, including 
the backstepping controller, the ILC scheme, and 
the state observer, is implemented in MATLAB/

Simulink. The control law calculates the pump 
speed at each iteration and interfaces with the 
AMESim model through the co-simulation inter-
face. An ODE solver is used to solve the system 
dynamics, ensuring numerical accuracy and sta-
bility during the simulation. The co-simulation 
runs for a total duration of 100 seconds, allow-
ing a detailed evaluation of the controller perfor-
mance in tracking the desired trajectory. Various 
operating conditions, including disturbances and 
parameter uncertainties, are included to evaluate 
the robustness and adaptability of the controller.

VALIDATION RESULTS

To evaluate the performance of the Iterative 
Backstepping Observer-based Controller (IB-
SOC), a sinusoidal reference trajectory was em-
ployed, and the results are presented in Figures 
4 through 8. Additionally, external disturbanc-
es, including white noise and sinusoidal noise, 
were introduced to assess the robustness of the 
system. Initially, the traditional PID controller 
was simulated, and its performance is shown 
with double dot-dashed green lines. Due to 
fixed gains, it exhibited significant oscillations 
and errors, leading to a sluggish and unstable 
response during high activity. This is evident in 
the position responses shown in Figure 4 and 
the tracking errors displayed in Figure 5, both 

Figure 2. Structure of the evaluation system, designed using MS Visio

Figure 3. Schematic diagram of the EHRA system in 
the co-simulation platform, source: designed using 
MATLAB/Simulink and AMESim co-simulation
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using the same line style. The fixed-gain nature 
of the PID controller limited its adaptability un-
der dynamic conditions.

Next, the FPID controller was tested under 
identical reference and noise conditions, with its 
performance indicated by short-dashed green lines. 
As shown in Figure 4, the FPID controller im-
proved position tracking compared to the PID con-
troller; however, the fuzzy inference mechanism of 
the FPID struggled to handle varying conditions, 
resulting in persistent tracking errors, as illustrated 
in Figure 5 using the same line style. The FSMC 
controller, represented by double dot-dashed purple 
lines, outperformed both PID and FPID controllers, 
yet it still produced oscillations and errors under 
substantial noise, as illustrated in Figure 5. Similar-
ly, the IBSC controller, marked by dash-dotted blue 
lines, offered better steady-state error performance 
due to its iterative learning capabilities, which are 
visible in Figure 4. However, oscillations persisted, 
particularly in initial cycles, and errors remained 
large during reference signal direction changes, as 
shown in Figure 5 with the same line style.

To address these challenges, the IBSOC con-
troller, described in Section 2, was implemented. 
Its trajectory tracking, marked by dashed red lines, 
is shown in Figure 4 and demonstrates superior 
speed, accuracy, and stability compared to other 
methods. The corresponding tracking errors, dis-
played in Figure 5 with the same line style, were 
minimal. Additionally, the control signal for the 
motor driving the hydraulic pump is presented 
in Figure 6, and the actuator chamber pressures 
are shown in Figure 7. By leveraging the IBSC 
framework and a self-tuning observer, the IBSOC 
effectively mitigated disturbances through com-
pensatory actions, consistently outperforming the 
PID, FPID, FSMC, and IBSC controllers in speed, 
precision, and stability. This case clearly highlights 
the IBSOC’s robustness for sinusoidal trajectories. 

Next, a chirp reference trajectory (defined by 
a sinusoidal signal with varying frequency) was 
used to evaluate each controller’s adaptability to 
dynamic changes. The corresponding results are 
presented in Figures 8 through 11. The PID con-
troller, represented by double dot-dashed green 

Figure 5. Comparison of tracking errors for a sinusoidal reference using different controllers, source:
based on MATLAB/Simulink and AMESim co-simulation

Figure 4. Comparison of tracking performance for a sinusoidal reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation
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lines, exhibited considerable instability during 
high-frequency phases, leading to large oscilla-
tions and tracking errors, as shown in Figure 8. 
Due to its fixed gains, the PID controller was un-
able to cope with the frequency variations of the 
input trajectory. The FPID controller, shown with 
short dashed green lines, demonstrated slight im-
provement in tracking performance; however, 
its limited adaptability resulted in unacceptable 
errors under varying conditions, as also seen 
in Figure 8. The FSMC controller, depicted by 
double dot-dashed purple lines, performed better 
than both PID and FPID controllers but still dis-
played noticeable oscillations and elevated errors 
under disturbance conditions. The IBSC control-
ler, marked with dash-dotted blue lines, improved 
steady-state error and response due to its iterative 
learning mechanism, as illustrated in Figure 8. 
Nonetheless, residual oscillations were observed 
during the initial cycles and frequency transi-
tions. In contrast, the IBSOC controller, identi-
fied by dashed red lines, delivered the most stable 
and precise response, as evidenced in Figure 8. 
The corresponding tracking errors in Figure 9 

were the lowest among all evaluated controllers. 
Additionally, motor control signals and actuator 
chamber pressures are illustrated in Figures 10 
and 11, respectively. These results underscore 
the superior adaptability and robustness of the 
IBSOC controller in handling frequency-varying 
trajectories within electro-hydraulic systems.

In addition, the multistep trajectory, widely 
used in industrial applications, was tested to eval-
uate the controllers’ performance during abrupt 
position changes. The results are presented in 
Figures 12 through 15. The PID controller, shown 
with double-dashed green lines, exhibited insta-
bility, producing large oscillations and errors dur-
ing high-activity periods, as depicted in Figure 
12. Its fixed gains struggled with the rapid transi-
tions of the multistep profile. The FPID control-
ler, indicated by dashed green lines, improved 
tracking slightly, as shown in Figure 12, but per-
sistent errors remained due to its limited ability 
to handle sudden changes. The FSMC control-
ler, represented by double-dashed purple lines, 
outperformed PID and FPID, but disturbances 
caused oscillations and high errors, particularly 

Figure 6. Control signal for a sinusoidal reference using the IBSOC controller,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 7. Pressure of EHRA’s chambers (IBSOC controller) corresponding to a sinusoidal reference,
source: based on MATLAB/Simulink and AMESim co-simulation
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during step transitions, as illustrated in Figure 12. 
The IBSC controller, marked by dash-dotted blue 
lines, reduced steady-state errors through itera-
tive learning, as seen in Figure 12, but oscillations 
in initial cycles and at step changes led to errors. 
Conversely, the IBSOC controller, depicted by 
dashed red lines, delivered fast, accurate, and sta-
ble responses, as shown in Figure 12. Its tracking 
errors, presented in Figure 13, were minimal. The 

motor control signals are displayed in Figure 14, 
and the actuator chamber pressures are shown in 
Figure 15. This case demonstrates the IBSOC’s 
reliability in industrial scenarios requiring precise 
control over abrupt movements.

Finally, the sawtooth trajectory, character-
ized by sharp, linear changes, was evaluated to 
test the controllers’ ability to handle demand-
ing profiles. The results are shown in Figures 16 

Figure 8. Comparison of tracking performance for a chirp reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 9. Comparison of tracking errors for a chirp reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 10. Control signal for a chirp reference using the IBSOC controller,
source: based on MATLAB/Simulink and AMESim co-simulation
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through 19. The PID controller, illustrated by 
double dot-dashed green lines, exhibited notable 
instability with large oscillations and tracking 
errors during peak phases, as depicted in Figure 
16. Due to fixed gains, the PID controller was 
unable to accommodate the trajectory’s sudden 
shifts. The FPID controller, indicated by dashed 
green lines, demonstrated modest improvements 
in position tracking; however, the fuzzy logic 
component struggled with the trajectory’s com-
plexity, leading to substantial errors. The FSMC 
controller, represented by double dot-dashed 
purple lines, offered better performance overall, 
but still experienced oscillations and large er-
rors, particularly at sharp transitions, as shown 
in Figure 16. The IBSC controller, marked by 
dash-dotted blue lines, reduced steady-state er-
rors through iterative learning, as illustrated in 
Figure 16; nonetheless, oscillations remained 
during initial cycles and directional changes. 
In contrast, the IBSOC controller, depicted 
by dashed red lines, achieved rapid, accurate, 
and stable tracking, as shown in Figure 16. Its 

corresponding tracking errors, presented in 
Figure 17, were the lowest among all methods. 
Figures 18 and 19 illustrate the motor control 
signals and actuator chamber pressures, respec-
tively. The integration of the IBSC framework 
with a self-tuning observer enabled the IBSOC 
controller to anticipate system dynamics and 
adjust control parameters proactively, thereby 
minimizing oscillations and errors under severe 
disturbances. These results highlight the reli-
ability and effectiveness of the IBSOC approach 
in managing high-gradient motion trajectories 
in electro-hydraulic systems.

AB/Simulink and AMESim co-simulation

Controller performance was further analyzed 
in Table 1 using root mean square error (RMSE) 
and average relative error (ARE), defined in 
Equations (44–45). The IBSOC controller exhib-
ited superior performance, with faster responses 
and lower errors, particularly under disturbances. 
By optimizing parameters in real time, the IBSOC 

Figure 11. Pressure of EHRA’s chambers (IBSOC controller) corresponding to a chirp reference,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 12. Comparison of tracking performance for a multi-step reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation
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controller ensures precise tracking, minimizing 
oscillations and errors throughout operation.

	 ( ) ( )( )2

1

1RMSE
n

in out
k

y k y k
n =

= −∑ 	  (44)

	
( ) ( )

( ) [ ]
1

1ARE 100 , %
n

in out

k in

y k y k
n y k=

 −
= ×  

 
∑ 	 (45)

Across the sinusoidal, chirp, multistep, and 
sawtooth trajectories, the IBSOC controller con-
sistently demonstrated superior performance 
compared to the PID, FPID, FSMC, and IBSC 
controllers in terms of speed, accuracy, and sta-
bility, with minimal tracking errors observed. The 
combination of real-time parameter adaptation 
and the predictive capability of the integrated ob-
server enabled the IBSOC controller to maintain 
robustness under various disturbance conditions. 

Figure 13. Comparison of tracking errors for a multi-step reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 14. Control signal for a multi-step reference using the IBSOC controller,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 15. Pressure of EHRA’s chambers (IBSOC controller) corresponding to a multi-step reference,
source: based on MATLAB/Simulink and AMESim co-simulation
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These results underscore the effectiveness of the 
proposed control scheme for complex electro-hy-
draulic applications requiring high precision.

Compared with conventional control ap-
proaches, the proposed hybrid control strategy 
also shows significant improvement in handling 
system nonlinearities and uncertainties. While 
traditional PID-based controllers often suffer 
from steady-state errors, and sliding mode con-
trollers introduce undesirable chattering effects, 

the IBSOC offers smoother and more stable be-
havior. Although fuzzy-PID and adaptive back-
stepping methods enhance adaptability, they 
tend to underperform in state estimation and 
convergence rate under varying conditions. In 
contrast, our integration of ILC and nonlinear 
observation into a Lyapunov-stable backstep-
ping framework offers a more balanced solution 
in terms of accuracy, robustness, and implemen-
tation feasibility.

Figure 16. Comparison of tracking performance for a sawtooth reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 17. Comparison of tracking errors for a sawtooth reference using different controllers,
source: based on MATLAB/Simulink and AMESim co-simulation

Figure 18. Control signal for a sawtooth reference using the IBSOC controller,
source: based on MATLAB/Simulink and AMESim co-simulation



458

Advances in Science and Technology Research Journal 2025, 19(10), 444–460

CONCLUSION

This study presents a novel position control 
method for pump-driven electro-hydraulic rotary 
actuator systems that addresses the challenges of 
nonlinearity, parameter uncertainty, and unmea-
sured states inherent in such systems. By integrat-
ing a modified backstepping algorithm, an itera-
tive learning control scheme, and a state observer, 
the proposed hybrid control strategy achieves 
accurate position tracking while ensuring 

robustness and stability under a wide range of 
operating conditions. The method is validated 
through co-simulations in AMESim and MAT-
LAB/Simulink, showing tracking errors below 
0.5% and estimation errors within 1%. These re-
sults not only confirm the method’s effectiveness 
but also provide practical insights into combining 
iterative learning and state estimation in nonlin-
ear hydraulic systems. The approach offers high 
potential for precision motion control in indus-
trial applications such as robotics, aerospace, and 

Figure 19. Pressure of EHRA’s chambers (IBSOC controller) corresponding to a sawtooth reference,
source: based on MATL

Table 1. Control performance evaluation
Validation Evaluation criteria

Case Controller RMSE [rad] ARE [%]

Sinusoidal

PID 0.075583 0.055120

FPID 0.068236 0.050544

FSMC 0.051047 0.026163

IBSC 0.064477 0.019360

IBSOC 0.040785 0.013424

Chirp

PID 0.078579 0.053397

FPID 0.074754 0.051745

FSMC 0.057453 0.033420

IBSC 0.046450 0.014621

IBSOC 0.015423 0.010208

Multi-Step

PID 0.018332 0.030061

FPID 0.018107 0.027376

FSMC 0.012309 0.019179

IBSC 0.013310 0.018031

IBSOC 0.007169 0.011949

Sawtooth

PID 0.038569 0.037351

FPID 0.038150 0.028977

FSMC 0.030087 0.015601

IBSC 0.030955 0.016088

IBSOC 0.020085 0.009719

Note: Authors’ calculations based on data provided by MATLAB/Simulink and AMESim co-simulation.
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heavy machinery. Although this study is based on 
simulation validation, future research will aim to 
implement the proposed control strategy in real 
time and evaluate its effectiveness through ex-
perimental testing on a physical testbench under 
realistic operating conditions.
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