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INTRODUCTION

Efficient delivery scheduling in logistics 
and supply chain management remains a critical 
area of research, primarily due to its role in the 
“last mile” – the final and often most complex 
and expensive stage of product delivery to the 
end customer. Well-designed routing enables not 
only timely order fulfillment, which directly im-
pacts customer satisfaction and loyalty, but also 
more effective use of company resources. In the 
context of growing e-commerce demand and in-
creasing pressure to shorten delivery times, the 
ability to dynamically and optimally plan routes 
has become a key factor in achieving competi-
tive advantage. Route optimization also influ-
ences strategic decisions, including fleet sizing 
and distribution center location. Consequently, 
the scheduling process has a significant impact 
on operational costs, with transportation being 
one of the largest expense categories in logistics 
budgets, driven by fuel, driver wages, and vehicle 

maintenance. Reducing total route distance leads 
directly to lower fuel consumption and decreased 
vehicle wear, while minimizing total driver work-
ing time reduces labor costs, including overtime. 
Moreover, efficient planning can reveal that fewer 
vehicles are needed to serve the same number of 
customers, resulting in capital and maintenance 
savings. Even the implementation of simple op-
timization algorithms can lead to substantial 
cost reductions. From an operational efficiency 
perspective, optimized scheduling maximizes 
resource utilization by improving vehicle load 
rates, reducing empty mileage, and increasing 
route profitability. It also enables service of more 
customers in less time or within narrower deliv-
ery time windows, increasingly demanded by the 
market. Improved efficiency also translates into 
environmental benefits – shorter routes result 
in lower emissions, aligning with sustainability 
goals and strengthening corporate image. As a re-
sult, delivery scheduling is no longer viewed sole-
ly as a technical optimization challenge, but as a 
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strategic tool for building efficient, cost-effective, 
and socially responsible logistics systems.

In response to these challenges, the aim of 
this study was to design, implement, and evalu-
ate the effectiveness of a hybrid metaheuristic for 
solving the vehicle routing problem. Specifically, 
the goal was to investigate how the combination 
of two distinct optimization strategies – global 
exploration of the solution space and local, fine-
tuned improvements – affects the quality and 
speed of route generation. The research hypoth-
esis assumed that integrating large, diversified 
changes (the destroy and repair operators in the 
Adaptive Large Neighborhood Search – ALNS 
algorithm) with a local intensification mechanism 
(tabu search) would yield better results than ap-
plying either strategy in isolation. The proposed 
hybrid algorithm is expected to deliver higher-
quality solutions (i.e., shorter routes) within com-
petitive computational times, outperforming stan-
dard metaheuristics such as the classic genetic 
algorithm, and offering more practical applicabil-
ity than exact methods (solvers) for realistically 
scaled problems.

This study directly addresses a persistent 
and significant research gap in the field of logis-
tics optimization. Although the vehicle routing 
problem (VRP) and its variants have been exten-
sively studied for decades, and metaheuristics 
such as genetic algorithms and tabu search are 
well documented, the gap lies not in the problem 
itself, but in the methods used to solve it. There-
fore, the scientific contribution of this research 
can be defined as follows:
	• A response to the need for developing integrat-

ed solution approaches and evaluating which 
combinations of mechanisms yield the best re-
sults. The proposed method in this article tests 
a specific combination: the strength of ALNS, 
aimed at escaping local optima through sub-
stantial route restructuring, and the precision 
of tabu search in refining local segments of the 
solution.

	• Consideration of a practically relevant trade-
off in logistics between finding an ideal route 
and the computational time available to search 
for it – aiming for the best balance between 
solution quality and computational effort.

The main scientific contribution of this study 
can be identified as follows:
	• A contribution to the advancement of knowl-

edge on designing effective metaheuristics 

through the proposal and evaluation of a spe-
cific algorithmic architecture – not a simple 
combination of two methods, but a well-struc-
tured integration in which one mechanism 
(large-scale changes) creates space for the oth-
er (local refinements) to operate effectively.

	• Providing evidence of the effectiveness of the 
proposed algorithms based on real-world data 
from a distribution company, thus creating a 
valuable benchmark for potential users - both 
researchers and logistics enterprises with sim-
ilar operational profiles.

	• The results of the study also have a practical 
dimension, demonstrating that investment in 
the development of a more complex hybrid 
algorithm can yield tangible benefits in the 
form of reduced transportation costs (shorter 
routes) and improved operational efficiency 
(faster planning).

BACKGROUND

The delivery scheduling problem, widely rec-
ognized in academic literature as the VRP, is one 
of the most fundamental and frequently analyzed 
topics in logistics and operations research [1]. In 
its classical form, it involves determining an opti-
mal set of routes for a fleet of vehicles that, start-
ing from one or more depots, must serve a group of 
geographically dispersed customers and then return 
to the starting point. The objective is to minimize 
the total operational cost, typically associated with 
the overall distance, travel time, or number of ve-
hicles used [2]. This problem is a generalization 
of the well-known Traveling Salesman Problem 
(TSP), with the key distinction that VRP involves 
multiple vehicles with limited capacity [3]. Due 
to its computational complexity – it belongs to the 
class of NP-hard problems – finding an optimal so-
lution for real-life, large-scale instances is extreme-
ly challenging [4]. In general, VRP solution meth-
ods are classified into three main categories: exact 
algorithms, heuristics, and metaheuristics. Each of 
these approaches has different characteristics, mak-
ing them suitable for different problem scales and 
precision requirements [5]. Selecting the appropri-
ate method is a key trade-off between solution qual-
ity and the time required to find it [6, 7].

Exact algorithms, such as integer program-
ming, branch-and-bound, and column generation, 
offer one fundamental advantage – they guar-
antee optimal solutions [8, 9]. These methods 
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ensure that the obtained routing plan is the best 
possible with respect to a defined objective (e.g., 
minimum distance). They also serve as valuable 
benchmarks for evaluating the quality of faster, 
approximate methods. However, their main draw-
back – and a major limitation in practical applica-
tions – is computational complexity [10]. The time 
required to find a solution increases exponentially 
with problem size. In practice, this means that ex-
act algorithms are capable of efficiently solving 
only small problem instances, typically involving 
a few dozen delivery points. For large logistics 
networks with hundreds or thousands of custom-
ers, their application becomes infeasible due to 
unacceptable computation times [11].

An alternative approach is heuristics – sim-
ple, intuitive construction methods that allow for 
very fast generation of good, though not neces-
sarily optimal, solutions. Classic examples in-
clude the Clarke and Wright savings algorithm 
[12], the sweep algorithm [13], and the nearest 
neighbor method [14]. Their greatest advantages 
are speed and ease of implementation. They can 
quickly generate reasonable routing plans even 
for very large problems. However, they do not 
guarantee solution quality. Because heuristics 
make locally optimal choices at each step, they 
often become trapped in local optima, and the 
final result may be far from the best possible. 
Nevertheless, due to their speed, they are fre-
quently used in systems that require real-time or 
dynamic planning, or as a starting point for more 
advanced optimization techniques.

Metaheuristics attempt to combine the 
strengths of both approaches, offering a com-
promise between solution quality and compu-
tational effort. These strategies guide simpler 
heuristics to more effectively explore the solu-
tion space and avoid local optima traps. Among 
the most popular metaheuristics used for VRP 
are those applied in this paper – tabu search – 
as well as simulated annealing, genetic algo-
rithms [15, 16, 17], and ant colony optimization 
[18]. Their advantage lies in the ability to find 
very high-quality solutions, often optimal or 
near-optimal, for large and complex problems 
with multiple constraints. This comes at the 
cost of greater implementation complexity and 
the need to tune numerous control parameters, 
which can be time-consuming. Nevertheless, 
metaheuristics have become the most common-
ly used approach for solving real-world VRP 
instances in industry.

MATERIALS AND METHODS

As highlighted in the introduction, distri-
bution companies are faced daily with com-
plex decisions regarding which vehicle should 
be dispatched, in what order deliveries should 
be made, and along which route – all while en-
suring timely delivery and minimizing travel 
distance. An optimal routing solution helps 
reduce fuel consumption, limits vehicle wear, 
and enhances customer service. In this study, 
a routing model was proposed for a transport 
company and its fleet, with the goal of deliv-
ering packages within specified time windows 
while minimizing distance and travel time. 
The dataset used in the study was based on 
real operational data obtained from a logistics 
company, including exact delivery times and 
locations (GPS coordinates), parcel weight 
and volume, time windows for delivery, ser-
vice duration, as well as contextual informa-
tion such as traffic congestion based on time 
of day and weather conditions.

To solve the problem, a hybrid algorithm was 
implemented. First, a fast initial solution is gen-
erated, which is then improved through destroy 
and repair operations within the Adaptive Large 
Neighborhood Search (ALNS) framework. Fi-
nally, local route refinements are applied using 
the tabu search algorithm. The underlying as-
sumption is that combining large-scale solution 
modifications with fine-grained local improve-
ments helps avoid suboptimal local minima and 
leads to more effective routing outcomes.

Delivery scheduling is formulated as a vehicle 
routing problem with time windows (VRPTW). 
Let D = {1,2, ..., n} denote the set of delivery 
points, and V = {1,2, ..., m} the set of vehicles. 
Each delivery point i ∈ D is associated with: a 
weight wi a volume vi, and a delivery time win-
dow [ti

min, ti
max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

. Each vehicle k ∈ V has a load 
capacity of Wk (kg) and a volume capacity of Vk 
(m3). The objective is to minimize the total dis-
tance traveled by the fleet while applying penal-
ties for time window violations.

The definition of the decision variable:

	 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	(1)

where:	

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 and „0” denotes the depot. 
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Let dij be the distance between points tij – the 
travel time from i to j. If vehicle k visits point i at 
time 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

, a penalty P is applied, where:

 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

.

The objective is to minimize the total travel dis-
tance plus the penalties for time window violations:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (2)

Subject to the following constraints:
	• Each delivery point is visited exactly once:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (3)

	• Depot flow balance is ensured:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (4)

	• Route consistency is ensured (flow conserva-
tion at each node):

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (5)

	• Load capacity constraint:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (6)

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (7)

	• Arrival time update (big-M method)

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (8)

where:	M is a sufficiently large constant – a nu-
merical value large enough not to restrict 
the model unintentionally, yet not exces-
sively large to avoid numerical instability.

	• Time Windows:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (9)

In the first stage of generating the initial solu-
tion S0 a greedy algorithm was applied. Initially, the 
set of all unserved delivery points is denoted as U 
← D. Then, for each vehicle k ∈ V , we initialize its 
route starting from the depot. The remaining avail-
able weight and volume capacities are set to the 
vehicle’s full capacity: 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

. 
In the greedy loop, we iteratively select the point i* 
∈ U that minimizes the distance from the current 
position of the vehicle:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (10)

where:	c represents the current position of 
the vehicle (with c = 0 referring to the 
depot). 

After adding point i* to the route of vehicle k, 
update the current position: c ← i*.

Before assigning point i* check whether the 
expected arrival time 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 fits within the time win-
dow [ti

min, ti
max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

.  If not, the point is skipped and 
the next closest one is considered. Once a feasible 
i* is found, the algorithm checks whether its de-
mand wi and vi do not exceed the remaining ca-
pacities 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 and 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

. If the condition is met, 
the point is assigned to vehicle k, and capacities 
are updated:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise  

 

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 + 

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉
 

 

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷 

 
 

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}
 

∑   = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 
 
 
 

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘 

 
 

∑ 𝑣𝑣𝑖𝑖  ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
 

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 )∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉 

 
𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,  
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉 
 

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖 

 
 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖, 
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖 

 
 

	 (11)

Then, point i* is removed from the set U. 
Otherwise, the construction of the current route 
for vehicle k is terminated, and the algorithm 
proceeds to the next vehicle. This procedure is 
repeated until the set U is empty or none of the 
vehicles have sufficient resources to serve the re-
maining requests.

In the next stage of the study, the solution 
S is improved using an iterative ALNS frame-
work. In ALNS, the weights of the operators are 
updated in each iteration based on their perfor-
mance, increasing the likelihood of selecting 
those that have produced better results in previ-
ous iterations. Each iteration involves a Destroy 
and Repair phase. In the Destroy phase, a de-
stroy operator d is selected from the pool D and 
a subset of delivery points is removed from the 
current solution:

	 𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (12)
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In the destroy phase, three basic removal 
operators were applied, each differing in the 
mechanism used to select elements for reinser-
tion – namely: remove-random, remove-worst, 
and remove-TW-violations. The remove-random 
operator randomly removes a subset 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

   
of a size k, where S denotes the set of all requests 
in the current solution:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (13)

This helps to avoid getting trapped in local 
minima. The remove-worst operator focuses on 
the requests that contribute the most to the total 
route cost. For each i ∈ S the cost increase caused 
by serving that point is calculated as follows:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (14)

where:	 c(⋅) denotes the total cost of the routes 
(e.g., total distance or travel time). 

Next, we select:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (15)

which results in the removal of those k requests 
whose presence has the most negative impact on 
the solution’s efficiency. The remove-TW-viola-
tions operator identifies requests that violate time 
windows and removes them, allowing for their 
reinsertion later in a schedule – compliant man-
ner. For each i ∈ S a violation index is defined as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (16)

where:	 [ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 denotes the allowed time 
window, and ti  – is the expected service 
time. 

The set of all points with Xi = 1 is denoted 
as VTW. If | VTW | ≤ k, all elements of this set 
are removed; otherwise, a subset VTW choose the 
subset RTW of size k is selected and the following 
operation is performed:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (17)

Each of these operators determines the de-
gree of ‘destruction’ in a different way, setting the 
stage for the repair phase, in which the removed 
requests are reinserted using dedicated repair 
operators. This mechanism enables effective ex-
ploration of the solution space and contributes to 
reducing the total cost.

The repair phase involves selecting a repair 
operator and reinserting the removed points R 
back into the routes:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (18)

In the repair phase of the ALNS algorithm, 
the points removed during the destroy step are 
reinserted into the solution. The selection among 
available repair operators is made adaptively, 
with operator usage frequency adjusted based on 
their past effectiveness. This study implemented 
three key repair operators, described below.

The greedy-insert operator assumes that each 
removed point is reinserted into the position that 
causes the smallest possible increase in total cost 
(i.e., distance). Let the current route of vehicle k, 
including the depot at the start and end, be repre-
sented as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (19)

where:	

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 and „0” denotes the 
depot index. 

Let R be the set of removed points. For each i 
∈ R, vehicle rout k and possible insertion position 
p ∈ {0,1, ..., nk} define:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (20)

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (21)
for each insertion position, the cost increase is 
calculated as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (22)

where:	a is the predecessor and c is the succes-
sor on the route, we select route k* and 
position p*, for which Δi,k,p is minimal, and 
insert point i into route k* at position p*. 

This procedure is repeated independently for 
all i ∈ R, ensuring that each point is inserted where 
it causes the smallest cost (distance) increase.

The regret k operator accounts for the fact that 
some points may have multiple good insertion op-
tions. It prioritizes those for which the “loss” due 
to delayed insertion is greatest. For each removed 
point i ∈ R and each route k compute the vector of 
all insertion costs: 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 , where ci,k,p = (da,i + 
di,c) – da,c. All possible insertions are then sorted 
in ascending order: 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

. For 
each point i select the k smallest values and define 
the regreti:
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𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (23)

where:	

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) 

 – the j-th smallest insertion cost 
among all possible routes.

Among all points, select the one with the 
highest 𝑖regreti and insert it at the position corre-
sponding to 

[ti
min, ti

max] 

 

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0} 

 

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘 

 

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max} 

 

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘,  𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆 

 

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0 

 

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘  

 

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)  

 

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗) 

 

𝑐𝑐𝑖𝑖,∗
(1) . Point 𝑖 is then removed from set 

R and the process is repeated until the set is ex-
hausted. As a result, points with fewer good inser-
tion options (high regreti  are prioritized, prevent-
ing the ‘blocking’ of suitable positions later in the 
procedure. The fastest-insert operator is a variant 
of the greedy-insert, but instead of minimizing 
the increase in distance, it focuses on minimizing 
the increase in travel time. This is done using the 
travel time matrix T = [tx,y], which was generated 
based on historical traffic and weather data:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  

	 (24)

For each i ∈ R, route k and position  p ∈ {0, 
..., nk}  calculate:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐  	 (25)

Select the pair (k*, p*), that minimizes 

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅. 

 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 } 

 

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖}) 

 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 , 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
 
 

𝜒𝜒𝑖𝑖 = {1,  𝑡𝑡𝑖𝑖 < ti
min    ∨     𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW 

 

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅) 

 

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 ) 

 

𝑎𝑎 = 𝜋𝜋𝑝𝑝 
𝑘𝑘  

 
 

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1 
𝑘𝑘  

 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1) ) 

 

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦] 

 

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐   .

	 (𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′) 

 

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

 

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜 

 

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

 

 

 

	 (26)

Next, point i is inserted at position p* in route k*. 
The entire procedure is repeated for the remaining 
points in R. As a result, the Fastest-Insert operator 
places each point where it causes the smallest in-
crease in total travel time, thereby optimizing the 
routes in terms of cumulative travel time rather 
than just total distance.

To avoid getting trapped in local minima, a 
tabu search algorithm is applied after each Repair 
phase. Let S'' be the solution obtained after rein-
serting all points during the repair phase. Its neigh-
borhood is generated using the swap operation – 
which involves exchanging two arbitrary requests 
i,j belonging to different routes (possibly also as-
signed to different vehicles). Each swap move (i,j) 
is recorded in the tabu list as a pair (i,j ) with a 
fixed length Lmax, meaning that reversing this move 
is prohibited for the next Lmax iterations. 

Among all tabu-restricted moves that im-
prove the solution cost, the move that minimizes 
the objective function is selected and executed:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′) 

 

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

 

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜 

 

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

 

 

 

	 (27)

In this way, a new solution S''. is obtained. If 
its cost is lower than the current best solution Sbest, 
an update is performed: Sbest ← S''. Each S'' is lo-
cally improved, and the tabu list enforces explo-
ration of new regions in the solution space.

The final step is weight adaptation. An adap-
tive frequency adjustment is applied to the use 
of operators from sets D (destroy) and R (repair). 
Each operator 𝑜𝑜 ∈ 𝐷𝐷 ∪ 𝑅𝑅  is assigned a weight 
wo, and its probability of being selected in a giv-
en iteration is proportional to wo. After complet-
ing a full iteration – that is, obtaining a new so-
lution Snew (after the tabu search phase) the cost 
change is calculated relative to the best solution 
found so far:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′) 

 

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

 

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜 

 

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

 

 

 

	 (28)

Operators that participated in the current it-
eration are awarded a score based on Δ, according 
to the following rule:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′) 

 

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

 

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜 

 

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

 

 

 

	 (29)

where:	σ1 > σ2 > σ3 ≥ 0 are predefined constants. 
The operator’s weight is updated accord-
ing to the following scheme:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′) 

 

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

 

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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where:	p ∈ [0,1] is the forgetting factor. After 
each adaptation, the selection probabili-
ties of the operators are normalized:
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Thanks to this mechanism, the algorithm in-
creasingly favors those operators in subsequent it-
erations that contribute to actual solution improve-
ment, while still maintaining a degree of exploration.

This combination of large-scale route modi-
fications (ALNS) with local refinements (tabu 
search) enables the algorithm to escape lo-
cal minima and achieve shorter, more efficient 
routes while satisfying vehicle capacity and time 
window constraints. Additionally, the adaptive 
weighting of operators allows the algorithm to 
“learn” which moves are most promising, accel-
erating convergence.
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DELIVERY SCHEDULING – CASE STUDY

For the purpose of this study, the parameters 
of the ALNS algorithm with tabu search were 
defined. It was assumed that ALNS would per-
form up to 1000 iterations in search of improved 
solutions, while the local tabu search procedure 
would run 2000 iterations for each local im-
provement attempt. A given move (e.g., reas-
signing a task) would be considered ‘tabu’ for 
400 iterations to avoid cycling, and in each tabu 
search iteration, 30 potential candidate moves 
would be evaluated.

In the first step, an initial greedy solution was 
developed according to the scheme shown in Fig-
ure 1. This solution assigns tasks to vehicle routes 
based on simple heuristic rules – such as always 
selecting the nearest available delivery point. This 
approach enables rapid generation of a feasible, 
though not necessarily optimal, solution, which 
serves as a starting point for further optimization. 
The results obtained also serve as a benchmark 
for comparison with the improved algorithm.

For the greedy algorithm, the total distance 
traveled by the fleet amounted to 3 063 917 km, 
providing a baseline for improvement using more 
advanced optimization methods such as ALNS 
and tabu search.

Next, route optimization was performed ac-
cording to the scheme in Figure 2, using the 
ALNS algorithm, which dynamically selects de-
stroy and repair operators. In each iteration, the 
algorithm removed selected orders from routes 
(e.g., randomly or based on cost) and attempted 
to reinsert them in a more optimal manner. This 
process was supported by a local improvement 
procedure, helping the algorithm avoid local opti-
ma. As a result, a significantly better solution was 
achieved – the total fleet distance was reduced 
to 1  167 352 km, representing a substantial im-
provement over the initial solution.

Figure 3 presents a convergence plot showing 
how the solution cost evolved across iterations of 
the ALNS + tabu search algorithm. Downward 
trends indicate solution improvements (lower 
cost), while flat segments correspond to iterations 
without improvement. A sharp drop in cost is vis-
ible during the initial phase (~first 100 iterations), 
where the algorithm quickly identifies much bet-
ter solutions than the initial greedy one. During 
the mid-phase (~iterations 100–400), improve-
ments continue but at a slower, less regular pace 
with occasional fluctuations. In the final phase Figure 1. Greedy algorithm workflow
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Figure 2. ALNS + tabu search workflow

(~iterations 400–1000), the cost stabilizes near a 
local optimum, indicating that further major im-
provements become harder to obtain. Figure 4 il-
lustrates the behavior of the individual algorithms 
across iterations.

It can be observed that the blue line repre-
senting tabu search lies below the red ALNS line 
in most iterations. This suggests that local opti-
mization consistently improves solution quality, 

smoothing out extreme cost fluctuations and lead-
ing to a more stable result. Despite some volatil-
ity, a clear downward trend in cost and conver-
gence toward an optimal solution is evident.

Figure 5 compares vehicle routes at two stag-
es of the algorithm. The right-hand side shows 
the initial solution generated by the greedy algo-
rithm, while the left-hand side presents the final 
optimized solution.
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Figure 3. ALNS + tabu search cost trajectory

Figure 4. Cost trajectory: ALNS vs tabu search

Figure 5. Route comparison: a) left-hand side: final optimized solution, b) right-hand side: initial greedy routes



30

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

The chart compares vehicle routes before 
(“initial”) and after (“final”) optimization using 
the ALNS algorithm combined with tabu search.

In the initial solution, routes are disorganized 
and scattered – many intersect, and vehicles serve 
geographically distant delivery points. Several 
one-stop routes are visible, indicating inefficient 
task assignment and limited route consolidation.

In contrast, the final (optimized) solu-
tion features more compact, spatially coherent 
routes. Vehicles serve clusters of nearby points, 
leading to shorter total distances and reduced 
overlap between routes. Notably, no one-stop 
routes are present in the optimized solution, re-
flecting better use of available resources and im-
proved planning.

The number of serviced delivery points is 
identical in both solutions (242), confirming that 
all orders were fulfilled. However, the significant 
improvement in route structure demonstrates the 
effectiveness of the optimization process.

In conclusion, combining ALNS with tabu 
search significantly enhances solution quality. 
Tabu search compensates for the limitations of 
the greedy approach, yielding shorter, more or-
ganized, and operationally efficient routes. This 
validates the benefit of hybrid optimization strate-
gies for complex routing problems.

DISCUSSION

The results of the conducted study clearly in-
dicate that the applied route planning approach 
in the logistics company has yielded significant 
benefits. Most notably, the total distance traveled 
by the fleet was substantially reduced from over 
three million kilometers to just over one million. 
This reduction translates into measurable savings 
in fuel costs and driver working hours, as well as 
potentially reduced vehicle wear and lower envi-
ronmental impact of transport operations.

The operation of the implemented solution 
also deserves attention. Even at an early stage of 
planning, it was possible to rapidly identify sig-
nificantly better routes than those generated using 
simple heuristic rules. Subsequent improvements 
occurred gradually, primarily through minor route 
refinements that led to better organization and re-
duced travel time. The final outcome was visible 
not only in the numerical indicators but also in 
the structural characteristics of the routes – these 
became more coherent, localized, and logically 

organized, avoiding unnecessary intersections 
and redundant travel segments.

The study also confirmed that combining 
different types of route optimization techniques 
– both major restructurings and minor adjust-
ments – delivers better results than relying on 
a single approach. On one hand, it enabled the 
reconfiguration of inefficient segments, while on 
the other, it allowed for the fine-tuning of seg-
ments that were already functioning effectively. 
This dual-level optimization approach helped 
prevent the routes from settling into suboptimal 
configurations with limited potential for further 
improvement [19].

Importantly, despite the substantial im-
provement in route quality, all delivery orders 
continued to be fulfilled – meaning that efficien-
cy gains were not achieved at the expense of 
service coverage. 

It is recommended to further develop the 
model by incorporating additional optimization 
criteria – such as driver labor costs, customer de-
livery time preferences, emissions levels [20], and 
loading and unloading times. A multi-criteria opti-
mization framework could better reflect real busi-
ness conditions and enhance the acceptability of 
the generated routes among logistics system users.

Future implementations should also con-
sider integrating the algorithm with transporta-
tion management systems (TMS) [21], enabling 
dynamic route updates in response to real-time 
changes in road conditions or resource availabil-
ity. Furthermore, adopting an online or hybrid 
distributed version of the algorithm could ac-
celerate its performance and allow for real-time 
application [22].

Furthermore, optimized delivery scheduling 
contributes not only to reduced emissions and 
fuel use but also to lower urban noise pollution, 
particularly in densely populated areas [23, 24]. 
This is increasingly relevant as sustainable ur-
ban logistics systems seek to minimize both en-
vironmental and social externalities. Moreover, 
micro-mobility solutions - such as electric cargo 
bikes or small autonomous delivery vehicles - 
offer a promising complement to hybrid routing 
strategies, especially in addressing last-mile de-
livery challenges. Their integration into optimi-
zation frameworks could significantly enhance 
the flexibility and efficiency of delivery systems 
in urban settings [25].

It should be noted that the analysis was con-
ducted based on data from a single transport 



31

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

company. Although the data were real and highly 
detailed, this limitation may affect the generaliz-
ability of the results to other industries, regions, 
or logistical models. Therefore, it would be ben-
eficial to extend the study to companies with a 
broader scope of operations.

CONCLUSIONS

The results of the study confirm that employ-
ing a hybrid ALNS + tabu search approach en-
ables significant improvements in delivery sched-
uling efficiency under real-world operational 
conditions. The algorithm demonstrates high ef-
fectiveness not only in minimizing route lengths 
but also in reorganizing delivery structures in 
compliance with time and capacity constraints. 
The improvements in route quality were achieved 
without increasing the number of vehicles or re-
ducing the number of service orders, which vali-
dates the approach’s practical utility in day-to-
day fleet management.

The proposed approach constitutes a valuable 
tool for both logistics researchers and practitio-
ners, offering quantifiable benefits in terms of 
route shortening, reduced operational costs, and 
improved route structure, all while maintaining 
full service completion.

REFERENCES 

1.	 Kucukoglu I, Dewil R, Cattrysse D. The electric ve-
hicle routing problem and its variations: A literature 
review. Comput Ind Eng. 2021;161:107650.

2.	 Semenov I, Świderski A, Borucka A, Guzanek 
P. Concept of early prediction and identification 
of truck vehicle failures supported by in-vehicle 
telematics platform based on abnormality detec-
tion algorithm. Appl Sci. 2024;14(16). https://doi.
org/10.3390/app14167191

3.	 Pham QD, Nguyen TH, Bui QT. Modeling and 
solving a multi-trip multi-distribution center ve-
hicle routing problem with lower-bound capacity 
constraints. Comput Ind Eng. 2022;172:108597.

4.	 Salgado Duarte Y, Szpytko J. Reliability-oriented 
twin model for integrating offshore wind farm main-
tenance activities. Eksploatacja Niezawodn. 2024. 
https://doi.org/10.17531/ein/199355

5.	 Adamiak B, Andrych-Zalewska M, Merkisz J, Chłopek 
Z. The uniqueness of pollutant emission and fuel con-
sumption test results for road vehicles tested on a chassis 
dynamometer. Eksploatacja Niezawodn. 2025;27(1). 

https://doi.org/10.17531/ein/195747
6.	 Sang T, Zhu K, Shen J, Yang L. An uncertain pro-

gramming model for fixed charge transportation 
problem with item sampling rates. Eksploatacja 
Niezawodn. 2025;27(1). https://doi.org/10.17531/
ein/192165

7.	 Lao J, Wang X, Zhang M, Chen Z, Guo J. Analy-
sis and improvement of coal-loading performance 
and reliability of thin seam coal shearer drums. 
Eksploatacja Niezawodn. 2025;27(2). https://doi.
org/10.17531/ein/194674

8.	 He X, Zhen L. Column-and-row generation based 
exact algorithm for relay-based on-demand delivery 
systems. Transp Res B Methodol. 2025;196:103223.

9.	 Liu R, Wang C, Ouyang H, Wu Z. Exact algorithm 
and machine learning-based heuristic for the sto-
chastic lot streaming and scheduling problem. IISE 
Trans. 2025;57(4):408–22.

10.	Kolankeh AK. A Hybrid Optimization algorithm for 
large-scale combinatorial problems in cloud com-
puting environments. ALCOM J Algorithm Com-
put. 2025;1(01):1–12.

11.	Tafakkori K, Tavakkoli-Moghaddam R, Siadat 
A. A data-driven sustainable scheduling model 
for dispatch-steerable last-mile delivery systems 
with negotiable time windows. Eng Appl Artif In-
tell. 2025;124:111280. https://doi.org/10.1016/j.
engappai.2025.111280

12.	Cengiz Toklu M. A fuzzy multi-criteria approach 
based on Clarke and Wright savings algorithm for 
vehicle routing problem in humanitarian aid distri-
bution. J Intell Manuf. 2023;34(5):2241–61.

13.	Özdağ R. A novel hybrid path planning method for 
sweep coverage of multiple UAVs. J Supercomput. 
2025;81(1):83.

14.	Sinaga RP, Marpaung F. Perbandingan algoritma 
cheapest insertion heuristic dan nearest neighbor 
dalam menyelesaikan traveling salesman prob-
lem. J Riset Rumpun Mat Ilmu Penget Alam. 
2023;2(2):238–47.

15.	Gao X, Cheng Z, Gao T, Wang R, Jiang K, Dong E. 
The optimal joint preventive maintenance strategy 
for the equipment under two-dimensional extended 
warranty. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/203763

16.	Zhu L. Energy management in microgrid integrated 
with ultracapacitor-equipped electric vehicles and 
renewable resources using hybrid algorithm per-
spective. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/200713

17.	Gao H, Wang Y, Xu J, Qin H. Fatigue strength reli-
ability assessment of turbofan blades subjected to 
intake disturbances based on the improved krig-
ing model. Eksploatacja Niezawodn. 2025;27(2). 
https://doi.org/10.17531/ein/194175



32

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

18.	Zhang Y, Wang L. Real-time fault monitoring meth-
od for logistics vehicles based on chaotic ant colony 
algorithm. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/203395

19.	Rojek I, Jasiulewicz-Kaczmarek M, Piszcz A, Ga-
las K, Mikołajewski D. Review of the 6G-based 
supply chain management within industry 4.0/5.0 
Paradigm. Electronics. 2024;13(13):2624.

20.	Merkisz J, Sordyl A, Chłopek Z. Non-repeatabil-
ity of the WLTP vehicle test results. Arch Transp. 
2024;71(3):25–49.

21.	Zhu W, Cai W, Kong H. Optimal path planning 
based on ACO in intelligent transportation. Int J 
Cogn Comput Eng. 2025;6:100187. https://doi.
org/10.1016/j.ijcce.2025.02.006

22.	Hensel L, Grajewski V, Matteis T, Liedtke G. Mod-
elling commercial traffic for a metropolitan region. 

Eur Transp Res Rev. 2025;17(1):717. https://doi.
org/10.1186/s12544-025-00717-w

23.	Danilevičius A, Danilevičienė I, Karpenko M, Stosiak 
M, Skačkauskas P. Determination of the instantaneous 
noise level using a discrete road traffic flow method. 
Promet – Traffic & Transportation. 2021; 33(1): 89–
98. https://doi.org/10.7307/ptt.v37i1.597

24.	Danilevičius A, Karpenko M, Křivánek V. Research 
on the noise pollution from different vehicle catego-
ries in the urban area. Transport. 2023;38(2):120–
132. https://doi.org/10.3846/transport.2023.18666

25.	Karpenko M, Prentkovskis O, Skačkauskas P. Ana-
lysing the impact of electric kick-scooters on driv-
ers: vibration and frequency transmission during the 
ride on different types of urban pavements. Eksp-
loatacja Niezawodn. 2025;27(2):199893. https://
doi.org/10.17531/ein/199893


