
21

INTRODUCTION

Efficient delivery scheduling in logistics
and supply chain management remains a critical
area of research, primarily due to its role in the
“last mile” – the final and often most complex
and expensive stage of product delivery to the
end customer. Well-designed routing enables not
only timely order fulfillment, which directly im-
pacts customer satisfaction and loyalty, but also
more effective use of company resources. In the
context of growing e-commerce demand and in-
creasing pressure to shorten delivery times, the
ability to dynamically and optimally plan routes
has become a key factor in achieving competi-
tive advantage. Route optimization also influ-
ences strategic decisions, including fleet sizing
and distribution center location. Consequently,
the scheduling process has a significant impact
on operational costs, with transportation being
one of the largest expense categories in logistics
budgets, driven by fuel, driver wages, and vehicle

maintenance. Reducing total route distance leads
directly to lower fuel consumption and decreased
vehicle wear, while minimizing total driver work-
ing time reduces labor costs, including overtime.
Moreover, efficient planning can reveal that fewer
vehicles are needed to serve the same number of
customers, resulting in capital and maintenance
savings. Even the implementation of simple op-
timization algorithms can lead to substantial
cost reductions. From an operational efficiency
perspective, optimized scheduling maximizes
resource utilization by improving vehicle load
rates, reducing empty mileage, and increasing
route profitability. It also enables service of more
customers in less time or within narrower deliv-
ery time windows, increasingly demanded by the
market. Improved efficiency also translates into
environmental benefits – shorter routes result
in lower emissions, aligning with sustainability
goals and strengthening corporate image. As a re-
sult, delivery scheduling is no longer viewed sole-
ly as a technical optimization challenge, but as a

Challenges of delivery scheduling in real-world enterprise
operations – a hybrid approach to transport management

Jerzy Merkisz1 , Anna Borucka2, Patrycja Guzanek3*

1	 Faculty of Civil and Transport Engineering, Poznań University of Technology, ul. Piotrowo 3, Poznań, Poland
2	 Faculty of Security, Logistics and Management, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2,

Warsaw, Poland
3	 Doctoral School of Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, Warsaw, Poland
* Corresponding author’s e-mail: patrycja.guzanek@student.wat.edu.pl

ABSTRACT
Efficient delivery scheduling remains a key challenge in transport logistics, especially under real-world constraints
such as vehicle capacity, time windows, traffic conditions, and weather. To address this, a hybrid metaheuristic al-
gorithm combining Adaptive Large Neighborhood Search (ALNS) and tabu search was developed, where an initial
greedy solution is iteratively improved through global diversification and local optimization. The approach bal-
ances solution quality and computational time by integrating broad search mechanisms with focused refinements.
A case study using real company data validates the method’s effectiveness in reducing route cost and improving
operational efficiency. The results also highlight improved route structure and service consistency. This confirms
the practical relevance of the model and its potential for broader application in logistics optimization.

Keywords: vehicle routing, hybrid metaheuristics, transport optimization.

Received: 2025.07.23
Accepted: 2025.09.15
Published: 2025.10.01

Advances in Science and Technology Research Journal, 2025, 19(11), 21–32
https://doi.org/10.12913/22998624/208843
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0000-0002-1389-0503
https://orcid.org/0000-0001-6650-7187

22

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

strategic tool for building efficient, cost-effective,
and socially responsible logistics systems.

In response to these challenges, the aim of
this study was to design, implement, and evalu-
ate the effectiveness of a hybrid metaheuristic for
solving the vehicle routing problem. Specifically,
the goal was to investigate how the combination
of two distinct optimization strategies – global
exploration of the solution space and local, fine-
tuned improvements – affects the quality and
speed of route generation. The research hypoth-
esis assumed that integrating large, diversified
changes (the destroy and repair operators in the
Adaptive Large Neighborhood Search – ALNS
algorithm) with a local intensification mechanism
(tabu search) would yield better results than ap-
plying either strategy in isolation. The proposed
hybrid algorithm is expected to deliver higher-
quality solutions (i.e., shorter routes) within com-
petitive computational times, outperforming stan-
dard metaheuristics such as the classic genetic
algorithm, and offering more practical applicabil-
ity than exact methods (solvers) for realistically
scaled problems.

This study directly addresses a persistent
and significant research gap in the field of logis-
tics optimization. Although the vehicle routing
problem (VRP) and its variants have been exten-
sively studied for decades, and metaheuristics
such as genetic algorithms and tabu search are
well documented, the gap lies not in the problem
itself, but in the methods used to solve it. There-
fore, the scientific contribution of this research
can be defined as follows:
	• A response to the need for developing integrat-

ed solution approaches and evaluating which
combinations of mechanisms yield the best re-
sults. The proposed method in this article tests
a specific combination: the strength of ALNS,
aimed at escaping local optima through sub-
stantial route restructuring, and the precision
of tabu search in refining local segments of the
solution.

	• Consideration of a practically relevant trade-
off in logistics between finding an ideal route
and the computational time available to search
for it – aiming for the best balance between
solution quality and computational effort.

The main scientific contribution of this study
can be identified as follows:
	• A contribution to the advancement of knowl-

edge on designing effective metaheuristics

through the proposal and evaluation of a spe-
cific algorithmic architecture – not a simple
combination of two methods, but a well-struc-
tured integration in which one mechanism
(large-scale changes) creates space for the oth-
er (local refinements) to operate effectively.

	• Providing evidence of the effectiveness of the
proposed algorithms based on real-world data
from a distribution company, thus creating a
valuable benchmark for potential users - both
researchers and logistics enterprises with sim-
ilar operational profiles.

	• The results of the study also have a practical
dimension, demonstrating that investment in
the development of a more complex hybrid
algorithm can yield tangible benefits in the
form of reduced transportation costs (shorter
routes) and improved operational efficiency
(faster planning).

BACKGROUND

The delivery scheduling problem, widely rec-
ognized in academic literature as the VRP, is one
of the most fundamental and frequently analyzed
topics in logistics and operations research [1]. In
its classical form, it involves determining an opti-
mal set of routes for a fleet of vehicles that, start-
ing from one or more depots, must serve a group of
geographically dispersed customers and then return
to the starting point. The objective is to minimize
the total operational cost, typically associated with
the overall distance, travel time, or number of ve-
hicles used [2]. This problem is a generalization
of the well-known Traveling Salesman Problem
(TSP), with the key distinction that VRP involves
multiple vehicles with limited capacity [3]. Due
to its computational complexity – it belongs to the
class of NP-hard problems – finding an optimal so-
lution for real-life, large-scale instances is extreme-
ly challenging [4]. In general, VRP solution meth-
ods are classified into three main categories: exact
algorithms, heuristics, and metaheuristics. Each of
these approaches has different characteristics, mak-
ing them suitable for different problem scales and
precision requirements [5]. Selecting the appropri-
ate method is a key trade-off between solution qual-
ity and the time required to find it [6, 7].

Exact algorithms, such as integer program-
ming, branch-and-bound, and column generation,
offer one fundamental advantage – they guar-
antee optimal solutions [8, 9]. These methods

23

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

ensure that the obtained routing plan is the best
possible with respect to a defined objective (e.g.,
minimum distance). They also serve as valuable
benchmarks for evaluating the quality of faster,
approximate methods. However, their main draw-
back – and a major limitation in practical applica-
tions – is computational complexity [10]. The time
required to find a solution increases exponentially
with problem size. In practice, this means that ex-
act algorithms are capable of efficiently solving
only small problem instances, typically involving
a few dozen delivery points. For large logistics
networks with hundreds or thousands of custom-
ers, their application becomes infeasible due to
unacceptable computation times [11].

An alternative approach is heuristics – sim-
ple, intuitive construction methods that allow for
very fast generation of good, though not neces-
sarily optimal, solutions. Classic examples in-
clude the Clarke and Wright savings algorithm
[12], the sweep algorithm [13], and the nearest
neighbor method [14]. Their greatest advantages
are speed and ease of implementation. They can
quickly generate reasonable routing plans even
for very large problems. However, they do not
guarantee solution quality. Because heuristics
make locally optimal choices at each step, they
often become trapped in local optima, and the
final result may be far from the best possible.
Nevertheless, due to their speed, they are fre-
quently used in systems that require real-time or
dynamic planning, or as a starting point for more
advanced optimization techniques.

Metaheuristics attempt to combine the
strengths of both approaches, offering a com-
promise between solution quality and compu-
tational effort. These strategies guide simpler
heuristics to more effectively explore the solu-
tion space and avoid local optima traps. Among
the most popular metaheuristics used for VRP
are those applied in this paper – tabu search –
as well as simulated annealing, genetic algo-
rithms [15, 16, 17], and ant colony optimization
[18]. Their advantage lies in the ability to find
very high-quality solutions, often optimal or
near-optimal, for large and complex problems
with multiple constraints. This comes at the
cost of greater implementation complexity and
the need to tune numerous control parameters,
which can be time-consuming. Nevertheless,
metaheuristics have become the most common-
ly used approach for solving real-world VRP
instances in industry.

MATERIALS AND METHODS

As highlighted in the introduction, distri-
bution companies are faced daily with com-
plex decisions regarding which vehicle should
be dispatched, in what order deliveries should
be made, and along which route – all while en-
suring timely delivery and minimizing travel
distance. An optimal routing solution helps
reduce fuel consumption, limits vehicle wear,
and enhances customer service. In this study,
a routing model was proposed for a transport
company and its fleet, with the goal of deliv-
ering packages within specified time windows
while minimizing distance and travel time.
The dataset used in the study was based on
real operational data obtained from a logistics
company, including exact delivery times and
locations (GPS coordinates), parcel weight
and volume, time windows for delivery, ser-
vice duration, as well as contextual informa-
tion such as traffic congestion based on time
of day and weather conditions.

To solve the problem, a hybrid algorithm was
implemented. First, a fast initial solution is gen-
erated, which is then improved through destroy
and repair operations within the Adaptive Large
Neighborhood Search (ALNS) framework. Fi-
nally, local route refinements are applied using
the tabu search algorithm. The underlying as-
sumption is that combining large-scale solution
modifications with fine-grained local improve-
ments helps avoid suboptimal local minima and
leads to more effective routing outcomes.

Delivery scheduling is formulated as a vehicle
routing problem with time windows (VRPTW).
Let D = {1,2, ..., n} denote the set of delivery
points, and V = {1,2, ..., m} the set of vehicles.
Each delivery point i ∈ D is associated with: a
weight wi a volume vi, and a delivery time win-
dow [ti

min, ti
max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

. Each vehicle k ∈ V has a load
capacity of Wk (kg) and a volume capacity of Vk
(m3). The objective is to minimize the total dis-
tance traveled by the fleet while applying penal-
ties for time window violations.

The definition of the decision variable:

	 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	(1)

where:	

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 and „0” denotes the depot.

24

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

Let dij be the distance between points tij – the
travel time from i to j. If vehicle k visits point i at
time

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

, a penalty P is applied, where:

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

.

The objective is to minimize the total travel dis-
tance plus the penalties for time window violations:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (2)

Subject to the following constraints:
	• Each delivery point is visited exactly once:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (3)

	• Depot flow balance is ensured:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (4)

	• Route consistency is ensured (flow conserva-
tion at each node):

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (5)

	• Load capacity constraint:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (6)

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (7)

	• Arrival time update (big-M method)

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (8)

where:	M is a sufficiently large constant – a nu-
merical value large enough not to restrict
the model unintentionally, yet not exces-
sively large to avoid numerical instability.

	• Time Windows:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (9)

In the first stage of generating the initial solu-
tion S0 a greedy algorithm was applied. Initially, the
set of all unserved delivery points is denoted as U
← D. Then, for each vehicle k ∈ V , we initialize its
route starting from the depot. The remaining avail-
able weight and volume capacities are set to the
vehicle’s full capacity:

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

.
In the greedy loop, we iteratively select the point i*
∈ U that minimizes the distance from the current
position of the vehicle:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (10)

where:	c represents the current position of
the vehicle (with c = 0 referring to the
depot).

After adding point i* to the route of vehicle k,
update the current position: c ← i*.

Before assigning point i* check whether the
expected arrival time

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 fits within the time win-
dow [ti

min, ti
max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

. If not, the point is skipped and
the next closest one is considered. Once a feasible
i* is found, the algorithm checks whether its de-
mand wi and vi do not exceed the remaining ca-
pacities

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 and

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

. If the condition is met,
the point is assigned to vehicle k, and capacities
are updated:

	

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = {1, if vehicle 𝑘𝑘 travels from from 𝑖𝑖 to 𝑗𝑗

0, otherwise

min ∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉

𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 +

+ 𝑃𝑃 ∑ ∑ 𝛿𝛿𝑖𝑖
𝑘𝑘

𝑖𝑖∈𝐷𝐷𝑘𝑘∈𝑉𝑉

∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑘𝑘∈𝑉𝑉
= 1 ∀  𝑖𝑖 ∈ 𝐷𝐷

∑ 𝑥𝑥0,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷
= ∑ 𝑥𝑥𝑖𝑖,0

𝑘𝑘

𝑖𝑖∈𝐷𝐷
∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑥𝑥𝑖𝑖,ℎ
𝑘𝑘 =

𝑖𝑖∈𝐷𝐷∪{0}

∑ = ∑ 𝑥𝑥ℎ,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
∀ ℎ ∈ 𝐷𝐷 ∪ {0},  ∀ 𝑘𝑘 ∈ 𝑉𝑉

∑ 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐷𝐷

 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}
≤   𝑊𝑊𝑘𝑘

∑ 𝑣𝑣𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑗𝑗∈𝐷𝐷∪{0}𝑖𝑖∈𝐷𝐷
≤   𝑉𝑉𝑘𝑘 ∀ 𝑘𝑘 ∈ 𝑉𝑉

If 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘 = 1 then 𝑇𝑇𝑗𝑗

𝑘𝑘   ≥   𝑇𝑇𝑖𝑖
𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖 −

− 𝑀𝑀 (1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑘𝑘)∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑇𝑇𝑖𝑖

𝑘𝑘 ≥ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑖𝑖

𝑘𝑘 ≤ 𝑡𝑡𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑖𝑖

𝑘𝑘,
𝛿𝛿𝑖𝑖

𝑘𝑘 ≥ 0 ∀ 𝑖𝑖 ∈ 𝐷𝐷, ∀ 𝑘𝑘 ∈ 𝑉𝑉

𝑖𝑖∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
 𝑖𝑖∈𝑈𝑈

𝑑𝑑𝑐𝑐,𝑖𝑖

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑖𝑖,
 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑖𝑖

	 (11)

Then, point i* is removed from the set U.
Otherwise, the construction of the current route
for vehicle k is terminated, and the algorithm
proceeds to the next vehicle. This procedure is
repeated until the set U is empty or none of the
vehicles have sufficient resources to serve the re-
maining requests.

In the next stage of the study, the solution
S is improved using an iterative ALNS frame-
work. In ALNS, the weights of the operators are
updated in each iteration based on their perfor-
mance, increasing the likelihood of selecting
those that have produced better results in previ-
ous iterations. Each iteration involves a Destroy
and Repair phase. In the Destroy phase, a de-
stroy operator d is selected from the pool D and
a subset of delivery points is removed from the
current solution:

	 𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (12)

25

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

In the destroy phase, three basic removal
operators were applied, each differing in the
mechanism used to select elements for reinser-
tion – namely: remove-random, remove-worst,
and remove-TW-violations. The remove-random
operator randomly removes a subset

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

of a size k, where S denotes the set of all requests
in the current solution:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (13)

This helps to avoid getting trapped in local
minima. The remove-worst operator focuses on
the requests that contribute the most to the total
route cost. For each i ∈ S the cost increase caused
by serving that point is calculated as follows:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (14)

where:	 c(⋅) denotes the total cost of the routes
(e.g., total distance or travel time).

Next, we select:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (15)

which results in the removal of those k requests
whose presence has the most negative impact on
the solution’s efficiency. The remove-TW-viola-
tions operator identifies requests that violate time
windows and removes them, allowing for their
reinsertion later in a schedule – compliant man-
ner. For each i ∈ S a violation index is defined as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (16)

where:	 [ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 denotes the allowed time
window, and ti – is the expected service
time.

The set of all points with Xi = 1 is denoted
as VTW. If | VTW | ≤ k, all elements of this set
are removed; otherwise, a subset VTW choose the
subset RTW of size k is selected and the following
operation is performed:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (17)

Each of these operators determines the de-
gree of ‘destruction’ in a different way, setting the
stage for the repair phase, in which the removed
requests are reinserted using dedicated repair
operators. This mechanism enables effective ex-
ploration of the solution space and contributes to
reducing the total cost.

The repair phase involves selecting a repair
operator and reinserting the removed points R
back into the routes:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (18)

In the repair phase of the ALNS algorithm,
the points removed during the destroy step are
reinserted into the solution. The selection among
available repair operators is made adaptively,
with operator usage frequency adjusted based on
their past effectiveness. This study implemented
three key repair operators, described below.

The greedy-insert operator assumes that each
removed point is reinserted into the position that
causes the smallest possible increase in total cost
(i.e., distance). Let the current route of vehicle k,
including the depot at the start and end, be repre-
sented as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (19)

where:	

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 and „0” denotes the
depot index.

Let R be the set of removed points. For each i
∈ R, vehicle rout k and possible insertion position
p ∈ {0,1, ..., nk} define:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (20)

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (21)
for each insertion position, the cost increase is
calculated as:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (22)

where:	a is the predecessor and c is the succes-
sor on the route, we select route k* and
position p*, for which Δi,k,p is minimal, and
insert point i into route k* at position p*.

This procedure is repeated independently for
all i ∈ R, ensuring that each point is inserted where
it causes the smallest cost (distance) increase.

The regret k operator accounts for the fact that
some points may have multiple good insertion op-
tions. It prioritizes those for which the “loss” due
to delayed insertion is greatest. For each removed
point i ∈ R and each route k compute the vector of
all insertion costs:

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 , where ci,k,p = (da,i +
di,c) – da,c. All possible insertions are then sorted
in ascending order:

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

. For
each point i select the k smallest values and define
the regreti:

26

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (23)

where:	

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1)

 – the j-th smallest insertion cost
among all possible routes.

Among all points, select the one with the
highest 𝑖regreti and insert it at the position corre-
sponding to

[ti
min, ti

max]

𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 ∪ {0}

𝑇𝑇𝑖𝑖
𝑘𝑘 > 𝛿𝛿𝑖𝑖

𝑘𝑘

𝛿𝛿𝑖𝑖
𝑘𝑘 = max{0, 𝑇𝑇𝑖𝑖

𝑘𝑘 − ti
max}

𝑊𝑊𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑊𝑊𝑘𝑘, 𝑉𝑉𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑉𝑉𝑘𝑘

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊂ 𝑆𝑆

𝜋𝜋0
𝑘𝑘, … , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘 = 0

{𝑐𝑐𝑖𝑖,𝑘𝑘,𝑝𝑝}𝑝𝑝=0
𝑛𝑛𝑘𝑘

𝑐𝑐𝑖𝑖,𝑘𝑘
(1) ≤ 𝑐𝑐𝑖𝑖,𝑘𝑘

(2) ≤ ⋯ 𝑐𝑐 ≤(𝑖𝑖,𝑘𝑘)
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(𝑗𝑗)

𝑐𝑐𝑖𝑖,∗
(1) . Point 𝑖 is then removed from set

R and the process is repeated until the set is ex-
hausted. As a result, points with fewer good inser-
tion options (high regreti are prioritized, prevent-
ing the ‘blocking’ of suitable positions later in the
procedure. The fastest-insert operator is a variant
of the greedy-insert, but instead of minimizing
the increase in distance, it focuses on minimizing
the increase in travel time. This is done using the
travel time matrix T = [tx,y], which was generated
based on historical traffic and weather data:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐

	 (24)

For each i ∈ R, route k and position p ∈ {0,
..., nk} calculate:

	

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐 	 (25)

Select the pair (k*, p*), that minimizes

𝑅𝑅 = 𝑑𝑑(𝑆𝑆), 𝑆𝑆′ = 𝑆𝑆 ∖ 𝑅𝑅.

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈{ 𝑀𝑀 ⊂ 𝑆𝑆: ∣ 𝑀𝑀 ∣= 𝑘𝑘 }

𝛥𝛥𝑐𝑐𝑖𝑖 = 𝑐𝑐(𝑆𝑆) − 𝑐𝑐(𝑆𝑆 ∖ {𝑖𝑖})

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅⊂𝑆𝑆, ∣𝑅𝑅∣=𝑘𝑘

∑ 𝛥𝛥𝑐𝑐𝑖𝑖
𝑖𝑖∈𝑅𝑅

 ,

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝜒𝜒𝑖𝑖 = {1, 𝑡𝑡𝑖𝑖 < ti
min  ∨   𝑡𝑡𝑖𝑖 > ti

max

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆 ← 𝑆𝑆 ∖ 𝑅𝑅TW

𝑆𝑆′′ = 𝑟𝑟(𝑆𝑆′, 𝑅𝑅)

𝜋𝜋𝑘𝑘 = (𝜋𝜋0
𝑘𝑘, 𝜋𝜋1

𝑘𝑘 … , 𝜋𝜋𝑛𝑛𝑘𝑘
𝑘𝑘 , 𝜋𝜋𝑛𝑛𝑘𝑘+1

𝑘𝑘)

𝑎𝑎 = 𝜋𝜋𝑝𝑝
𝑘𝑘

𝑐𝑐 = 𝜋𝜋𝑝𝑝+1
𝑘𝑘

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝 = (𝑑𝑑𝑎𝑎,𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑐𝑐) − 𝑑𝑑𝑎𝑎,𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = ∑ (𝑐𝑐(𝑖𝑖,∗)
(𝑗𝑗)

𝑘𝑘

𝑗𝑗=2
− 𝑐𝑐(𝑖𝑖,∗)

(1))

𝑡𝑡𝑥𝑥,𝑦𝑦 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠[𝑥𝑥,𝑦𝑦]

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 = (𝑡𝑡𝑎𝑎,𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑐𝑐) − 𝑡𝑡𝑎𝑎,𝑐𝑐 .

	 (𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (26)

Next, point i is inserted at position p* in route k*.
The entire procedure is repeated for the remaining
points in R. As a result, the Fastest-Insert operator
places each point where it causes the smallest in-
crease in total travel time, thereby optimizing the
routes in terms of cumulative travel time rather
than just total distance.

To avoid getting trapped in local minima, a
tabu search algorithm is applied after each Repair
phase. Let S'' be the solution obtained after rein-
serting all points during the repair phase. Its neigh-
borhood is generated using the swap operation –
which involves exchanging two arbitrary requests
i,j belonging to different routes (possibly also as-
signed to different vehicles). Each swap move (i,j)
is recorded in the tabu list as a pair (i,j) with a
fixed length Lmax, meaning that reversing this move
is prohibited for the next Lmax iterations.

Among all tabu-restricted moves that im-
prove the solution cost, the move that minimizes
the objective function is selected and executed:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (27)

In this way, a new solution S''. is obtained. If
its cost is lower than the current best solution Sbest,
an update is performed: Sbest ← S''. Each S'' is lo-
cally improved, and the tabu list enforces explo-
ration of new regions in the solution space.

The final step is weight adaptation. An adap-
tive frequency adjustment is applied to the use
of operators from sets D (destroy) and R (repair).
Each operator 𝑜𝑜 ∈ 𝐷𝐷 ∪ 𝑅𝑅 is assigned a weight
wo, and its probability of being selected in a giv-
en iteration is proportional to wo. After complet-
ing a full iteration – that is, obtaining a new so-
lution Snew (after the tabu search phase) the cost
change is calculated relative to the best solution
found so far:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (28)

Operators that participated in the current it-
eration are awarded a score based on Δ, according
to the following rule:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (29)

where:	σ1 > σ2 > σ3 ≥ 0 are predefined constants.
The operator’s weight is updated accord-
ing to the following scheme:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (30)

where:	p ∈ [0,1] is the forgetting factor. After
each adaptation, the selection probabili-
ties of the operators are normalized:

	

(𝑘𝑘∗, 𝑝𝑝∗) = arg min
𝑘𝑘,𝑝𝑝

𝛥𝛥𝑖𝑖,𝑘𝑘,𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝛥𝛥𝛥𝛥𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
′′  ) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆′′)

𝛥𝛥 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆new) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝑟𝑟𝑟𝑟 = {
𝜎𝜎1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 < 0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜎𝜎2, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 = 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎3, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝛥𝛥 > 0 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑜𝑜 ← 𝜌𝜌 𝑤𝑤𝑜𝑜 + (1 − 𝜌𝜌) 𝑟𝑟𝑜𝑜

𝑝𝑝𝑜𝑜 = 𝑤𝑤𝑜𝑜
∑ 𝑤𝑤𝑜𝑜′𝑜𝑜′∈𝐷𝐷∪𝑅𝑅

	 (31)

Thanks to this mechanism, the algorithm in-
creasingly favors those operators in subsequent it-
erations that contribute to actual solution improve-
ment, while still maintaining a degree of exploration.

This combination of large-scale route modi-
fications (ALNS) with local refinements (tabu
search) enables the algorithm to escape lo-
cal minima and achieve shorter, more efficient
routes while satisfying vehicle capacity and time
window constraints. Additionally, the adaptive
weighting of operators allows the algorithm to
“learn” which moves are most promising, accel-
erating convergence.

27

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

DELIVERY SCHEDULING – CASE STUDY

For the purpose of this study, the parameters
of the ALNS algorithm with tabu search were
defined. It was assumed that ALNS would per-
form up to 1000 iterations in search of improved
solutions, while the local tabu search procedure
would run 2000 iterations for each local im-
provement attempt. A given move (e.g., reas-
signing a task) would be considered ‘tabu’ for
400 iterations to avoid cycling, and in each tabu
search iteration, 30 potential candidate moves
would be evaluated.

In the first step, an initial greedy solution was
developed according to the scheme shown in Fig-
ure 1. This solution assigns tasks to vehicle routes
based on simple heuristic rules – such as always
selecting the nearest available delivery point. This
approach enables rapid generation of a feasible,
though not necessarily optimal, solution, which
serves as a starting point for further optimization.
The results obtained also serve as a benchmark
for comparison with the improved algorithm.

For the greedy algorithm, the total distance
traveled by the fleet amounted to 3 063 917 km,
providing a baseline for improvement using more
advanced optimization methods such as ALNS
and tabu search.

Next, route optimization was performed ac-
cording to the scheme in Figure 2, using the
ALNS algorithm, which dynamically selects de-
stroy and repair operators. In each iteration, the
algorithm removed selected orders from routes
(e.g., randomly or based on cost) and attempted
to reinsert them in a more optimal manner. This
process was supported by a local improvement
procedure, helping the algorithm avoid local opti-
ma. As a result, a significantly better solution was
achieved – the total fleet distance was reduced
to 1 167 352 km, representing a substantial im-
provement over the initial solution.

Figure 3 presents a convergence plot showing
how the solution cost evolved across iterations of
the ALNS + tabu search algorithm. Downward
trends indicate solution improvements (lower
cost), while flat segments correspond to iterations
without improvement. A sharp drop in cost is vis-
ible during the initial phase (~first 100 iterations),
where the algorithm quickly identifies much bet-
ter solutions than the initial greedy one. During
the mid-phase (~iterations 100–400), improve-
ments continue but at a slower, less regular pace
with occasional fluctuations. In the final phase Figure 1. Greedy algorithm workflow

28

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

Figure 2. ALNS + tabu search workflow

(~iterations 400–1000), the cost stabilizes near a
local optimum, indicating that further major im-
provements become harder to obtain. Figure 4 il-
lustrates the behavior of the individual algorithms
across iterations.

It can be observed that the blue line repre-
senting tabu search lies below the red ALNS line
in most iterations. This suggests that local opti-
mization consistently improves solution quality,

smoothing out extreme cost fluctuations and lead-
ing to a more stable result. Despite some volatil-
ity, a clear downward trend in cost and conver-
gence toward an optimal solution is evident.

Figure 5 compares vehicle routes at two stag-
es of the algorithm. The right-hand side shows
the initial solution generated by the greedy algo-
rithm, while the left-hand side presents the final
optimized solution.

29

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

Figure 3. ALNS + tabu search cost trajectory

Figure 4. Cost trajectory: ALNS vs tabu search

Figure 5. Route comparison: a) left-hand side: final optimized solution, b) right-hand side: initial greedy routes

30

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

The chart compares vehicle routes before
(“initial”) and after (“final”) optimization using
the ALNS algorithm combined with tabu search.

In the initial solution, routes are disorganized
and scattered – many intersect, and vehicles serve
geographically distant delivery points. Several
one-stop routes are visible, indicating inefficient
task assignment and limited route consolidation.

In contrast, the final (optimized) solu-
tion features more compact, spatially coherent
routes. Vehicles serve clusters of nearby points,
leading to shorter total distances and reduced
overlap between routes. Notably, no one-stop
routes are present in the optimized solution, re-
flecting better use of available resources and im-
proved planning.

The number of serviced delivery points is
identical in both solutions (242), confirming that
all orders were fulfilled. However, the significant
improvement in route structure demonstrates the
effectiveness of the optimization process.

In conclusion, combining ALNS with tabu
search significantly enhances solution quality.
Tabu search compensates for the limitations of
the greedy approach, yielding shorter, more or-
ganized, and operationally efficient routes. This
validates the benefit of hybrid optimization strate-
gies for complex routing problems.

DISCUSSION

The results of the conducted study clearly in-
dicate that the applied route planning approach
in the logistics company has yielded significant
benefits. Most notably, the total distance traveled
by the fleet was substantially reduced from over
three million kilometers to just over one million.
This reduction translates into measurable savings
in fuel costs and driver working hours, as well as
potentially reduced vehicle wear and lower envi-
ronmental impact of transport operations.

The operation of the implemented solution
also deserves attention. Even at an early stage of
planning, it was possible to rapidly identify sig-
nificantly better routes than those generated using
simple heuristic rules. Subsequent improvements
occurred gradually, primarily through minor route
refinements that led to better organization and re-
duced travel time. The final outcome was visible
not only in the numerical indicators but also in
the structural characteristics of the routes – these
became more coherent, localized, and logically

organized, avoiding unnecessary intersections
and redundant travel segments.

The study also confirmed that combining
different types of route optimization techniques
– both major restructurings and minor adjust-
ments – delivers better results than relying on
a single approach. On one hand, it enabled the
reconfiguration of inefficient segments, while on
the other, it allowed for the fine-tuning of seg-
ments that were already functioning effectively.
This dual-level optimization approach helped
prevent the routes from settling into suboptimal
configurations with limited potential for further
improvement [19].

Importantly, despite the substantial im-
provement in route quality, all delivery orders
continued to be fulfilled – meaning that efficien-
cy gains were not achieved at the expense of
service coverage.

It is recommended to further develop the
model by incorporating additional optimization
criteria – such as driver labor costs, customer de-
livery time preferences, emissions levels [20], and
loading and unloading times. A multi-criteria opti-
mization framework could better reflect real busi-
ness conditions and enhance the acceptability of
the generated routes among logistics system users.

Future implementations should also con-
sider integrating the algorithm with transporta-
tion management systems (TMS) [21], enabling
dynamic route updates in response to real-time
changes in road conditions or resource availabil-
ity. Furthermore, adopting an online or hybrid
distributed version of the algorithm could ac-
celerate its performance and allow for real-time
application [22].

Furthermore, optimized delivery scheduling
contributes not only to reduced emissions and
fuel use but also to lower urban noise pollution,
particularly in densely populated areas [23, 24].
This is increasingly relevant as sustainable ur-
ban logistics systems seek to minimize both en-
vironmental and social externalities. Moreover,
micro-mobility solutions - such as electric cargo
bikes or small autonomous delivery vehicles -
offer a promising complement to hybrid routing
strategies, especially in addressing last-mile de-
livery challenges. Their integration into optimi-
zation frameworks could significantly enhance
the flexibility and efficiency of delivery systems
in urban settings [25].

It should be noted that the analysis was con-
ducted based on data from a single transport

31

Advances in Science and Technology Research Journal 2025, 19(11) 21–32

company. Although the data were real and highly
detailed, this limitation may affect the generaliz-
ability of the results to other industries, regions,
or logistical models. Therefore, it would be ben-
eficial to extend the study to companies with a
broader scope of operations.

CONCLUSIONS

The results of the study confirm that employ-
ing a hybrid ALNS + tabu search approach en-
ables significant improvements in delivery sched-
uling efficiency under real-world operational
conditions. The algorithm demonstrates high ef-
fectiveness not only in minimizing route lengths
but also in reorganizing delivery structures in
compliance with time and capacity constraints.
The improvements in route quality were achieved
without increasing the number of vehicles or re-
ducing the number of service orders, which vali-
dates the approach’s practical utility in day-to-
day fleet management.

The proposed approach constitutes a valuable
tool for both logistics researchers and practitio-
ners, offering quantifiable benefits in terms of
route shortening, reduced operational costs, and
improved route structure, all while maintaining
full service completion.

REFERENCES

1.	 Kucukoglu I, Dewil R, Cattrysse D. The electric ve-
hicle routing problem and its variations: A literature
review. Comput Ind Eng. 2021;161:107650.

2.	 Semenov I, Świderski A, Borucka A, Guzanek
P. Concept of early prediction and identification
of truck vehicle failures supported by in-vehicle
telematics platform based on abnormality detec-
tion algorithm. Appl Sci. 2024;14(16). https://doi.
org/10.3390/app14167191

3.	 Pham QD, Nguyen TH, Bui QT. Modeling and
solving a multi-trip multi-distribution center ve-
hicle routing problem with lower-bound capacity
constraints. Comput Ind Eng. 2022;172:108597.

4.	 Salgado Duarte Y, Szpytko J. Reliability-oriented
twin model for integrating offshore wind farm main-
tenance activities. Eksploatacja Niezawodn. 2024.
https://doi.org/10.17531/ein/199355

5.	 Adamiak B, Andrych-Zalewska M, Merkisz J, Chłopek
Z. The uniqueness of pollutant emission and fuel con-
sumption test results for road vehicles tested on a chassis
dynamometer. Eksploatacja Niezawodn. 2025;27(1).

https://doi.org/10.17531/ein/195747
6.	 Sang T, Zhu K, Shen J, Yang L. An uncertain pro-

gramming model for fixed charge transportation
problem with item sampling rates. Eksploatacja
Niezawodn. 2025;27(1). https://doi.org/10.17531/
ein/192165

7.	 Lao J, Wang X, Zhang M, Chen Z, Guo J. Analy-
sis and improvement of coal-loading performance
and reliability of thin seam coal shearer drums.
Eksploatacja Niezawodn. 2025;27(2). https://doi.
org/10.17531/ein/194674

8.	 He X, Zhen L. Column-and-row generation based
exact algorithm for relay-based on-demand delivery
systems. Transp Res B Methodol. 2025;196:103223.

9.	 Liu R, Wang C, Ouyang H, Wu Z. Exact algorithm
and machine learning-based heuristic for the sto-
chastic lot streaming and scheduling problem. IISE
Trans. 2025;57(4):408–22.

10.	Kolankeh AK. A Hybrid Optimization algorithm for
large-scale combinatorial problems in cloud com-
puting environments. ALCOM J Algorithm Com-
put. 2025;1(01):1–12.

11.	Tafakkori K, Tavakkoli-Moghaddam R, Siadat
A. A data-driven sustainable scheduling model
for dispatch-steerable last-mile delivery systems
with negotiable time windows. Eng Appl Artif In-
tell. 2025;124:111280. https://doi.org/10.1016/j.
engappai.2025.111280

12.	Cengiz Toklu M. A fuzzy multi-criteria approach
based on Clarke and Wright savings algorithm for
vehicle routing problem in humanitarian aid distri-
bution. J Intell Manuf. 2023;34(5):2241–61.

13.	Özdağ R. A novel hybrid path planning method for
sweep coverage of multiple UAVs. J Supercomput.
2025;81(1):83.

14.	Sinaga RP, Marpaung F. Perbandingan algoritma
cheapest insertion heuristic dan nearest neighbor
dalam menyelesaikan traveling salesman prob-
lem. J Riset Rumpun Mat Ilmu Penget Alam.
2023;2(2):238–47.

15.	Gao X, Cheng Z, Gao T, Wang R, Jiang K, Dong E.
The optimal joint preventive maintenance strategy
for the equipment under two-dimensional extended
warranty. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/203763

16.	Zhu L. Energy management in microgrid integrated
with ultracapacitor-equipped electric vehicles and
renewable resources using hybrid algorithm per-
spective. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/200713

17.	Gao H, Wang Y, Xu J, Qin H. Fatigue strength reli-
ability assessment of turbofan blades subjected to
intake disturbances based on the improved krig-
ing model. Eksploatacja Niezawodn. 2025;27(2).
https://doi.org/10.17531/ein/194175

32

Advances in Science and Technology Research Journal 2025, 19(11), 21–32

18.	Zhang Y, Wang L. Real-time fault monitoring meth-
od for logistics vehicles based on chaotic ant colony
algorithm. Eksploatacja Niezawodn. 2025. https://
doi.org/10.17531/ein/203395

19.	Rojek I, Jasiulewicz-Kaczmarek M, Piszcz A, Ga-
las K, Mikołajewski D. Review of the 6G-based
supply chain management within industry 4.0/5.0
Paradigm. Electronics. 2024;13(13):2624.

20.	Merkisz J, Sordyl A, Chłopek Z. Non-repeatabil-
ity of the WLTP vehicle test results. Arch Transp.
2024;71(3):25–49.

21.	Zhu W, Cai W, Kong H. Optimal path planning
based on ACO in intelligent transportation. Int J
Cogn Comput Eng. 2025;6:100187. https://doi.
org/10.1016/j.ijcce.2025.02.006

22.	Hensel L, Grajewski V, Matteis T, Liedtke G. Mod-
elling commercial traffic for a metropolitan region.

Eur Transp Res Rev. 2025;17(1):717. https://doi.
org/10.1186/s12544-025-00717-w

23.	Danilevičius A, Danilevičienė I, Karpenko M, Stosiak
M, Skačkauskas P. Determination of the instantaneous
noise level using a discrete road traffic flow method.
Promet – Traffic & Transportation. 2021; 33(1): 89–
98. https://doi.org/10.7307/ptt.v37i1.597

24.	Danilevičius A, Karpenko M, Křivánek V. Research
on the noise pollution from different vehicle catego-
ries in the urban area. Transport. 2023;38(2):120–
132. https://doi.org/10.3846/transport.2023.18666

25.	Karpenko M, Prentkovskis O, Skačkauskas P. Ana-
lysing the impact of electric kick-scooters on driv-
ers: vibration and frequency transmission during the
ride on different types of urban pavements. Eksp-
loatacja Niezawodn. 2025;27(2):199893. https://
doi.org/10.17531/ein/199893

