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INTRODUCTION

The effective energy optimization strategy 
leads to the extend the nano-sensor networks 
(NSN) operational lifetime and ensure the reli-
ability of their systems. The bottleneck is their 
limited power efficiency and energy consumption 
of communication over long periods of time. In 
this work, an adaptive modeling algorithm that 
dynamically estimates and controls the energy 
consumption of nanosensor networks was pro-
posed. This allows each sensor node to adjust its 

activity based on current energy availability, pre-
dicted consumption trends, and global network 
constraints. The related works, mentioned below, 
show various approaches to optimizing and sav-
ing energy in nanosensor networks. In the paper 
[1], an optimization problem was defined to de-
termine the optimal deployment of nanosensors 
(NSs) for the proper liver status description. The 
application of genetic algorithms allows finding 
the optimal number of nanosensors in the sys-
tem, avoiding a large data volume. In the work 
[2], finding suitable routing paths in wireless 
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nano- sensor networks (WNSNs) as a funda-
mental problem to be solved in energy-efficient 
Internet of Nano-things (IoNT) networks was de-
scribed. Due to the nano- batteries having very 
limited capacity, the nano-sensor nodes should 
communicate through an energy-efficient routing 
scheme. In this paper, an energy-efficient routing 
path discovery algorithm between nanosensor 
node and receiver node was proposed for IoNT 
applications. The paper [3] investigated the effect 
of various parameters of energy consumption for 
communication in pulse-based wireless nanosen-
sor networks. Through simulation, the effect of 
network parameters, i.e. energy for pulse trans-
mission/reception, on the optimization problem 
was studied. The model enables optimum energy 
consumption design in wireless nanosensor net-
works. The next work [4] described WNSNs, i.e., 
networks of miniaturized devices with unprece-
dented sensing capabilities, are at the basis of ap-
plications in the biomedical and industrial fields. 

Recent developments in plasmonic nano-an-
tennas point to the Terahertz band (0.1–10 THz) 
as the frequency range of communication among 
nanosensors. The energy harvesting limits and 
the successful data transmission time are defined 
as the optimization problem constraints. Accord-
ing to [5] important feature of WNSNs is that the 
nanosensors are highly energy-constrained and 
it essential to develop energy efficient protocols 
for different layers of such networks. This paper 
examined the transmission energy minimization 
problem. In the paper [6] an energy optimization 
coding (EOC) for communication in WNSNs 
was proposed, and the energy model by jointly 
accounting for the energy consumption of both a 
transmitter and a receiver was presented. A novel 
energy-efficient distributed routing algorithm, in 
order to extend the lifetime of WNSNs in IoNT 
applications was proposed in the work [7]. This 
energy-efficient distributed protocol was com-
pared with the traditional flooding based method 
and with an energy aware routing algorithm. The 
paper [8] presented novel signal integration meth-
odologies that merge nanosensors with machine 
learning and reinforcement learning for better 
optimization. The application of reinforcement 
learning facilitates optimal sensor positioning as 
well as optimal knowledge with regards to what 
data should be processed. This approach is differ-
ent from other competing ones because it is adap-
tive, self-learning and without loss of flexibility 
the amount of energy used is lowered greatly. 

Next paper [9] introduced an adaptive algorithm 
to equally cooperate in data transfer process be-
tween nanosensors. Each nanonode can adjust 
the broadcasting decision according to its local 
traffic condition. The aim is to decrease the en-
ergy consumption by balancing data transmission 
load between constrained-resources nanonodes. 
The paper [10] proposed an adaptive energy con-
sumption modeling algorithm for IoT smart me-
ters, dynamically adjusting the data transmission 
frequency to the reading variability. The solution 
uses LoRaWAN/NB-IoT technologies and allows 
for a significant reduction in the number of pack-
ets and energy consumption – experimentally, a 
decrease in the frequency of energy consumption 
spikes by ~87–88% was achieved, which extends 
the lifetime of IoT nodes. The paper [11] pre-
sented an adaptive control model that optimizes 
energy consumption in an IoT environment based 
on software-defined networks. The proposed al-
gorithm used entropy for early detection of DDoS 
attacks and stochastic techniques for mitigation, 
while simultaneously monitoring and limiting de-
vice power consumption. Simulations achieved, 
among other things, an 18% reduction in energy 
consumption compared to existing solutions, 
while maintaining high network performance 
(improved threat detection accuracy and reduced 
latency). Publication [12] proposed a distributed 
clustering algorithm for a nanosensor network 
using the modern metaheuristic red deer algo-
rithm (RDA). The designed nanoRDA algorithm 
adaptively determines optimal cluster heads in an 
IoNT network composed of nanosensors, balanc-
ing the energy load between nodes. Experimental 
results indicate improved energy efficiency and 
extended network lifetime compared to tradi-
tional clustering protocols. The paper [13] dealt 
with an intra-body nanosensor network where the 
developed algorithm predicts changes in channel 
quality within the body (e.g. due to movement or 
physiological changes) and accordingly reconfig-
ures transmission paths to minimize packet loss 
and energy consumption. The use of link state 
prediction allows for avoiding unreliable connec-
tions and stabilizes energy consumption in the 
network, which translates into longer nanosensor 
lifetime and greater communication reliability. 

The paper [14] indicated that seamless inter-
connectivity among nanonetworks with the avail-
able communication networks and the Internet re-
quires developing new network architectures and 
new communication paradigms while addressing 
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the various energy challenges. The next study in 
[15] presents the adaptive ant colony method, 
which improves energy efficiency by determining 
the ideal cluster count using connectedness and 
distributed cluster-based sensing, which is impor-
tant from the point of view of the nanosensor net-
work. The method significantly reduces the en-
ergy consumption of nodes by several percentage 
points. The next paper [16] proposed a hybrid ap-
proach combining fuzzy clustering with optimi-
zation algorithms to improve energy management 
in IoT sensor networks. The proposed solution 
adaptively minimizes energy losses by reducing 
unnecessary transmissions and balancing node 
load and the network implementing this method 
was characterized by slower battery power decay 
and longer lifetime compared to traditional pro-
tocols. The publication highlighted the effective-
ness of intelligent techniques (AI/ML) in energy 
management in large IoT networks. 

In [17], the problem of limited energy in nano-
sensors was addressed by integrating simultane-
ous information transfer and power supply tech-
niques. The authors propose a cluster network 
framework in which nanosensor nodes can harvest 
energy from radio signals during data transmis-
sion. Additionally, an algorithm was introduced 
to ensure uniform energy consumption within 
clusters and this approach extends the lifetime 
of nanonodes, standardizes the energy consump-
tion level in the network, and reduces the trans-
mission error rate. Publication [18] presented 
an adaptive sleep scheduling algorithm for IoT 
nodes based on a learning automaton. The solution 
demonstrated significant energy savings – up to 
16% lower power consumption with longer sleep 
cycles. The finite state machine-based adaptive 
sampling algorithm proposed in [19] controls the 
sampling rate of IoT devices while maintaining  
a sustainable level of energy consumption. 
Validation under real-world conditions demon-
strated energy self-sufficiency with minimal en-
ergy consumption. In the following paper [20],  
a heuristic resource management algorithm for hi-
erarchical federated learning, taking into account 
wireless power, was proposed. The model opti-
mizes energy allocation and training schedules for 
IoT devices with minimal energy cost. Another 
publication [21] addressed intra-body communica-
tion channels between nanosensors flowing in the 
bloodstream and gates attached to the skin using 
the terahertz (THz) spectrum. To optimize the com-
munication performance, this work investigated 

the impact of noise and mobility, and subsequently 
derives the trade-off between them. This paper [22] 
presented a comprehensive treatment and technol-
ogy survey on THz communications and sensing 
in terms of advantages, applications, propagation 
characterization, antennas, transceiver devices, 
networking including those for applications in 
nanonetworks. The paper gave a holistic view of 
the current state of the art and highlights the open 
research challenges towards 6G and beyond. In 
[23], the properties of graphene nanoantennas and 
SPP signal propagation in the 0.1–10 THz band 
were discussed in the context of nanonetworks, 
highlighting the real possibility of miniaturizing 
nanosized communication structures. 

In [24], THz sensor technologies, their sensi-
tivity, tuning, and applications in medicine and IoT 
were analyzed in a review. Advanced materials 
(graphene, photonic fibers) were highlighted and 
directions for the development of ultrafast, high-
performance sensors were proposed. A review [25] 
presented pioneering metamaterial structures for 
THz sensors. The impact of high-quality THz reso-
nance and tunneling on improved sensitivity was 
emphasized, with applications in IoT skin nanosen-
sors and smart skin. The authors in [26] developed 
an adaptive energy threshold strategy for IoT nodes 
that takes into account battery power levels and 
data priority. Depending on the threshold, the node 
adjusts when and what it transmits, allowing for in-
telligent redirection of network resources. Simula-
tions demonstrate energy savings while maintain-
ing critical data traffic. The paper [27] presented 
a model for simultaneous optimization of routing, 
bandwidth, and subband allocation in THz nano-
sensor networks. The study showed that optimal 
multi-hop routing and variable bandwidths allow 
for reduced energy consumption in transmission-
dominant situations, while maintaining a low en-
ergy cost for the entire network. The paper specifi-
cally addresseed the technology of nanonetworks 
with THz communication, taking into account 
aspects of routing and energy effects, complemen-
tary to the adaptive modeling algorithm. The study 
[28] introduced a robust model of IoT-integrated 
multi-sensors to ensure functionality and seamless 
IoT integration. It was shown how changes in the 
sensor-object distance affect the optimization of the 
integrated sensor behavior. The proposed model in-
tegrates an intelligent skin sensor with an autono-
mous IoT system. This model shows significant po-
tential for miniaturization and scalability, making it 
particularly suitable for IoT applications.
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MATERIALS AND METHODS

In the presented study, a nanosensor adaptive 
modeling algorithm (NAMA) for an embedded 
network was developed. 

For the purposes of this work, it was assumed 
that the “lifetime” of a network is the time it takes 
to reach 80% of its cumulative energy cost. The 
network can be embedded on the artificial skin of 
a humanoid robot or a flexible smart skin surface. 

NAMA algorithm

The pseudocode of the adaptive algorithm is 
shown in Figure 1. The coefficients denote: αi is 
a weighting factor for the energy consumption of 
data transmission, which determines how strong-
ly the transmission (e.g. sending packets) affects 
the overall energy loss of the 𝑖-th sensor; βi, is 
a weighting factor for energy consumption by 
measuring and processing data, which determines 
how much the “sensing” itself contributes to the 
total energy loss; η is the adaptation/learning 
constant and denotes the rate at which the sensor 
changes its operating parameters (e.g. sampling) 
– the larger 𝜂, the faster it responds to a decrease 
in energy, but may be less stable. Next, Pcomm(t) is 
the power consumed for data transmission, Psense​
(t) is the power consumed for measurement (e.g. 
touch, pressure, temperature), derivative (d/dt) 

(Ei(t)) is the rate of energy decrease over time. 
In the NAMA algorithm, these coefficients, with 
which the energy changes of a network node is 
described, are as follows:

	 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	(1)

Therefore, in the NAMA algorithm, the ener-
gy consumption of i-th sensor at time 𝑡 is modeled 
by Equation 1 and Pcomm(t) is the current power 
needed to transmit data from the nanosensor, Psense​
(t) current minimum accumulated power needed 
to perform the measurement. On this basis, the 
nanosensor locally adjusts its operating param-
eter 𝑢𝑖(t) (e.g. operating frequency):

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (2)

These factors are important for: local adapta-
tion (sensors can dynamically adjust (t) based on 
local conditions, e.g., motion load or touch in-
tensity), optimization (this helps balance energy 
between transmission and measurement tasks, 
e.g., if a nanosensor is overloaded with measure-
ments, it is increased to better predict future con-
sumption) and distributed management (it does 
not need to be coordinated globally, but the sen-
sor itself “learns” the proportions of the impact 
of different actions on energy loss). The NAMA 
algorithm implements local energy control of 
the nanosensor node, allowing it to intelligently 

Figure 1. Nanosensor adaptive modeling algorithm
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adapt operating parameters (e.g., sampling rate) 
to the rate of energy consumption. Each sensor 
initializes initial values for energy, operational 
settings, and adaptation factors. In each time 
iteration, the nanosensor performs a measure-
ment, estimates instantaneous energy consump-
tion based on communication and sensor activi-
ty, then modifies its operating mode to minimize 
further energy degradation. A key element is a 
local differential model describing the rate of 
energy change, which controls behavioral modi-
fications without the need for global communi-
cation. If the adaptation level reaches a prede-
termined threshold (e.g., an operating parameter 
drops below a threshold), the sensor decides to 
transmit data. Its energy budget is then updated. 
This process repeats until the energy is depleted 
or the simulation ends. This approach ensures 
distributed and independent energy management 
of nodes, which leads to extending its lifetime, 
reducing energy fluctuations and increasing the 
uniformity of system operation. 

Example

If the parameters are distributed such that 
a touch nanosensor with frequent transmission 
has: αi = 0.8, βi = 0.2 → data transmission is the 
main source of energy consumption. If the nano-
sensor is sparse transmission: αi = 0.3, βi = 0.7 
→ energy consumption dominates the sensor 
operation side. It was assumed that the network 
consists of an average of 300 sensors distribut-
ed irregular over an area of approximately 100 
cm², which corresponds to a realistic sensory 
density for biomimetic haptic applications (e.g., 
the surface of a human hand). In nanosensor ap-
plications, THz communication is increasingly 
being chosen for the following reasons, based 
on both physical properties and practical design 

requirements: 1st – high network throughput and 
bandwidth, 2nd – nanoscale antennas, 3rd - short 
distances and low power, 4th – minimal inter-
ference and high locality. Firstly, the THz band 
(0.1–10 THz) offers exceptionally wide trans-
mission channels, enabling simultaneous, high-
speed communication of hundreds of bits from 
multiple sensors operating in a small area—for 
example, approximately 300 nanosensors on the 
palm of a hand (100 cm²). This is ideal for IoT 
applications. Secondly, nanostructures, such as 
graphene nanoantennas, have dimensions close 
to the THz wavelength. This allows for the con-
struction of efficient, miniaturized antennas com-
patible with nanoscale devices, as confirmed by 
the literature on THz nanonetworks, particularly 
those based on graphene nanoantennas and sur-
face waves in the 0.1–1 THz band. Thirdly, in 
skin-like sensor applications, communication 
distances typically range from 1 to 20 mm. The 
THz band enables efficient transmission over 
such distances, with minimal latency and low 
transmission power, owing to its strong direc-
tivity and data rate. Fourthly, due to significant 
signal attenuation in air and biological materials, 
the THz band promotes local operation—ideal 
for dense networks of sensor strips, where high 
transmission precision is required with limited 
impact on the surroundings. Nanosensors often 
utilize THz communication, because it offers 
high throughput, compact antenna design, and 
efficient, local data exchange at low power con-
sumption. The validity of this assumption is con-
firmed by current research and literature reviews, 
as mentioned above. 

The benefits of THz communication in 
nanonetworks are summarized in Tables 1 
and 2, based on the literature listed in Relat-
ed Works. A summary of both tables above is 

Table 1. The benefits of THz communication in nanonetworks
N. Feature Importance for nano-sensors

1 Very wide bandwidth Data transmission from multiple sensors

2 Nanoantenna compatibility Physical Implementation; THz wavelength compatible with nanomaterial 
antennas (e.g., graphene, CNT)

3 Short range Short range = advantage: Effective transmission  
at 1–20 mm, ideal for dense skin networks

4 Minimal latency Useful for tactile feedback

5 High directivity Reduces interference, increases local communication

6 Low transmission power Reduces energy consumption—crucial in battery-powered systems

7 IoNT compatible 
(Internet of Nano-Things)

A natural choice for the Internet of Nano-Things  
and artificial skin
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provided in the Results and Discussion section. 
The conclusions to the both tables are provided 
in the Conclusion section. It was assumed that 
each nanosensor has a limited energy resource 
(𝐸0 = 0.3 mJ) and measures contact parameters 
(pressure, temperature, microvibrations) and 
then transmits the data to a local edge node 
(Edge Hub) located in the wrist or PCB inte-
gration area.

Communication occurs in the THz band, over 
short distances of 1–15 mm, in single- or multi-
hop mode. The energy consumption of each sen-
sor is described by the classical model: 
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where:	 the parameters adopted for consideration 

are:​ Eelec = 35 nJ/bit is the energy of elec-
tronic systems, εamp = 90 pJ/bit/mm² is the 
amplifier energy in the transmitter, k = 
256 bits is the data packet length, d is the 
average distance between nodes, and n = 
2 is the propagation loss exponent. 

The difference between Etx (energy for trans-
mission) and Erx (energy for reception) is a key 
issue in energy modeling of nanosensor networks 
in general (e.g. WSN, IoT), in Table 3.

System optimization with total energy 
consumption and variability in time

The system is optimized with respect to a cost 
function that takes into account both the total en-
ergy consumption and its variability over time:
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𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (5)
or in discrete form (for implementation):

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	
	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (6)

where:	 α, β, γ are the weights assigned to different 
activity types and Ptx,i, Prx,i, Psense,i are the in-
stantaneous power of the corresponding op-
erations of the i-th nanosensor. The Ji func-
tion allows for the evaluation of a node’s 
energy consumption in different modes. It 
also serves as the basis for optimization in 
the adaptive NAMA algorithm, where Ji 
is minimized while maintaining specified 
functionality. The Equation 5 with the fac-
tor (1/T) is the total power consumed by the 
i-th node during time T, expressed in watts 
[W], i.e., energy cost per unit of time. With-
out factor (1/T) the total energy consumed 
by the i-th node during time T is obtained:

Table 2. Comparison with other communication technologies
Technology Advantages Disadvantages

0.1–10 THz
Massive throughput
A size-compatible nanoantenna
Ideal for short distances

High air attenuation
Requires precise targeting

IR (infrared)
Easily available
Low power consumption
Suitable for simple sensors

Sensitive to optical obstructions
Poor scalability in multi-node networks

RF (MHz–GHz) Stable transmission over longer distances Antennas too large for the nanoscale. Interference and 
noise in dense environments

Piezooptic
Compatible with micro/nanostructures
They can be used as sensors and data 
transmitters

Very limited transmission speed
Complexities of integrating optoelectronics on the skin

Table 3. Comparison of Etx with Erx

Parameter Energy Etx Energy Erx

Definition Energy consumed by the sensor while sending 
data

Energy consumed while receiving data from another 
node

Dependence Depends on distance 𝑑, number of bits 𝑘 and 
propagation losses d^(n)

Depends mainly on the number of bits 𝑘;  
does not depend on the distance

Typical eq. Etx ˃ Erx

Wear Typically greater than reception, especially at 
longer distances

Smaller and more stable—depending solely on the 
electronics

Meaning in NAMA It strongly influences the energy decay rate and 
is an important adaptation factor

It has a lesser impact on the NAMA algorithm, but is 
important for routing and multi-hop
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𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (7)

where:	 the expression under integral Ji represents 
the instantaneous total power of each net-
work node.

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	
	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (8)

with energy weights (α = 0.8, β = 0.4, γ = 0.6) 
depending on the task priorities of the nanosensor 
network and Ptx,i(t), Prx,i(t), Psense,i(t) are randomly 
fluctuating power waveforms (simulating trans-
mission, reception, and measurement). 

Formulas (5) and (7) differ in what they 
measure. The version with the factor (1/T) de-
scribes the nanosensor’s temporal energy con-
sumption density [W] and is used to compare 
efficiency and adapt over time. The version 
without the factor (1/T) represents the total 
energy and is used for energy balance as well 
as calculation of the nanosensor’s duty cycle. 
The formulas can be explained based on phys-
ics and electronics, as energy is the product 
of power and time, instantaneous power is the 
instantaneous energy consumption, and com-
bining (summing) power over time yields the 
nanosensor’s energy effect. Standard energy 
models are used in the literature. From these 
models, the energy components of transmis-
sion, reception, and measurement are summed, 
resulting in the following formula: 

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (9)

On the basis of this, it can be summarized that 
using weights (α,β,γ) is a common technique in 
adaptive and optimization algorithms to adjust 
the importance of individual cost components. 
If the goal is no longer just to minimize energy 
consumption but also to ensure operational sta-
bility, for example, avoiding large fluctuations in 
power, control, or energy levels, then the lambda 
trade-off factor 𝜆∈[0,1] controlling the trade-off 
between energy saving and its uniform distribu-
tion is introduced. If 𝜆 = 0 à full focus on energy 
minimization, if 𝜆 = 1 à full focus on stability 
(e.g., equal workload distribution), intermediate 
values represent a compromise between the two. 
Here, the formula becomes:

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (10)

where: 𝐸𝑖 is the energy consumption component 
(e.g., total nanosensor energy), and 𝑉𝑖 is 
the stability component (e.g., power vari-
ance, fluctuations).

The factor (1 -
 
λ) emphasizes energy efficien-

cy, and λ emphasizes stability. This can be inter-
preted as meaning that the system may act more 
aggressively when energy is the primary objective 
(𝜆→0). When stability is important (e.g., to avoid 
sensor overheating or destabilizing the system), 
the weight λ increases. The parameter 𝜆 can even 
be dynamically adjusted depending on battery 
level, load, or node priorities. To further model the 
energy cost function 𝐽𝑖, which reflects the energy 
consumption of a single nanosensor 𝑖- node, de-
pending on relevant system parameters, let us as-
sume that the energy cost 𝐽𝑖 depends on: Etx, Erx, 
Esense and operating time 𝑇, if the cost is calculated 
as average consumption. Introducing the trade-off 
factor 𝜆 into the cost function 𝐽𝑖 is a typical step in 
multi-objective optimization, particularly in adap-
tive energy-saving algorithms. In practice, two cost 
functions were defined: Ji

fix(t) for a fixed lambda 
𝜆 value of 0.5 and Ji

adap(t) for a variable lambda. 
The time index at which each of these functions 
reaches 80% of its maximum value was checked. 

Example 

In this case lifetime_fixed = 142 (i.e. the 142nd 
point in the t vector)and lifetime_adaptive = 158. 
What does this mean in terms of time? The time vector  
t contains 200 points evenly spaced between 0 
and 10 seconds and the time interval is: 

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	

so t142 = 142·dt ≈ 7.13s and t158 ≈  7.95s. It 
was assumed that the system terminates when it 
reaches 80% of its maximum cost, so we have Ex-
tending Network Lifetime ENL:
	• life time for 𝜆 = 0.5 à t = 142 point of 

simulation,
	• life time for adaptive 𝜆 à t = 158 point of 

simulation.

Therefore, ENL = 100% · (158 – 142)/142 = + 
11.18%. The conclusion is that the adaptive strat-
egy increased network lifetime by over 11%. This 
shows that adaptive regulation allows the system 
to operate longer with the same energy limit, 
justifying the claim of an extension of network 
lifetime by over 11% (see on the Figure). On the 
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basis of Equation 8 it was calculated the cumula-
tive energy by integration (discrete summation):

	

𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝛽𝛽𝑖𝑖(𝑡𝑡) · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  (1) 

 
𝑢𝑢𝑖𝑖(𝑡𝑡 +  𝛥𝛥𝛥𝛥) =  𝑢𝑢𝑖𝑖(𝑡𝑡) −  𝜂𝜂 · 𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑑𝑑    (2) 
 

𝐸𝐸𝑡𝑡𝑡𝑡 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 +  𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 · 𝑘𝑘 · 𝑑𝑑𝑛𝑛 (3) 
𝐸𝐸𝑟𝑟𝑟𝑟 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 · 𝑘𝑘 (4) 

 
𝐽𝐽𝑖𝑖 =  1

𝑇𝑇 ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡) +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇
0 𝑑𝑑𝑑𝑑 (5) 

 
𝐽𝐽𝑖𝑖 =  1

𝑁𝑁 ∑ ( 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖[𝑘𝑘]  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖[𝑘𝑘] +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖[𝑘𝑘] )𝑁𝑁
𝑘𝑘=1  (6) 

 
𝐽𝐽𝑖𝑖 =  ∫ [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)]𝑇𝑇

0 𝑑𝑑𝑑𝑑 (7) 
 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  [ 𝛼𝛼 · 𝑃𝑃𝑡𝑡𝑡𝑡,𝑖𝑖(𝑡𝑡)  +  𝛽𝛽 · 𝑃𝑃𝑟𝑟𝑟𝑟,𝑖𝑖(𝑡𝑡) +  𝛾𝛾 · 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖(𝑡𝑡)] (8) 
 

𝐽𝐽𝑖𝑖 = 𝐸𝐸𝑡𝑡𝑡𝑡,𝑖𝑖
 +  𝐸𝐸𝑟𝑟𝑟𝑟,𝑖𝑖 +  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖  (9) 

 
𝐽𝐽𝑖𝑖 = (1 −  λ) · 𝐸𝐸𝑖𝑖

 +  λ · 𝑉𝑉𝑖𝑖 (10) 
 

𝑑𝑑𝑑𝑑 =  10 − 0
200 − 1 ≈ 50.25 𝑚𝑚𝑚𝑚 

 
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) =  ∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑗𝑗)𝑖𝑖

𝑗𝑗=0 ·  𝛥𝛥𝛥𝛥 (11) 
 

	 (11)

At the end is Etotal max = max(Eintegral)
 
the maxi-

mum value of this curve. In the considered case,  
Etotal max ≈ 23.57 mJ. This corresponds to the maxi-
mum energy consumption over the entire simula-
tion duration (10 seconds). 

Adaptive rule

The function ui(t + Δt) (see Equation 2) rep-
resents the adaptive control of a single nanosen-
sor. As the rate of energy consumption changes 
(due to variable transmission and measurement 
power), the control value is dynamically adjusted. 
An increase in instantaneous energy consumption 
leads to a faster decrease in 𝑢(𝑡), which may sym-
bolize, for example, an automatic limitation of 
the frequency of measurements, transmissions or 
sensor activity.

RESULTS AND DISCUSSION

On the basis of Table 2 it can be concluded 
that communication in the terahertz (THz) band 
is becoming the preferred technology for sensor 
nanonetworks, especially where sensors are very 
small, operate over short distances (1–20 mm), 
and fast and local data transmission is required. 

The THz band offers a very wide transmission 
bandwidth, allowing for the parallel operation of a 
large number of sensors. An additional advantage 
is their physical compatibility with nanoantennas 
– THz waves have wavelengths comparable to the 
dimensions of nanomaterials such as graphene or 
carbon nanotubes, enabling the creation of micro-
scopic antennas. Due to their limited range and 
high directivity, THz communication is well-suited 
to dense and local networks, such as the skin of a 
robot hand or the flexible surface of a smartphone, 
where the distances between elements are minimal.

System optimization with total energy 
consumption and variability in time

Let us consider the following calculation ex-
ample with the data as below. Example. Let be 
Eelec = 50 nJ/bit, εamp ​= 100 pJ/bit/mm², k = 256 
bits, d = 5 mm, n = 2. For this data we have: Etx = 
50 · 256 + 100 · 10-3 · 256 · 82 = 12.8 µJ + 1.64 µJ 
= 14.4 µJ and Erx = 50 · 256 = 12.8 µJ.

One can see that transmission costs more and 
more the further the data needs to be sent. For Etx 
this is a quadratic curve (Figure 2). For short dis-
tances (1–5 mm), energy consumption increases 
slowly. For longer distances (10–20 mm), energy 
increases drastically—illustrating how expensive 
it is to transmit data long distances in nanonet-
works. The red dashed line (Eᵣₓ) is a horizontal 
line and the receiving energy independent of 
distance can be seen. The data reception energy, 

Figure 2. Energy changes with distance: for Etx and Erx
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although independent of the transmission dis-
tance, is not absolutely constant. Therefore, we 
will get a linear graph and the more bits are sent 
to a node, the more energy it must use to receive 
them (Figure 3). For example, for: 

k = 256 à Erx = 12.8 μJ, 
k = 1024 à Erx = 51.2 μJ.

It can then draw conclusions by taking into ac-
count other factors indicated in Table 4. In nano-
sensor networks (e.g., on the surface of a robot 
hand, smartphone, or electronic skin), the typical 
clock frequency of a microcontroller, transmitter, 
or receiver depends on the technology and the 
tradeoff between speed and power consumption. 
When working with energy modeling, one can 
assume the standby mode is 32 kHz (negligible 
consumption), active reception: 4 MHz or 8 MHz 
for a balance between speed and energy saving. 
This is important because the higher the clock 
frequency, the faster the data is received, but also 

the higher the power consumption (e.g., 𝑃∼𝑓⋅𝑉2 
for CMOS). 

The parameter E_tx dominates the cost func-
tion for long-distance transmissions or central 
nodes, E_rx is important in multi-hop models 
where sensors receive data from neighbors. The 
energy required to receive data by a nanosensor 
depends on several important technical factors. 
The most important is the number of received bits 
𝑘, and the longer the data packet, the more energy 
the receiver consumes. This relationship is linear. 
Therefore, frequency scaling (DFS) or dynamic 
power management (DPM) are often used. On the 
basis of Table 4 it can be noticed that although Erx 
does not depend on the distance between nodes, it 
is strongly dependent on the data size, hardware 
technology, and receiver operating parameters. In 
practice, nanosensor systems and intelligent IoT 
devices use different clock frequencies, depend-
ing on energy efficiency requirements, operating 
speed, and the technology used.

Figure 3. Energy Erx changes with the k-number of bits

Table 4. Reception energy Erx dependence for nanosensors in the network
Factor Impact on Erx

Number of bits Main factor - energy increases linearly with the length of the received packet Erx = Eelec · k

Manufacturing technology Different technologies (CMOS, graphene, nano-MEMS) have different values of Eelec — this 
affects the cost per bit

Operation mode In standby mode (sleep mode) consumption is close to zero; in active mode - full reception 
energy

Clock frequency Faster clock speeds speed up reception but increases power consumption per bit

Supply voltage Higher operating voltage of electronics increases energy consumption

Channel conditions (BER, SNR) High interference (low SNR, high BER) causes retransmissions or error corrections — 
increases the real Erx
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The lowest frequencies, in the range of 32 kHz 
to 1 MHz, are found in ultra-low-power devices 
such as real-time clocks (RTCs), simple nano-
MEMS controllers, or standby nodes. They enable 
very long system lifetimes at the expense of lim-
ited timing functionality. Typical microcontrollers 
used in the IoT typically have clock frequencies in 
the range of 1–16 MHz. In modern nanonetworks, 
especially those operating in the THz band, local 
clocks or pulse generators can reach even high-
er speeds – from 100 MHz to 1 GHz. The graph 
in Figure 4a finds the value of 𝜆∗ that minimizes 
the cost. It plots the graph with a red dot at the 
minimum point. Figure 4b shows a model with a 
dynamically changing trade-off factor 𝜆(𝑡). The 
top graph is the λ(t): the value of 𝜆 decreases over 
time, as we assume the node consumes energy. 

Initially, there is a greater emphasis on stability 
(large 𝜆), later on, a greater emphasis on savings 
(small 𝜆). The middle graph is the power con-
sumption 𝑃total(𝑡): random fluctuations in trans-
mit, receive, and measurement power. The bottom 
graph is the energy cost 𝐽𝑖(𝑡): the cost variation 
over time, reflecting how changing 𝜆(𝑡) affects 
the preferred operating mode (stable vs. cost-
saving). The following graph (in Figure 4c) shows 
an adaptive strategy with a threshold-controlled 
tradeoff λ(t). The tradeoff factor 𝜆(𝑡) is initially set 
to 1 (increasing the emphasis on energy consump-
tion stability). When total energy consumption 
exceeds 60% of the maximum value, 𝜆(𝑡)) sud-
denly decreases to 0.3. This indicates a transition 
to energy-saving mode, where the total energy 𝐸𝑖, 
rather than its fluctuations, becomes the dominant 

Figure 4. (a) Finding the optimal value of 𝜆∗ that minimizes the energy cost function 𝐽𝑖(𝜆) with  
a static trade-off 𝜆 factor, (b) is the model with a dynamically changing trade-off factor 𝜆(𝑡), (c) Adaptive 

strategy with threshold-controlled compromise λ(t). (d) Comparison of the moments when strategies reach 80% 
energy consumption
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cost factor. The top graph 𝜆(𝑡) changes suddenly 
after the threshold is crossed. The middle graph 
shows the instantaneous power consumed by the 
sensor. The bottom graph shows the resulting cost 
𝐽𝑖(𝑡), reflecting the change in strategy. A compari-
son of the moments at which the strategies reach 
80% energy consumption is shown in Figure 4d. 
The red line is the strategy with a fixed 𝜆 = 0.5 and 
reaches the threshold earlier (~7.13 s). The green 
line is the adaptive strategy with a dynamic 𝜆(𝑡) 
and reaches the threshold later (~7.95 s).

Table 5 contains the values of the dynamic 
cost 𝐽𝑖(𝑡), instantaneous power 𝑃total(𝑡), and the 
adaptive trade-off factor 𝜆(𝑡) at subsequent points 
in time. It can be used to analyze changes in 

energy cost depending on the adaptation strategy. 
The estimated on the cumulated energy value of 
23.57 mJ is the correctly calculated total energy 
consumed by the nanosensor network during 10 
seconds of operation, based on the variable trans-
mit, receive, and measurement power waveforms. 
It is now possible to convert energy into the num-
ber of operations/signals in a nanosensor. 

Example

It was assumed that a single operation/signal 
(e.g., reading or transmitting) consumes Eop = 1 
µJ per operation, which is typical for nano-trans-
mission. The energy consumed in the simulation 

Table 5. The dynamic cost 𝐽𝑖(𝑡) depending on time and coefficient λ(t), for the first 30 rows out of 200 in total
Records t [s] λ(t) Ptotal(t) [mW] 𝐽𝑖(𝑡)  [mJ]

1 0.00 1.00 2.61 0.00

2 0.05 1.00 2.21 0.00

3 0.10 1.00 2.11 0.01

4 0.15 1.00 2.34 0.01

5 0.20 1.00 2.37 0.01

6 0.25 1.00 1.36 0.06

7 0.30 1.00 2.40 0.06

8 0.35 1.00 1.85 0.07

9 0.40 1.00 2.32 0.07

10 0.45 1.00 2.59 0.07

11 0.50 1.00 2.69 0.08

12 0.55 1.00 1.73 0.10

13 0.60 1.00 2.54 0.10

14 0.65 1.00 2.10 0.10

15 0.70 1.00 2.22 0.10

16 0.75 1.00 1.84 0.12

17 0.80 1.00 2.23 0.12

18 0.85 1.00 2.10 0.12

19 0.90 1.00 2.52 0.12

20 0.95 1.00 2.25 0.12

21 1.01 1.00 2.11 0.12

22 1.06 1.00 2.92 0.14

23 1.11 1.00 2.73 0.15

24 1.16 1.00 2.38 0.15

25 1.21 1.00 2.69 0.15

26 1.26 1.00 2.38 0.15

27 1.31 1.00 2.14 0.16

28 1.36 1.00 2.02 0.16

29 1.41 1.00 2.13 0.16

30 1.46 1.00 2.39 0.16

… … … … …

Source: own research.
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is 23.57 mJ. The number of possible operations 
is 23.57 mJ/0.001 mJ = 23,567 operations. The 
maximum number of operations with the assumed 
limit of 50 mJ is 50,000 operations. Then, the 
remaining reserve of operations will be 50,000  
-23,567 = 26,433 operations.

Adaptive rule

The graph in Figure 5 illustrates how the adap-
tive mechanism works in nanosensor networks 
– responding to local energy conditions in real 
time. In simulations such as this, sinusoidal func-
tions (e.g. sin(t) and cos(t)) were assumed. This is 
because they represent the variability of the envi-
ronment over time, and in real nanonetworks, the 
operating conditions of sensors change cyclically 
– for example, in response to hand movements (if 
the sensors are on the skin), temperature/pressure 
changes (e.g., in the environment), and cyclical 
system operations (e.g., a data collection sched-
ule every few seconds).

Furthermore, sinusoids accurately represent 
such periodic phenomena in a simplified but re-
alistic manner. They are mathematically stable 
and smooth. Using harmony allows checking 
whether the u(t) control algorithm reacts dynami-
cally, how quickly it adapts to power increases/

decreases, and whether the algorithm does not 
cause instability or too slow reactions. 

Figure 5 shows a decreasing curve of the 
function 𝑢(𝑡), which represents the adaptive con-
trol of the nanosensor. As the energy consump-
tion rate changes (due to variable transmission 
and measurement power), the control value is 
dynamically adjusted to the needs of each sensor. 
The top graph shows how the transmission and 
sensing power changes over time (periodically). 
The bottom graph shows how the adaptive con-
trol value 𝑢(𝑡) decreases in response to these con-
sumption variables. This visualization shows how 
the nanosensor node adaptively adapts to local 
energy conditions. For larger values of 𝑃comm(t) 
and 𝑃sense(t), the decline in 𝑢(𝑡) is faster. When 
consumption temporarily decreases, the rate of 
change in 𝑢(𝑡) also slows down. In noisy environ-
ments, the receiver may be forced to re-receive 
data or perform additional error correction, which 
increases the total energy cost of reception.

Table 6 for adaptive control with the trans-
mission threshold contains the data for the thresh-
old change 𝜆(𝑡) after exceeding 60% of energy 
consumption, instantaneous power 𝑃total(𝑡) and 
calculated dynamic cost 𝐽𝑖(𝑡). The variable 𝜆(𝑡) 
allows for dynamic control of the trade-off be-
tween stability and energy efficiency where the 

Figure 5. The adaptive control rule’s performance over time in response to the i-th nanosensor’s 
varying energy consumption
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Table 6. Adaptive control in response to energy consumption (the first 25 rows out of 200 in total)
Records t [s] λ(t) Ptotal(t) [mW] 𝐽𝑖(𝑡)  [mJ]

1 0.00 0.99 2.61 0.00

2 0.05 0.99 2.21 0.01

3 0.10 0.99 2.11 0.01

4 0.15 0.98 2.34 0.02

5 0.20 0.98 2.37 0.02

6 0.25 0.97 1.36 0.07

7 0.30 0.97 2.40 0.08

8 0.35 0.96 1.85 0.10

9 0.40 0.96 2.32 0.11

10 0.45 0.95 2.59 0.12

11 0.50 0.95 2.69 0.14

12 0.55 0.94 1.73 0.17

13 0.60 0.94 2.54 0.18

14 0.65 0.93 2.10 0.20

15 0.70 0.93 2.22 0.22

16 0.75 0.92 1.84 0.24

17 0.80 0.92 2.23 0.26

18 0.85 0.92 2.10 0.28

19 0.90 0.91 2.52 0.30

20 0.95 0.91 2.25 0.32

21 1.01 0.90 2.11 0.34

22 1.06 0.89 2.92 0.39

23 1.11 0.89 2.73 0.42

24 1.16 0.88 2.38 0.45

25 1.21 0.88 2.69 0.49

… … … … …

Figure 6. The adaptive control graph u(t) with transmission cut-off threshold
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system operates precisely initially and then more 
economically later.

The graphs in Figure 6 (based on the Table 
6) show the operation of an adaptive rule with a 
threshold cut-off of transmission, which operates 
in two stages. An adaptive rule with thresholds 
was used: If u(t) < 0.6 à transmission disabled 
(energy saving). If u(t) > 0.75 à transmission 
restored. The top graph shows the comparison: 
the gray dashed line is the original transmis-
sion (without any restrictions), the blue line is 
the transmission after the rule was implemented 
(transmission power before and after adaptation).

CONCLUSIONS

Simulation results indicate that NAMA sig-
nificantly reduces energy fluctuations across the 
network and extends the effective system lifetime, 
defined as the time to reach 80% of cumulative 
energy consumption. This improvement is particu-
larly critical for dense sensor arrays embedded in 
skin-like interfaces, such as humanoid hands or 
flexible wearable surfaces, where power availabili-
ty is constrained and energy uniformity is essential 
for stable performance. The proposed model inte-
grates terahertz communication principles, align-
ing with the emerging trend of utilizing nanoscale 
antennas for ultra-short-range, high-bandwidth, 
and low-power transmission. NAMA leverages 
local, real-time estimation of energy consumption 
rates to adaptively regulate the operating param-
eters of individual sensor nodes, such as sampling 
rate or transmission timing. By incorporating a 
differential model of energy flow, NAMA en-
ables each nanosensor to autonomously balance 
the trade-off between sensing and communication 
costs using tunable coefficients (αᵢ, βᵢ) and a learn-
ing constant (η). By accounting for both commu-
nication and sensing energy in the adaptive model, 
NAMA offers a comprehensive framework for 
next-generation IoNT applications. The conducted 
work demonstrates that distributed, local energy 
control based on adaptive modeling and minimal 
coordination lead to measurable improvements in 
power stability, sensor longevity, and communica-
tion efficiency. These findings support the broader 
deployment of smart nanosensor networks in bio-
medical, wearable, and robotic systems.

For the adopted adaptive strategy with a thresh-
old-controlled trade-off λ(t), it is clearly visible that 
after exceeding 60% of the energy, the algorithm 

automatically reduces 𝜆 to save energy. At a real-
istic consumption of 1 µJ per operation (reading, 
transmitting, processing), such a system could still 
perform over 26,000 additional operations before 
reaching the energy limit of 50 mJ. This shows that 
the AMA algorithm works efficiently in terms of 
energy consumption in nanosensor systems. The 
operational resource utilization in the nanosensor 
network indicates that 47.1% of the energy has 
already been consumed (approximately 23,567 
operations), while 52.9% of the energy remains 
(approximately 26,433 operations that can be per-
formed with a 50 mJ limit). This demonstrates that 
the adaptive strategy leaves a significant energy 
reserve, which promotes longer system operation. 
According to the adaptive control rule as energy 
consumption increases, the control value decreas-
es, which can represent a decrease in sensor activ-
ity, an extension of measurement intervals, or a 
reduction in transmission power. This mechanism 
allows for local adjustments to sensor operation 
without the need for central coordination. The in-
troduction of threshold adaptation allows for dy-
namic adjustment of sensor activity. It also protects 
the node from complete energy depletion. 
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