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INTRODUCTION

Hybrid imaging techniques have become 
a cornerstone in modern diagnostic radiology, 
with Computed Tomography–Positron Emis-
sion Tomography (CT-PET) emerging as a gold 
standard in the evaluation of various oncologi-
cal, neurological, and cardiovascular conditions. 
CT provides detailed anatomical structure, while 
PET highlights metabolic and molecular activ-
ity through the uptake of radiotracers such as F-
FDG. Their integration enables the simultaneous 
acquisition of functional and structural informa-
tion, providing a unified and comprehensive per-
spective for lesion localization, staging, and ther-
apy assessment. Despite its clinical advantages, 

CT-PET imaging remains constrained by several 
technical and practical limitations. These include 
prolonged acquisition times, increased patient 
radiation exposure, and the presence of motion 
artifacts caused by respiratory and physiologi-
cal movement during scan sessions. Furthermore, 
PET imaging is typically acquired at a much low-
er resolution than CT, which can lead to spatial 
mismatch during image fusion, particularly in 
mobile or deformable organs. Image degradation 
due to noise, blur, and under-sampling further di-
minishes diagnostic interpretability, especially in 
pediatric or low-dose settings where acquisition 
time and injected activity must be minimized.

In recent years, artificial intelligence and deep 
learning have been increasingly employed to 
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address these limitations through advanced image 
reconstruction strategies. Super-resolution (SR) 
methods based on deep convolutional neural net-
works (CNNs), residual attention mechanisms, 
and generative adversarial networks (GANs) [1–
4]  have shown considerable promise in recover-
ing fine-grained anatomical detail from coarse or 
sparsely sampled inputs. However, many exist-
ing models have not been explicitly designed for 
hybrid imaging contexts (i.e. here CT-PET image 
reconstruction), and often rely on ideal acquisition 
assumptions without addressing multi-modal mis-
alignment, motion distortion, or domain-specific 
anatomical constraints. To address these challeng-
es, a novel framework termed RED-WGAN (Reg-
istration-Enhanced Deformable Wasserstein GAN) 
is proposed in this work. The method is specifically 
tailored for CT-PET reconstruction, and integrates 
a motion-aware deformable registration network 
within a deep super-resolution architecture. The 
approach combines compressed sensing acquisi-
tion with perceptually guided adversarial learn-
ing to reconstruct high-resolution CT-PET images 
from low-dose, motion-affected, or sparsely sam-
pled data. By leveraging joint priors derived from 
both CT and PET modalities, the RED-WGAN 
framework [5] achieves improved structural delin-
eation and accurate metabolic representation.

In addition, a Ridgelet-based sparsity model 
is incorporated to better exploit the compressibil-
ity of CT-PET signals in the transform domain. 
Compressed sensing principles are embedded 
into both the acquisition simulation and the net-
work training strategy, thereby enabling reliable 
reconstructions from as little as 40% of the raw 
acquisition data. A deformable motion estimation 
module further corrects for non-rigid anatomical 
displacement without requiring handcrafted mo-
tion vectors, improving cross-modality registra-
tion consistency and image quality in dynamic or 
free-breathing acquisitions.

The proposed model is trained using a com-
posite loss function that combines pixel-wise 
content loss, perceptual similarity metrics (e.g., 
LPIPS), and Wasserstein adversarial loss, in or-
der to balance structural accuracy with perceptual 
realism. The framework is validated on exten-
sive in vivo and phantom datasets using estab-
lished quantitative metrics such as PSNR, SSIM, 
RMSE, and total registration error (TRE). The 
results indicate that RED-WGAN consistently 
outperforms conventional interpolation, classi-
cal deep SR methods, and existing GAN-based 

models in terms of resolution, artifact reduction, 
and diagnostic fidelity. The major contributions 
of this study are summarized as follows: 
	• A novel GAN-based framework (RED-

WGAN) is proposed for CT-PET image recon-
struction that simultaneously addresses super-
resolution, motion correction, noise reduction, 
and compressed sensing recovery.

	• A deformable registration module is incorpo-
rated directly into the image reconstruction 
pipeline, enhancing anatomical alignment and 
reducing spatial mismatch between CT and 
PET modalities.

	• The network architecture is designed to oper-
ate on highly sparse or degraded inputs, while 
preserving clinically relevant details such as 
lesion boundaries, tissue contrast, and meta-
bolic gradients.

	• Compressed sensing principles are integrated 
into the framework, enabling significant re-
ductions in scan time and radiation dose, with-
out compromising diagnostic utility.

	• Extensive evaluation demonstrates that RED-
WGAN achieves state-of-the-art performance 
across multiple objective metrics, even under 
low-data and motion-prone conditions.

	• The framework is clinically scalable, with 
potential applications in low-dose imaging 
protocols, pediatric diagnostics, longitudinal 
monitoring, and mobile imaging units.

RECONSTRUCTION FOR CT-PET IMAGING 

In conventional CT-PET image reconstruction, 
projections from CT and PET modalities are typi-
cally treated independently due to differences in 
acquisition physics – CT measures X-ray attenua-
tion, whereas PET captures gamma photon emis-
sions. In this study, a unified framework based on 
mutual sparsity and deep learning is employed to 
jointly reconstruct CT and PET images from high-
ly sparse data. The framework leverages struc-
tural similarity and mutual information through a 
shared transform space and sparse signal priors.

Let xCT, xCT, xPET ∈ ℝn denote the CT and PET 
image volumes, respectively. The associated lin-
ear measurement models can be written as:

	 𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (1)

where: ACT, APET, are system matrices, and ϵ  rep-
resents acquisition noise. 
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To enforce mutual sparsity, a shared trans-
form Z(∙) is assumed such that corresponding 
structures in both modalities exhibit joint sparsity.

In this context, denotes a shared transform 
that maps image patches into a domain where 
corresponding structures across CT and PET 
modalities exhibit joint sparsity. Specifically, is 
instantiated via the construction of Hankel-struc-
tured matrices [6, 7], which promote low-rank 
representations of locally correlated image re-
gions. This approach enables the enforcement of 
mutual sparsity by capturing common anatomi-
cal features in a compact form while suppressing 
modality-specific noise and artifacts.

In order to model structured sparsity and pro-
mote low-rank representations, the use of Hankel 
matrices has been adopted. For each image patch 
or neighborhood, the Hankel-structured matrices 
and are constructed, and similarity is encouraged 
in their nuclear norms:
	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (2)
where:	 ||·||* denotes the nuclear norm (i.e., the sum 

of singular values), which serves as a con-
vex surrogate for matrix rank. Minimizing 
the nuclear norm of the difference between 
the CT and PET Hankel matrices encourag-
es their difference to be low-rank, thereby 
promoting structural alignment and shared 
sparsity between the two modalities.

This low-rank regularization using Hankel 
matrices captures internal correlations within im-
age patches and enhances denoising and interpo-
lation across modalities.

Let 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

 and 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 
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+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2
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𝑥𝑥′ = ℱ1𝐷𝐷
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CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗
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 denote generator 
networks for the CT and PET modalities, respec-
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+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
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𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,
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	 (3)

Reconstruction is formulated as the following 
optimization problem: 
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𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
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𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,
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Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 
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CT) − ℋ(𝑥𝑥𝑖𝑖
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The full training loss function further incor-
porates additional terms: 

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
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min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	(5)

where: 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

(6)

The weighting factors λ1, λ2, and λ3 in the above 
equation serve to balance the contributions of the 
different loss components relative to the primary 
data fidelity term 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

. These hyperparameters 
do not need to satisfy any specific constraint such 
as λ1, + λ2 + λ3; instead, they are typically chosen 
empirically to reflect the relative importance and 
numerical scales of the respective losses.
	• λ1 controls the influence of the mutual sparsity 

regularization 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

mutual. A larger λ1 emphasizes 
structural consistency between CT and PET 
modalities by promoting low-rank similarity 
in the Hankel domain. Typical values range 
from 0.1 to 10, depending on the degree of ex-
pected anatomical correlation.

	• λ2 governs the weight of the adversarial loss 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

. This term encourages perceptual realism in the 
reconstructed images through the GAN discrimi-
nator. Since adversarial loss can be unstable or 
dominate training if not properly scaled, λ2 is usu-
ally set to a small value, such as 0.001 to 0.1.

	• λ3 scales the perceptual loss 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

, which aims 
to preserve high-level structural and textural 
similarity between reconstructed and reference 
images based on deep feature activations (e.g., 
from a VGG network). λ3 is commonly set be-
tween 0.1  and 1.0 to provide a complementary 
constraint alongside the pixel-wise data loss.

The final choice of λ values is guided by cross-
validation on representative training data, with 
the goal of achieving a balance between accurate 
reconstruction (low 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

), perceptual quality 
(through 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

 and 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

), and structural alignment 
across modalities (through 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

mutual). No normaliza-
tion such as λ1, + λ2 + λ3 is required or enforced. 
The adversarial loss is inspired by the GAN 
framework [5], while the perceptual loss is con-
structed using high-level feature representations 
[8, 9]. Under compressed sensing theory [10, 11], 
both CT and PET images can also be represented 
using a shared dictionary and sparse codes :

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (7)
Joint sparsity is then promoted through the 

following optimization:

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (8)

In this formulation, two different types of 
norms are used to achieve complementary objec-
tives. The   norms in the data fidelity terms 
enforce accurate reconstruction of the measured 
CT and PET data under the forward models ACT  
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and APET. In contrast, the mixed  norm ap-
plied to the concatenated sparse codes [αCT, αPET]   
promotes joint sparsity across modalities. This 
encourages both CT and PET to share a common 
set of active dictionary atoms, thereby aligning 
their latent representations and improving cross-
modality consistency in the following way:
a)	Initialize latent vector z ~ N(0, I). 
b)	Compute xCT ← 

ℓ2  
 
ℓ2,1  
 
 𝑥𝑥CT ← 𝐺𝐺𝜃𝜃CT(𝑧𝑧)  
 
 𝑥𝑥PET ← 𝐺𝐺𝜃𝜃PET(𝑧𝑧) 
 
 ℒtotal 
 

. 
c)	Compute 

ℓ2  
 
ℓ2,1  
 
 𝑥𝑥CT ← 𝐺𝐺𝜃𝜃CT(𝑧𝑧)  
 
 𝑥𝑥PET ← 𝐺𝐺𝜃𝜃PET(𝑧𝑧) 
 
 ℒtotal 
 

. 
d)	Compute loss 

ℓ2  
 
ℓ2,1  
 
 𝑥𝑥CT ← 𝐺𝐺𝜃𝜃CT(𝑧𝑧)  
 
 𝑥𝑥PET ← 𝐺𝐺𝜃𝜃PET(𝑧𝑧) 
 
 ℒtotal 
 

. 
e)	Update z and θ via backpropagation xCT,  xPET.

This framework unifies compressed sensing 
principles, deep generative modeling, and multi-
modal sparsity constraints using Hankel-based 
low-rank structure modeling, thereby enabling 
the recovery of diagnostically accurate images 
from highly reduced sampling schemes in low-
dose CT-PET imaging.

COMPUTED TOMOGRAPHY IMAGING

The acceleration of CT imaging remains a 
central focus in medical imaging research due to 
its implications for radiation safety, diagnostic 
accuracy, and clinical throughput. With increas-
ing awareness regarding cumulative radiation 
exposure—particularly in pediatric and frequent-
monitoring scenarios—significant efforts have 
been directed toward reducing the number of 
projections and the overall radiation dose while 
maintaining or improving image quality. Tradi-
tionally, acceleration has been pursued through 
model-based iterative reconstruction (MBIR) 
techniques, which incorporate prior knowledge 
and physical models of the imaging system [12]. 
These approaches are typically formulated as:
	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (9)
where:	A denotes the forward projection opera-

tor, y represents the measured sinogram 
data, x is the image to be reconstructed, 
and R(x) is a regularization term (e.g., 
total variation or sparsity in a transform 
domain).

More recent advancements have incorporated 
hybrid strategies involving adaptive acquisition, 
sparse sampling, and deep learning. A method 
based on adaptive projection selection was previ-
ously introduced, and was further refined using a 
compressive sensing-based adaptive acquisition 

protocol. These strategies were designed to operate 
with minimal hardware modifications. The adap-
tive method begins by acquiring a minimal set of 
low-dose projections, followed by iterative inclu-
sion of additional views based on feedback from 
intermediate reconstructions. At each iteration, 
image-derived quality metrics such as multiscale 
entropy Hs(x) or total variation  TV(x) are used:

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	(10)

where:	pi are normalized histogram intensities of 
the reconstructed image. 

This framework was enhanced through the 
Adaptive Transform Acquisition (ATA) method, 
which utilizes the Ridgelet transform [13][14]—a 
multiscale directional representation particularly 
effective for detecting line singularities. Ridgelets 
are defined via the Radon transform and a one-
dimensional wavelet transform:

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (11)

where:	a and b representing scale and translation 
parameters, respectively. 

To overcome the limited directional selec-
tivity of traditional Ridgelets, the Finite Radon 
Transform (FRAT) was integrated with wavelet-
domain fusion. FRAT involves the following two-
step operation:

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (12)

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (13)

followed by the application of a wavelet 
transform W(x') to capture localized multiscale 
information along specific projection angles 
θ. Here, FD{·} denotes the two-dimensional 
Fourier transform, mapping an image to its 
frequency-domain representation, while 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

(·) denotes the inverse one-dimensional Fourier 
transform. The operation F(u, v)|θ extracts a di-
rectional slice of the 2D spectrum correspond-
ing to projection angle θ, enabling efficient 
computation of projection data via the Fourier 
slice theorem. Unlike conventional reconstruc-
tion techniques, this approach avoids full im-
age reconstruction at every iteration. Instead, 
intermediate estimates 

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

k are used to predict 
optimal next-view directions. View selection is 
driven by a dynamic threshold computed from 
Ridgelet energy statistics:
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𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (14)
where: μk and σk denote the mean and stan-

dard deviation of Ridgelet coefficients at iteration 
k, and α is a tunable sensitivity parameter.

Recent developments in deep learning have 
further enabled end-to-end learning of both pro-
jection ordering and transform-domain represen-
tations. A neural approximator GΨ is introduced:
	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (15)
where:	 s denotes the sinogram input and E is an 

edge map derived from early projections. 
The network is trained by minimizing a 
compound loss:

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (16)

which balances fidelity to the ground truth 
with structural sparsity via total variation 
regularization. 

The weighting factor β in the above equa-
tion governs the trade-off between data fidelity 
and structural regularization in the training of the 
neural approximator GΨ. The first term in the loss 
function enforces pixel-wise similarity between 
the network output and the ground truth image. 
The second term applies total variation (TV) reg-
ularization, which promotes piecewise smooth-
ness and reduces spurious high-frequency noise, 
encouraging sharper edges and cleaner anatomi-
cal structures.

The parameter β therefore controls how 
strongly the model prioritizes structural sparsity 
over pure pixel accuracy. A low β value results 
in reconstructions that closely match the training 
images but may exhibit noise or ringing artifacts, 
while a high Β value promotes excessive smooth-
ing, potentially oversuppressing fine details.

The weighting factor β in above equation is 
used to balance data fidelity and structural reg-
ularization during the training of the neural ap-
proximator GΨ. The first term in the loss function 
enforces pixel-wise similarity between the net-
work output and the ground truth image. The sec-
ond term introduces total variation (TV) regular-
ization, which encourages piecewise smoothness 
and suppresses spurious high-frequency noise, 
thereby promoting sharper edges and cleaner ana-
tomical structures.

The parameter β determines the relative 
emphasis placed on structural sparsity as com-
pared to pixel accuracy. When small values of β 
are used, the reconstructions closely match the 
training images but may retain noise or ringing 

artifacts. Conversely, large values of β lead to ex-
cessive smoothing, which can suppress diagnosti-
cally relevant fine details.

In practical implementations, β is treated as a 
tunable hyperparameter. Its optimal value is typi-
cally determined through cross-validation, de-
pending on the noise characteristics of the input 
data and the desired trade-off between sharpness 
and denoising. Values of β ranging from 10-5 to  
10-2 have been reported in related studies. In this 
work, values between 10-4 and 10-3 were found 
to offer the best compromise between anatomi-
cal detail preservation and noise suppression in 
reconstructed CT-PET images.

The convergence of the adaptive process is 
governed by both structural and statistical crite-
ria. Structural consistency is assessed using total 
variation and entropy, while redundancy in ac-
quired projections is controlled through normal-
ized mutual information (NMI):

	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (17)

ensuring that projection views are only added 
when they contribute significant new information. 

In summary, this acceleration strategy inte-
grates the following key components: 
	• data-driven adaptive view selection based on 

iterative projection scoring, 
	• ridgelet and FRAT-based sparse representa-

tions for directional structure encoding, 
	• multiscale wavelet-domain feature fusion for 

enhanced local detail,
	• deep-learning approximators trained to emu-

late directional transforms,
	• dynamic convergence monitoring to enable 

patient-specific dose optimization.

This multifaceted framework has demonstrat-
ed the capability to significantly reduce both scan 
time and radiation dose without compromising 
diagnostic image quality, and serves as a founda-
tional module for the broader CT-PET reconstruc-
tion system under investigation (Figure 1).

THE PROCESSING OF RAW DATA FROM 
CT-PET SCANS

Recent advances in compressed sensing (CS) 
have significantly enhanced the ability to pro-
cess raw CT-PET data under highly constrained 
acquisition settings, including ultra-low-dose 
and sparse angular sampling protocols. The core 
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principle is the consolidation of PET and CT sub-
modality data into a shared sparse representation, 
which enables superior signal recovery, reduced 
noise, and more efficient bandwidth utilization. 
The present framework extends mutual sparsity 
into structured domains and practical hardware 
design, building upon prior developments in mul-
timodal fusion and dynamic image reconstruction.

In this approach, the PET data volume is com-
pressed by employing multiplexed acquisition 
systems [15, 16], wherein outputs from scintilla-
tion detectors are combined through a weighted 
linear transformation. Each PET output signal is 
modeled as:
	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 

	 (18)
where:	ci,j denotes the coupling coefficient be-

tween detector i and readout channel j, 
and Si represents the measured scintilla-
tion signal. Subsampling strategies enable 
a reduction in the number of photodetec-
tors required—often by a factor of four—
while preserving resolution through care-
ful sensing matrix design.

A primary technical challenge lies in con-
structing effective sensing matrices that preserve 

signal structure in compressed measurements. 
Structured random matrices with restricted isom-
etry properties (RIP) [17] are employed to en-
hance signal recovery. In the experimental con-
figuration, the matrices are learned end-to-end 
via a deep neural network, trained to minimize re-
construction loss while incorporating adversarial 
feedback and perceptual fidelity metrics.

A key contribution of this framework is the 
integration of structured Hankel matrices to en-
force joint sparsity and improve spatial continu-
ity. Each image patch is transformed into a Hankel 
matrix, and mutual information across modalities 
is maximized by minimizing the difference in 
nuclear norm of the Hankelized representations :
	

𝑦𝑦CT = 𝐴𝐴CT𝑥𝑥CT + 𝜖𝜖CT,
𝑦𝑦PET = 𝐴𝐴PET𝑥𝑥PET + 𝜖𝜖PET

 (1) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (2) 

 
𝑥𝑥CT = 𝐺𝐺𝜃𝜃

CT(𝑧𝑧), 𝑥𝑥PET = 𝐺𝐺𝜃𝜃
PET(𝑧𝑧) (3) 

 
min

𝑧𝑧
∥ 𝐴𝐴CT𝐺𝐺𝜃𝜃

CT(𝑧𝑧) − 𝑦𝑦CT ∥2
2 + 

+ ∥ 𝐴𝐴PET𝐺𝐺𝜃𝜃
PET(𝑧𝑧) − 𝑦𝑦PET ∥2

2+ ℛmutual (4) 
 

ℒtotal = ℒdata + 𝜆𝜆1ℒmutual + 𝜆𝜆2ℒadv + 𝜆𝜆3ℒperc (5)  
 
 

ℒdata =∥ 𝐴𝐴CT𝑥𝑥CT − 𝑦𝑦CT ∥2
2 +∥ 𝐴𝐴PET𝑥𝑥PET − 𝑦𝑦PET ∥2

2,
ℒadv = 𝔼𝔼[log𝐷𝐷(𝑥𝑥real)] + 𝔼𝔼[log(1 − 𝐷𝐷(𝑥𝑥gen))],
ℒperc = ∑ ∥𝑙𝑙 𝜙𝜙𝑙𝑙(𝑥𝑥real) − 𝜙𝜙𝑙𝑙(𝑥𝑥gen) ∥2

2
 (6) 

 
 

𝑥𝑥CT = 𝐷𝐷𝛼𝛼CT, 𝑥𝑥PET = 𝐷𝐷𝛼𝛼PET. (7) 
 
 

min ∥ 𝑦𝑦CT − 𝐴𝐴CT𝐷𝐷𝛼𝛼CT ∥2
2 +∥ 𝑦𝑦PET − 

− 𝐴𝐴PET𝐷𝐷𝛼𝛼PET ∥2
2+ 𝛾𝛾 ∥ [𝛼𝛼CT, 𝛼𝛼PET] ∥2,1  

 
(8) 

 
min

𝑥𝑥
∥∥𝐴𝐴𝐴𝐴 − 𝑦𝑦∥∥2

2 + 𝜆𝜆𝜆𝜆(𝑥𝑥) (9) 
 

𝐻𝐻𝑠𝑠(𝑥𝑥) = − ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log𝑝𝑝𝑖𝑖,

𝑇𝑇𝑇𝑇(𝑥𝑥) = ∑ √(𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + (𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗)2𝑖𝑖,𝑗𝑗
 (10) 

 
Ridgelet(𝑓𝑓)(𝑎𝑎, 𝑏𝑏, 𝜃𝜃) = 

= ∫ 𝑊𝑊ℝ (𝑅𝑅𝑓𝑓(𝜃𝜃, 𝑡𝑡); 𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑 (11) 
 

𝑥𝑥′ = ℱ1𝐷𝐷
−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (12) 

 
𝑥𝑥′& = ℱ1𝐷𝐷

−1(𝐹𝐹(𝑢𝑢, 𝑣𝑣)|𝜃𝜃) (13) 
 

𝑇𝑇𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝛼𝛼 ⋅ 𝜎𝜎𝑘𝑘 (14) 
 

𝑥̂𝑥 = 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) (15) 
 

ℒ(Ψ) =∥ 𝑥𝑥 − 𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸) ∥2
2+ 𝛽𝛽𝛽𝛽𝛽𝛽(𝐺𝐺Ψ(𝑠𝑠, 𝐸𝐸)) (16) 
 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1) = 𝐻𝐻(𝑥𝑥𝑘𝑘)+𝐻𝐻(𝑥𝑥𝑘𝑘−1)
𝐻𝐻(𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘−1)  (17) 

 
𝑌𝑌𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖,𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖 (18) 

 
ℛmutual = 𝜆𝜆 ∑ ∥∥ℋ(𝑥𝑥𝑖𝑖

CT) − ℋ(𝑥𝑥𝑖𝑖
PET)∥∥∗

𝑛𝑛
𝑖𝑖=1  (19) 	 (19)

where:	 ||·||* denotes the nuclear norm, which pro-
motes low-rank structure in the difference 
between the Hankel matrices. By minimiz-
ing this term, the framework encourages 
corresponding CT and PET patches to share 
similar internal structure, thereby enhancing 
joint sparsity and cross-modality alignment.

This facilitates robust structural align-
ment and improves the conditioning of inverse 

Figure 1. The application of mutual sparsity in CT-PET inputs. Multiscale Ridgelet decomposition used in 
adaptive transform acquisition. Ridgelet coefficients are dynamically updated to guide projection inclusion
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problems, particularly under low signal-to-noise 
ratio (SNR) and sparse projection conditions.

Dynamic modeling is further enhanced by in-
tegrating time-sequential information. Temporal 
slices are aligned through motion-informed pri-
ors derived from deformable image registration 
of CT data. These priors are incorporated into the 
PET reconstruction pipeline as soft constraints, 
thereby guiding convergence toward physiologi-
cally plausible solutions.

In addition, a novel sparse-sense pattern 
learning algorithm has been developed. This ap-
proach leverages neural optimization to derive 
optimal binary multiplexing configurations for 
PET hardware. The method significantly reduces 
the number of required readout channels while 
maintaining super-resolution capabilities. The 
learned multiplexing patterns exploit anatomical 
priors, CT gradient maps, and expected activ-
ity distributions to generate a dynamic sampling 
mask that is updated during acquisition.

The resulting hybrid signal processing frame-
work unifies anatomical consistency, cross-mo-
dality priors, and mutual sparsity within a single 
deep reconstruction architecture. The framework 
provides both theoretical guarantees via RIP com-
pliance and Hankel-based low-rank regularity 
and practical advantages, including reduced de-
tector cost, lower patient radiation exposure, and 
improved robustness to noise.

Previous experimental results have demon-
strated that compressive PET acquisition is not 
only feasible, but often preferable in scenarios 
involving time constraints or limited resources. 
Moreover, CT-derived motion vectors and ana-
tomical maps have been shown to effectively 
guide PET recovery, even in highly undersampled 
settings, thus establishing a foundation for next-
generation low-dose functional imaging protocols.

HIGH-RESOLUTION CT-PET IMAGE 
RECONSTRUCTION

The reconstruction of high-resolution CT-PET 
images from sparse, noisy, and motion-affected 
data has advanced considerably with the adop-
tion of deep learning techniques. Presented here 
is a unified Transformer-Augmented Wasserstein 
Generative Adversarial Network (TR-WGAN) 
framework, designed specifically to enhance CT-
PET imagery through integrated deformable reg-
istration, deblurring, and denoising modules.

Modular structure of the TR-WGAN super-
resolution architecture

The TR-WGAN architecture follows a modu-
lar design, comprising three interconnected pro-
cessing blocks:
1.	Non-Rigid Deformable Registration of CT-

PET Scans,
2.	Advanced Deblurring via Residual 

Encoder-Decoders, 
3.	Noise Suppression through Transformer-Aug-

mented GANs. 

These components operate synergistically 
within the core super-resolution pipeline to im-
prove perceptual quality and anatomical fidelity.

Module I: Deformable motion compensation and 
registration

To mitigate motion distortions common in 
sequential CT-PET acquisitions, a multi-scale de-
formable registration network is employed. A hier-
archical U-Net-based structure estimates deforma-
tion fields ωt to align temporally adjacent frames:
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according to the estimated displacement 
field ωt. This operation aligns temporally 
adjacent frames to a common anatomi-
cal coordinate system prior to super-res-
olution reconstruction. This alignment 
harmonizes anatomical structures before 
resolution enhancement.

Modern deformable image registration re-
quires modality-aware and spatially precise dis-
placement field estimation. To address this, a hi-
erarchical registration module is integrated into 
the TR-WGAN framework [5], drawing from 
recent advances in unsupervised registration for 
medical imaging. These models are extended 
with motion-adaptive feature extraction layers 
and residual refinement modules, which operate 
in a pyramidal coarse-to-fine fashion.

Motion fields are regularized using spatially-
aware total variation constraints, along with sym-
metric consistency objectives. Let 
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 denotes similarity 
loss (e.g., NCC or MSE). 

To guarantee diffeomorphism, the final map-
ping is computed via stationary velocity field 
exponentiation:
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 enforces lo-
cal smoothness. The energy is minimized 
using gradient-based and message-pass-
ing techniques.

This deformable registration module enables 
effective co-registration of CT and PET data un-
der severe motion and sparse acquisition settings, 
enhancing alignment consistency and perceptual 
quality.

Module II: Deblurring via deep residual encoder-
decoder network

Blurring in CT-PET images—caused by mo-
tion, system limitations, or under-sampling—is 
addressed using a deep Transformer-Guided 
GAN [18] (TG-GAN) based deblurring module. 
The mapping from blurred input to sharp output 
is defined by:
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	 (24)
where:	K is the unknown blur kernel and ϵ is ad-

ditive noise.

Inspired by deblurring techniques in GAN-
based image restoration, the generator integrates 
residual blocks with attention-guided fusion, 
deformable convolutions, and Transformer-
enhanced context extraction. The loss function 
includes:
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with adversarial, perceptual, and 𝕃𝕃1 
 

  reconstruc-
tion terms weighted accordingly. The weighting 
factors 
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 within the overall training objective. 
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ally plausible outputs that preserve anatomical re-
alism and suppress artifacts, which are especially 
beneficial in clinical visualization contexts.

In this work, both weights were empirically 
tuned to achieve an optimal trade-off between per-
ceptual quality and reconstruction accuracy. Fol-
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Noise models tailored to PET-specific dis-
tortions, including quantum noise and Rician 
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components, are simulated and used for super-
vised training. Architecturally, the generator 
follows a U-Net with Transformer blocks, re-
sidual dense encoders, and hierarchical con-
text modules. The critic is a five-block 3D 
CNN with LeakyReLU [8, 44] activations. 
Optimization follows standard WGAN train-
ing, with performance evaluated using PSNR, 
SSIM, and LPIPS.

Hierarchical super-resolution reconstruction

The final output is upsampled using Meta-SR 
modules, defined as:
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where:	α is a learnable scaling factor. Attention gat-
ing refines spatial fidelity across resolutions. 

Training paradigm and quantitative evaluation

The TR-WGAN is trained end-to-end using a 
combined loss that includes:
	• Mean squared error for pixel-wise accuracy,
	• VGG-based perceptual loss,
	• Wasserstein GAN loss,
	• Motion registration regularization. 

Evaluation is performed using PSNR, SSIM, 
and LPIPS. Across all metrics, TR-WGAN dem-
onstrates superior performance in both simulated 
and clinical CT-PET datasets (Figure 2).

EXPERIMENT

A comprehensive experimental protocol was 
implemented to evaluate the performance of the 
proposed super-resolution framework across both 
phantom and in vivo CT, PET, and fused CT-PET 
imaging scenarios. The experimental design in-
corporated a diverse range of reconstruction al-
gorithms, motion simulation techniques, and data 
sparsity conditions to enable a robust assessment 
of model performance under clinically relevant 
constraints. The experimental evaluation con-
ducted in this study was performed using both 
synthetic phantom data and real-world in vivo 
CT-PET datasets to ensure clinical relevance and 
methodological robustness. Digital phantoms, 
including extended Shepp-Logan and Zubal [19]
[20] models, were employed to simulate a wide 
range of anatomical structures and dynamic mo-
tion patterns. These phantoms were parametri-
cally deformed using respiratory motion models 
based on second-order polynomial functions to 
replicate realistic organ displacements during in-
halation and exhalation. Controlled degradation 
with Gaussian blur, additive noise, and structural 
distortions was applied to test the resilience of the 
reconstruction framework.

Real-world in vivo datasets were sourced 
from clinical PET/CT scans performed at a cer-
tified medical imaging center under standard di-
agnostic protocols. The datasets included a va-
riety of anatomical regions, such as the thorax, 

Figure 2. Mathematically detailed TR-WGAN super-resolution framework, illustrating deformable registration, 
residual deblurring, and Transformer-based denoising within a unified CT-PET enhancement architecture
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abdomen, and brain, and encompassed a broad 
spectrum of clinical conditions. Ethical approval 
for retrospective data usage was obtained, and all 
patient data were anonymized in compliance with 
institutional review board (IRB) guidelines.

To emulate compressed sensing (CS) condi-
tions, sub-sampling masks were applied in the 
projection domain, with structured sparsity intro-
duced by deactivating 15 to 60 percent of sino-
gram detector elements in a controlled manner. 
This process was performed in accordance with 
established compressed sensing methodologies in 
medical imaging.

All experiments, including data preprocess-
ing, model training, and quantitative evaluation, 
were implemented using reproducible pipelines in 
Python (PyTorch) and MATLAB environments. 
Quantitative comparisons were statistically vali-
dated using paired t-tests and Bowker symmetry 
tests across multiple trials to ensure reliability 
and generalizability of the reported results.

By leveraging both controlled phantoms and 
heterogeneous clinical data, this study ensures 
that the proposed RED-WGAN framework is rig-
orously evaluated for performance across a wide 
spectrum of imaging scenarios, thereby enhancing 
its clinical readiness and translational potential.

Model training was conducted on an NVIDIA 
DGX workstation equipped with A100 GPUs, 
and cloud-based acceleration was employed via 
the Google Colab Pro platform to facilitate rapid 
prototyping and deployment. The generator net-
work was trained using paired low-resolution 
(LR) CT-PET slices of size 60 × 60 × 2, with the 
third dimension representing dual-modality input 
channels. The objective was to reconstruct a fused 
high-resolution (HR) image of dimension  240 × 
240, corresponding to a 4 × upscaling factor.

The generator was trained using a compos-
ite loss function comprising three components: 
a content loss to minimize pixel-wise error, a 
perceptual loss derived from VGG-based feature 
maps [4, 5], and an adversarial loss based on a 
WGAN-GP framework. The discriminator was 
trained to distinguish HR ground truth from su-
per-resolved (SR) reconstructions using binary 
cross-entropy loss. Both networks were opti-
mized with the Adam optimizer.

Realistic digital phantoms were employed to 
simulate pathological and physiological varia-
tions induced by respiratory motion. These phan-
toms generated CT-PET slices exhibiting defor-
mation due to inhalation and exhalation, modeled 

through deformable respiratory interfaces and 
parameterized second-order polynomials for in-
ternal organ motion.

Further experiments utilized Shepp-Logan 
and Zubal phantoms degraded with synthetic mo-
tion artifacts, Gaussian blur, and additive noise, 
to replicate acquisition imperfections. Projection 
domain manipulations included variations in the 
number of projection lines and Fourier bandwidth 
adjustments. Motion was applied using deform-
able vector fields, and randomized local affine 
transformations were introduced to simulate com-
plex tissue displacement. Low-resolution images 
were generated via Gaussian blurring followed by 
downsampling to emulate CS-based acquisition. 
The proposed super-resolution framework was 
evaluated alongside multiple baseline reconstruc-
tion techniques under varying motion, sampling, 
and noise conditions.

Statistical results from Figures 3, 4 and 5 quanti-
tatively demonstrated the superiority of the proposed 
approach relative to baseline models. The integra-
tion of adaptive transform acquisition (ATA) and 
super-resolution reconstruction (SRR) improved 
spatial detail while reducing acquisition time. ATA 
was shown to enable faster scan completion without 
compromising diagnostic image quality.

Evaluation spanned a range of test image cat-
egories [21, 22]. Benchmark images were artifi-
cially degraded using blur, noise, and structural 
distortion to generate LR counterparts. The de-
graded inputs, exhibiting localized geometric ar-
tifacts near anatomical boundaries, were used to 
assess the model’s resilience and restoration capa-
bility under adverse imaging scenarios. Pre- and 
post-processing workflows—including ground 
truth generation, simulation, and quantitative 
evaluation—were implemented in MATLAB.

The proposed method consistently achieved 
high-resolution reconstructions with enhanced 
edge fidelity and contrast, particularly in low-
dose and sparsely sampled cases. Compressed 
sensing experiments were performed on hybrid 
CT-PET datasets with both fully sampled and 
sub-sampled acquisitions. Two datasets were 
constructed: a reference dataset with complete 
readout coverage, and a test dataset with 15% 
of detectors deactivated, introducing structured 
sinogram sparsity.

Sub-sampled sinograms were decomposed 
into orthogonal domains exploiting sparsity pri-
ors in both frequency and angular space. Recon-
struction employed iterative conjugate gradient 
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descent with blocked relaxation, augmented by 
total variation (TV) minimization to preserve 
edge continuity. The final sinogram estimate 
was backprojected and passed through the RED-
WGAN pipeline for SRR.

Reconstructed PET volumes demonstrated 
high structural accuracy and reduced computation-
al overhead, validating the approach’s potential for 
quantitative PET imaging with fewer readout chan-
nels and lower system complexity. The overarch-
ing experimental objectives were twofold: to assess 
RED-WGAN performance relative to conventional 
and modern reconstruction techniques under vari-
able sampling regimes, and to validate the hybrid 
CS-SRR framework across both synthetic and real 
datasets. Quantitative ground truth comparisons 
employed paired t-tests to evaluate image qual-
ity improvements from LR to SR reconstructions. 
Bowker symmetry tests were used to assess PSNR 
consistency across repeated trials, consistently con-
firming statistically significant gains (p < 0.01).

The effectiveness of the motion compensa-
tion module was assessed by comparing motion-
affected images to reference volumes free of 
deformation. Paired t-tests were performed on 
a per-subject basis to quantify motion-induced 
effects. Deformable registration combined with 
SRR yielded substantial improvements in spa-
tial alignment, anatomical continuity, and re-
duction of motion-related blurring  – notably 
in low-contrast regions sensitive to respiratory 
deformation.

Overall, the experimental results validated 
that the proposed RED-WGAN framework is 
capable of generating high-resolution CT-PET 
reconstructions with improved diagnostic utility 
under data sparsity and motion-corruption condi-
tions. These findings position RED-WGAN as a 

promising solution for clinical workflows priori-
tizing low-dose imaging, rapid acquisition, and 
motion-robust hybrid diagnostics.

RESULTS

A novel methodology was introduced to en-
hance the image resolution of CT-PET hybrid 
scans while concurrently reducing acquisition 
time. The results indicate substantial improve-
ments in spatial resolution and image quality, as 
illustrated in Figures 3–5. The integration of su-
per-resolution techniques was shown to enhance 
the visibility of anatomical detail and improve 
lesion detection, particularly during early or am-
biguous disease stages. This is of critical impor-
tance for the identification of malignancies or 
pre-malignant lesions that may remain indistinct 
in conventional resolution scans.

Application of the RED-WGAN framework 
resulted in visibly sharper reconstructions with 
improved anatomical consistency. These out-
comes were corroborated by both qualitative 
and quantitative evaluations, wherein the model 
consistently produced the highest image qual-
ity across multiple performance metrics. RED-
WGAN effectively mitigated noise and motion 
artifacts, particularly in the axial direction, which 
is typically prone to blurring in hybrid imaging. 
Figures and illustrate these improvements across 
various reconstruction pipelines, ranging from 
classical interpolation and CNN-based approach-
es to advanced GAN-based models.

Further evaluation under varying CS ratios 
is reported in Table 2. Even at a 40% CS level, 
RED-WGAN maintained high perceptual and 
structural fidelity, achieving PSNR values above 

Figure 3. Visual comparison of in vivo CT-PET reconstructions across 12 state-of-the-art super-resolution 
algorithms. The first row shows full-resolution output slices from: Bicubic, B-spline, SRCNN, FSRCNN, VDSR, 
SRGAN, EDSR, RCAN, RDN, Meta-SR, UNet-GAN, and the proposed RED-WGAN. The second row displays 
the corresponding cropped and zoomed-in views focused on anatomical detail and lesion regions. The proposed 

RED-WGAN demonstrates the clearest structural recovery, improved visual sharpness, and superior lesion 
contrast among all methods
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33 dB and SSIM above 0.82. These results con-
firm the model’s robustness under data sparsity 
conditions. Quantitative comparisons presented 
in Table 1 indicate that RED-WGAN achieved 
the highest PSNR (36.91), SSIM (0.913), and the 
lowest RMSE (8.21), MAE (11.01), and LPIPS 
(0.118), surpassing both classical and contempo-
rary deep learning-based methods. Notable pri-
or works included SRCNN, FSRCNN, VDSR, 

SRGAN, EDSR, RCAN, RDN, Meta-SR, and 
UNet-GAN.

Further evaluation under varying compressed 
sensing (CS) ratios is reported in Table 2. Even 
at a 40% CS level, RED-WGAN maintained 
high perceptual and structural fidelity, achieving 
PSNR values above 33 dB and SSIM above 0.82. 
These results confirm the model’s robustness un-
der data sparsity conditions. Motion robustness 

Table 1. Quantitative evaluation of CT-PET high-resolution image reconstruction using multiple state-of-the-art 
algorithms. Performance metrics include PSNR, MAE, SSIM, RMSE, and LPIPS. The proposed RED-WGAN 
method outperforms all alternatives across all criteria

Algorithm PSNR [dB] MAE SSIM RMSE LPIPS

Bicubic Interpolation 25.10 18.20 0.720 14.35 0.550

B-spline (no motion correction) 27.85 16.80 0.750 13.20 0.470

SRCNN 28.21 15.01 0.782 12.91 0.380

FSRCNN 32.01 13.56 0.841 10.34 0.315

VDSR 31.02 14.01 0.825 10.81 0.330

SRGAN 29.99 13.66 0.812 11.15 0.295

EDSR 30.11 15.02 0.831 10.92 0.290

RCAN 31.23 14.44 0.848 10.12 0.270

RDN 32.89 13.42 0.852 9.81 0.255

Meta-SR 33.11 12.99 0.860 9.62 0.240

UNet-GAN 34.23 12.44 0.869 9.03 0.225

RED-WGAN (proposed) 36.91 11.01 0.913 8.21 0.118

Table 2. Performance evaluation of the proposed RED-WGAN method under varying compressed sensing (CS) 
sampling levels

CS Level [%] PSNR [dB] MAE SSIM RMSE LPIPS

20 30.12 18.88 0.782 12.91 0.390

40 33.33 16.02 0.826 10.72 0.305

60 36.77 14.01 0.875 9.21 0.220

80 38.41 12.88 0.902 8.40 0.160

100 39.03 11.34 0.921 7.85 0.118

Table 3. Comparative evaluation of total registration error (TRE) for different motion compensation (MC) 
algorithms

Motion compensation method Mean TRE [voxels] Std. Dev. P-value

No motion compensation 4.91 2.65 <0.002

Wachinger et al. 2.44 0.61 <0.002

Yang et al. 2.70 0.30 <0.002

MIND 1.91 0.12 <0.002

SyN (ANTs) 1.78 0.15 <0.002

VoxelMorph 1.69 0.13 <0.002

DLIR 1.61 0.14 <0.002

DDFReg 1.56 0.11 <0.002

Proposed method 1.44 0.10 <0.002
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was quantitatively validated using total regis-
tration error (TRE), reported in Table  3. RED-
WGAN achieved the lowest mean TRE (1.44 
voxels) and standard deviation (0. 10), outper-
forming classical and recent deep learning-based 
registration models.

Visual comparisons from additional scans – 
including brain and thoracic PET/CT data – are 
presented in Figures 4 and 5. These results fur-
ther highlight RED-WGAN’s ability to recover 
high-resolution detail from sparsely sampled or 
motion-degraded acquisitions.

The statistical significance of improvements 
was verified using paired t-tests across all sam-
pling conditions and methods (p<0.01). Bowker 
symmetry testing further confirmed the stability 
and consistency of key metrics across repeated 
simulation trials.

In summary, RED-WGAN not only improves 
image fidelity and perceptual realism, but does 
so under challenging clinical constraints such as 
compressed sensing and respiratory motion. Its 
integration of deformable motion correction and 
GAN-based reconstruction enables accurate re-
covery of anatomical structures under low-dose 
and undersampled regimes, offering practical 

clinical advantages in terms of acquisition speed, 
patient safety, and diagnostic confidence.

CONCLUSIONS

This study has presented RED-WGAN, a 
novel and technically sophisticated framework 
for CT-PET image reconstruction, which effec-
tively bridges the gap between acquisition limi-
tations and diagnostic quality. The method was 
designed to address a convergence of critical 
challenges in hybrid imaging—namely, resolu-
tion disparity between CT and PET modalities, 
motion artifacts, data sparsity, and the increasing 
need for low-dose imaging protocols. By unify-
ing deformable motion correction, residual de-
blurring, and Transformer-based denoising within 
a generative adversarial network, RED-WGAN 
achieves a level of performance that sets a new 
benchmark for the field.

Extensive quantitative and qualitative evalu-
ations have confirmed the superiority of the pro-
posed framework across multiple experimen-
tal configurations. When benchmarked against 
twelve leading super-resolution and recon-
struction methods, RED-WGAN consistently 

Figure 4. Whole-slice comparison of CT-PET reconstructions using 12 super-resolution techniques. Top row 
presents full-resolution CT-PET overlays; bottom row provides zoomed-in views to highlight tissue contrast 

and lesion localization. The proposed RED-WGAN yields superior structural clarity and functional consistency 
across modalities

Figure 5. Zoomed region comparison of CT-PET reconstructions. Top row shows high-magnification PET 
images; bottom row displays the corresponding structural overlays. The proposed RED-WGAN demonstrates 

enhanced lesion detectability, improved noise suppression, and superior anatomical alignment compared to 
competing methods
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achieved higher fidelity in terms of PSNR, SSIM, 
MAE, and LPIPS, while also delivering the low-
est registration error (TRE), demonstrating a sig-
nificant improvement in anatomical alignment 
and perceptual image quality. Importantly, these 
results were maintained even under extreme data 
undersampling (as low as 40%), indicating the ro-
bustness and adaptability of the model under real-
world imaging constraints.

The integration of Ridgelet-domain spar-
sity and compressed sensing principles into the 
learning pipeline further enables RED-WGAN 
to exploit global and local correlations in both 
anatomical and functional data. This is particu-
larly valuable in clinical scenarios where ra-
diation dose, scan time, or patient cooperation 
must be minimized—such as pediatric imaging, 
emergency diagnostics, and follow-up oncology 
studies. Moreover, the use of Transformer-based 
modules enhances the model’s ability to capture 
long-range dependencies and global contextual 
features, which are essential for recovering fine 
anatomical structures and resolving texture-level 
ambiguities in degraded inputs.

The deformable registration component em-
bedded within RED-WGAN represents another 
major innovation, enabling effective compensa-
tion for respiratory and patient-induced motion 
without relying on external gating or hardware. 
This contributes to improved inter-modality 
congruence between CT and PET volumes, en-
hancing the interpretability of fused images and 
facilitating more accurate lesion localization 
and staging.

Beyond technical performance, the model has 
been validated on both synthetic phantom datas-
ets and diverse in vivo clinical CT-PET volumes, 
ensuring generalizability across anatomical sites 
and imaging conditions. The architecture is scal-
able to 3D volumetric data and is compatible with 
existing clinical infrastructure, allowing for future 
integration into cloud-based or edge-deployed di-
agnostic platforms.
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