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INTRODUCTION

The presence of water in building materials 
is a fairly common phenomenon. This applies not 
only to old, historic buildings, but also to new fa-
cilities that may have problems with moisture due 
to improper execution of construction works. It is 

worth paying attention to this problem already at 
the design stage, because water in building parti-
tions can lead to chemical and biological corro-
sion, mechanical damage to materials, a decrease 
in their insulating properties and cause significant 
financial losses [1]. The moisture content of walls 
and porous media is a result of the ability of these 
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materials to absorb and store water. Porous me-
dia, such as walls, bricks, concrete, or soils, have 
a structure consisting of microscopic pores and 
cracks that can retain water [2, 3]. Water accumu-
lates in them mainly due to the phenomenon of 
capillarity, which is when water penetrates narrow 
spaces (capillaries) under the influence of adhesion 
forces to the pore walls. These forces cause water 
molecules to climb up narrow spaces, even against 
the force of gravity. Water in porous materials can 
come from both atmospheric precipitation and 
moisture contained in the soil, which causes walls 
and other porous media to remain damp. This phe-
nomenon is particularly visible in the buildings, 
where water from capillaries penetrates into the in-
terior of the rooms, creating moisture-related prob-
lems such as mold or damage to building materials.

The moisture content of a porous medium, 
which includes most building materials, is ex-
pressed in various ways. One of the most com-
monly used parameters is the volumetric moisture 
content [4], also known as volumetric moisture 
content, expressed in [cm3/cm3] or [%vol]. Accord-
ing to the PN-EN ISO 12571:2013-12 standard 
[5], volumetric moisture content is the volume of 
water capable of evaporation related to the vol-
ume of dry material. The formula describing the 
volumetric moisture content is as follows [6]:

	

 

𝜃𝜃𝑉𝑉 = 𝑉𝑉𝑤𝑤
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

  (1) 

 
𝜃𝜃 = −0.053 + 0.0292𝜀𝜀 − 

− 0.00055𝜀𝜀2 + 0.0000043𝜀𝜀3 
(2) 
  

 

𝜃𝜃 = 𝜀𝜀0.5 − 0.819 − 0.168𝜌𝜌 − 0.159𝜌𝜌2

7.17 + 1.18𝜌𝜌  
(3) 
 
 
  

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑥𝑥2 + 𝜖𝜖  (4) 

 
 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥1
2 + 𝛽𝛽4𝑥𝑥2

2 + 𝜖𝜖  (5) 
  

 

	 (1)

where:	θV – volumetric moisture content [cm3/
cm3], Vw – volume of water able to evapo-
rate [cm3], Vtot – total sample volume [cm3].

In addition to the indicators defining the 
moisture content of the material, the following 
parameters are also used to describe it: density, 
bulk density, tightness, porosity and maximum 
moisture content of the medium – water absorp-
tion by weight and volume [7]. These parameters 
result from the structure of the porous medium 
and are of high importance in assessing the level 
of moisture content of the building partition, con-
stituting a reference point to which the measured 
moisture content is compared. 

In connection with the problem of moisture 
in building materials, the development, elabora-
tion and improvement of moisture detection tech-
niques in building partitions play an important 
role. It should be noted that the most accurate de-
termination of water content in partitions is pos-
sible owing to laboratory methods, which consist 

of material sampling, weighing and drying, which 
allows for a precise determination of the amount 
of water. However, these techniques are often im-
practical due to the need to drill the masonry and 
the long waiting time for the results. The alter-
natives are indirect techniques, which allow for 
quick measurements without damaging the struc-
ture of the partition and provide high precision.

One of the most important moisture detection 
techniques is the TDR method, namely the Time 
Domain Reflectometry. This is an electrical tech-
nique that involves measuring the dielectric pa-
rameters of a medium using reflectometry [8]. For 
many years, the technique has been used to measure 
moisture in soil media. The TDR technique works 
on the principle of sending electromagnetic pulses 
in the form of a wave through a sensor placed in 
the tested medium. When the wave encounters the 
transition between different sensor construction el-
ements (e.g. beginning of the measuring element or 
its termination), part of the wave is reflected back to 
the sensor. The time that elapses from sending the 
pulse to its reflection allows for determining the di-
electric parameters of the measured medium, which 
are closely related to its moisture.

The relationship between the dielectric pa-
rameters exhibited by moist porous media and 
the moisture of the media is most often presented 
in the form of physical and empirical models [9, 
10]. The advantage of physical models is a cer-
tain independence from calibration tests. The dis-
advantages include a general, often complicated 
mathematical description. Another approach is to 
use empirical models based on laboratory mea-
surements, which correlate the results of mois-
ture measurements using the gravimetric method 
with dielectric permittivity. Among these, univer-
sal models and individual models can be distin-
guished, the former developed on the basis of var-
ious media, whereas the latter refer to a specific 
material, sensor or research procedure.

The most frequently cited empirical models 
used in the practical assessment of medium mois-
ture include the Topp model [11], which takes the 
form of a third-degree polynomial:
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	 (2)

where:	θ – volumetric water content in the tested 
porous medium [cm3/cm3], ε – dielectric 
permittivity of the medium measured 
by the TDR technique [-]. An alterna-
tive model that allowed for increased 
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measurement accuracy was proposed in 
the work of Malicki et al. [12]:
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where:	ρ denotes the material density in a dry 
state [g/cm3]. 

This model takes into account the density of 
the material in the dry state, which allowed for a 
more accurate representation of the moisture - di-
electric permittivity relationship in materials char-
acterized by different solid phase properties [13].

Regression analysis can be used to create 
empirical models for moisture assessment, us-
ing indirect detection methods as an alternative 
to traditional models. Regression is a statistical 
technique used to model the relationship between 
one dependent variable and one or more inde-
pendent variables. The goal of regression is to 
predict the value of the dependent variable based 
on the values ​​of the independent variables [14]. 
In the context of assessing the moisture content 
of materials, regression can be used to create the 
models that combine data from different measure-
ment methods (e.g. gravimetric moisture content 
with dielectric permittivity) and predict the wa-
ter content of media based on these variables. In 
this way, regression analysis provides a tool for 
developing more accurate and efficient moisture 
detection methods [15].

Artificial intelligence (AI) methods are be-
coming increasingly popular in the context of 
assessing the moisture content in building mate-
rials, offering a modern approach to monitoring 
and analyzing the moisture content [16, 17] The 
use of AI, including machine learning and deep 
learning, allows for the development of more pre-
cise and effective moisture detection tools, espe-
cially in comparison to traditional methods. One 
of the main applications of AI in this area is the 
analysis of measurement data from various sen-
sors (e.g. moisture, temperature, dielectric per-
mittivity). Machine learning algorithms, such as 
neural networks or decision trees, can be used to 
detect patterns in this data and predict the mate-
rial moisture content based on the variables that 
are not always readily available in traditional 
measurement methods [18].

AI models are advanced computational 
systems based on artificial intelligence algo-
rithms that can analyze data, recognize patterns, 
and make decisions based on the information 

provided. These models work on the principle of 
machine learning, which means that they can im-
prove with the processing of more and more data. 
AI models can be divided into several main cat-
egories depending on the method of learning and 
the architecture used. The division of AI models 
is very wide, and each of them finds application 
in different fields. Supervised learning is ideal for 
classification and regression, unsupervised learn-
ing helps in the analysis of unknown patterns, and 
reinforcement learning allows the development of 
intelligent agents. Deep learning and generative 
models revolutionize image and text processing, 
whereas probabilistic and statistical models pro-
vide interpretability and accuracy in data analy-
sis. Each of these categories of AI models has its 
unique features and applications; the selection of 
the right model depends on the problem to solve 
and the available computational resources. In this 
paper, the following AI models are presented: re-
gression trees, GPR models, SVM models, and 
neural networks [19].

Regression trees are a special type of decision 
tree used to predict numerical values ​​instead of 
classifying data [20]. Unlike classification trees, 
which assign data to specific categories, regression 
trees learn a function of the relationship between 
input variables and a continuous output value. The 
structure of a regression tree consists of decision 
nodes – defining the conditions for the partition, 
branches – representing possible decision paths, 
leaves (terminal nodes) – containing the predicted 
numerical values [21, 22]. A regression tree works 
by recursively splitting data into smaller groups 
in such a way as to minimize the prediction error. 
The partition into subsequent nodes is performed 
according to criteria such as: variance reduction 
– the tree looks for a partition that reduces the 
spread of values ​​in the groups and mean squared 
error (MSE) – choosing a partition that minimizes 
the mean square error. Each leaf of the tree repre-
sents the average value of the samples contained 
in a given node. Simplicity of regression trees and 
intuitiveness make them widely used, but in prac-
tice they are often combined into more advanced 
ensemble models to increase their efficiency and 
stability of predictions [23]. 

GPR is a machine learning method that models 
the relationship between input and output data us-
ing a probabilistic approach. Instead of producing a 
single predicted value, it provides a distribution of 
possible outcomes, allowing the estimation of pre-
diction uncertainty [24]. The process begins with 
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training, where the input-output data is collected 
and assumed to come from an unknown function 
represented by a Gaussian process. A covariance 
function, or kernel, is chosen to define how input 
points are related, and a covariance matrix is built 
to capture these relationships. In the prediction 
stage, the model receives a new input and uses 
the Gaussian process and the existing covariance 
matrix to compute the predicted value along with 
its variance. This result includes both the expected 
output and a measure of the model’s confidence in 
its prediction. Gaussian process regression is an 
advanced probabilistic regression method that al-
lows not only for accurate prediction of values, but 
also for estimating the uncertainty of the predic-
tion. It is particularly effective in modeling small 
data sets, where classic regression models may 
have difficulties. However, its high computational 
complexity makes it unsuitable for very large data 
sets, where methods such as random forests or 
boosting are more effective [25, 26].

Support vector machines (SVM) is a popular 
method used in machine learning, especially in 
classification tasks, although it can also be used 
for regression [23]. The main goal of SVM is to 
find a hypersurface (hyperplane) that best sepa-
rates data into different classes. SVM is a super-
vised learning model that requires training data 
with assigned class labels. It works on the princi-
ple of maximizing the margin (distance) between 
classes, meaning that it looks for a hypersurface 
that maximizes the space between the closest 
data points from different classes, called support 
vectors. The Support Vector Machines algorithm 
works by finding a hypersurface (in multidimen-
sional space) or line (in the case of two dimen-
sions) that best separates different classes of data. 
The main steps of the SVM algorithm are hyper-
surface selection, margin maximization, kernel 
function usage, optimization and prediction [27]. 
Support Vector Machines are tools for solving 
classification and regression problems, especially 
effective in nonlinear cases and with large datasets 
with a high number of features. SVM is widely 
used in various fields, such as bioinformatics, im-
age analysis, and pattern recognition. Although 
SVM can be computationally expensive and re-
quires careful parameter selection, it remains one 
of the most effective algorithms in the field of 
classification [28]. Neural networks are a class of 
machine learning algorithms that are inspired by 
the human brain [29]. They are used to solve vari-
ous problems, such as classification, regression, 

image recognition, text analysis, forecasting, and 
computer games [30]. Neural networks are the ba-
sis of deep learning, which has gained a lot of pop-
ularity in recent years. The algorithm of a neural 
network consists of passing data through layers of 
neurons, in which each layer processes informa-
tion based on its weights and activation functions. 
The process starts with an input layer, which ac-
cepts input data, then the data passes through sub-
sequent hidden layers, where it is processed, and 
finally reaches the output layer, which generates 
an output (e.g. prediction or classification). Dur-
ing training, the network compares its results with 
real values, calculates the error (the difference 
between the network output and the real value), 
and adjusts the weights using backpropagation 
of the error. The backpropagation algorithm cal-
culates the error gradients and uses an optimiza-
tion method (e.g. gradient descent) to change the 
weights so that the error decreases with each it-
eration. This process is repeated many times until 
the model achieves satisfactory accuracy. Neural 
networks are tools applied in the area of ​​pattern 
recognition, image analysis, text and speech anal-
ysis. Although they have their drawbacks, such as 
high computational requirements and difficulties 
with interpretability, their capabilities in solving 
complex problems make them the foundation of 
modern artificial intelligence systems [31].

An example of utilizing AI models to detect 
porous material permittivity was presented in the 
article by Nimer et al. [9] The performance of the 
FFNN neural network model was compared with 
conventional approaches, including theoretical 
models (e.g., Silberstein, Birchak, and Looyenga) 
and empirical regression models. FFNN achieved 
correlation coefficients of 0.9942 (training), 
0.9967 (validation), and 0.9977 (testing), signifi-
cantly outperforming both the theoretical models 
(e.g., Silberstein: R = 0.9163, MSE = 6.95) and 
the best empirical model (full quadratic model: 
R = 0.9773, MSE = 1.42). These results indicate 
that machine learning can substantially enhance 
the accuracy of moisture and contamination as-
sessments based on dielectric measurements.

AI methods, owing to their ability to recog-
nize complex patterns in data, can significantly 
improve the accuracy and precision of estima-
tion. In addition to artificial intelligence meth-
ods, traditional regression models were used 
in the article, such as second-degree polyno-
mial regression of one and two variables. These 
models were used to extract the relationships 
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between input variables (e.g. apparent density) 
and their significance for the prediction of mois-
ture content of cellular concrete. The developed 
regression models were compared with the re-
sults obtained using artificial intelligence algo-
rithms. This comparison allowed for an assess-
ment of which of the methods gives better re-
sults in terms of precise moisture prediction and 
on which data the AI ​​model is more effective. 
By using both artificial intelligence methods 
and classical regression models, it is possible 
to compare the different approaches of moisture 
forecasting and the assessment of their effective-
ness in the context of different variables [32].

The aim of this article was to develop the 
predictive models that will allow for the esti-
mation of moisture content of cellular concrete, 
taking into account the apparent density of this 
material, and to compare the effectiveness of dif-
ferent modeling approaches, including the use of 
artificial intelligence methods and classical re-
gression models. The topic discussed in the ar-
ticle is of high importance, because it addresses 
a real and widespread problem in construction 
— the presence of moisture in building materi-
als, which affects both new and historic struc-
tures. Moisture can lead to serious consequenc-
es, such as material degradation, mold growth, 
and reduced thermal insulation, directly impact-
ing building durability and indoor comfort. The 
search for fast and accurate methods to detect 
moisture – such as TDR techniques and predic-
tive modeling – offers practical solutions that 
are highly relevant for the construction industry. 
Moreover, the comparison between traditional 
regression and modern AI methods introduces 
an innovative and original aspect, highlight-
ing the potential of machine learning in solving 
engineering problems. Previous approaches to 
calibrating the TDR method have included only 
conventional deterministic models. They mainly 
involved the relationship between the electrical 
permittivity and humidity of the tested media. 
However, the signals from TDR meters are very 
complex. A simple analysis consisting of deter-
mining the pulse propagation time and then the 
electrical permittivity causes a lot of information 
to be lost. The use of machine learning methods 
to determine the humidity of media allows for 
taking into account more information, owing to 
which the obtained measurements will be more 
accurate and the humidity estimation will be 
characterized by smaller errors.

MATERIALS AND METHODS

Measuring setup

Autoclaved cellular concrete samples with 
densities of 400, 500 and 600 kg/m³ from SOL-
BET Lubartów S.A. were utilized for the study 
(Lubartów, Poland). The materials were dried us-
ing a VO-500 laboratory dryer (Memmert, Ger-
many). Weight measurements were taken using 
a WPT 6C/1 precision balance, manufactured 
by Radwag (Radom, Poland). Tests were carried 
out using a TDR meter “TDR / MUX / MPTS” 
from ETest (Lublin, Poland), allowing data re-
cording. Calibration tests were performed for 
FP/mux probes from the same company, which 
were equipped with two metal rods of 100 mm 
length and 14 mm spacing. The test set prepared 
in this way allowed for accurate and comparative 
determination of the moisture content of different 
types of cellular concrete. 

Materials

The test material was prepared in accordance 
with the established protocol. Each sample was 
meticulously trimmed to dimensions of approxi-
mately 50 × 50 × 120 mm, thereby ensuring 
optimal conditions for subsequent testing. The 
samples were subjected to a drying process for 
a duration of seven days, with the objective of 
achieving a constant weight. Subsequently, the 
TDR probes were installed into the prepared sam-
ples, and apparent permittivity was measured. 
Next, the samples were gradually moistened with 
water to achieve the state of saturation. During 
the whole calibration procedure, the probes were 
temporarily disconnected from the TDR multi-
meter, to measure and control their weight and 
moisture status. After that they were re-connected 
to the multimeter and apparent permittivity was 
read. This procedure was repeated for the samples 
of all densities used. Subsequent to the comple-
tion of the measurements, the mass data of the 
samples were converted to moisture content and 
the deterministic analysis was then performed. In 
parallel, machine learning algorithms were imple-
mented to achieve optimal precision and discern 
the correlation between material parameters and 
their moisture content. To facilitate understanding 
of the experimental procedure, a block diagram is 
presented in Figure 1 which shows the particular 
stages of the experiment.
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Description of regression analysis method

Regression is a data analysis method that 
examines the relationship between variables. A 
regression model allows predicting the value of 
one variable (dependent) based on other (inde-
pendent) variables. A popular example is linear 
regression, which describes the relationship as a 
straight line. However, many physical phenome-
na have a non-linear nature, which in practice can 
often be expressed using a simple second-degree 
polynomial regression. Simple second-degree 
polynomial (quadratic) regression is a method 
of estimating the relationship between one inde-
pendent variable and a dependent variable using 
a second-degree polynomial function. Contrary 
to classical linear regression, it allows modeling 
nonlinear relationships, which makes it a more 
flexible tool in data analysis [33]. The second-
degree polynomial regression model takes the 
following form:
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where:	y – dependent variable, x – independent 
variable, β2, β1, β0 ​ – structural model pa-
rameters, ϵ – random error. 

This model can be interpreted as an extension 
of classical linear regression with an additional 
quadratic term, which allows for considering 
nonlinear effects in the data set. The β2 coeffi-
cient determines the degree of curvature of the 

regression function – its sign indicates whether 
the function is convex (β2 > 0) or concave (β2 < 
0). The β1 coefficient represents the slope of the 
tangent to the regression line at x = 0, defining 
the effect of variable x on variable y. The β0 coef-
ficient is the intercept of the model, denoting the 
predicted value of y at x = 0. 

In a situation where more than one indepen-
dent variable is taken into account in the model, 
then a multiple regression model should be used. 
A frequently used model is a two-variable mul-
tiple regression model in the form of a second-
degree polynomial:
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7.17 + 1.18𝜌𝜌  
(3) 
 
 
  

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑥𝑥2 + 𝜖𝜖  (4) 

 
 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥1
2 + 𝛽𝛽4𝑥𝑥2

2 + 𝜖𝜖  (5) 
  

 

	(5)

where:	y – dependent variable, x1, x2 – indepen-
dent variables, β0 ​ – y-intercept, β1, β2 ​ – 
linear effect coefficients, β3, β4 ​ – quadratic 
effects coefficients, describing the nonlin-
ear influences x1 and x2, ϵ – random error. 

By taking into account quadratic terms, this 
model allows not only the prediction of the value 
of the dependent variable, but also the analysis 
of extreme points (maximum, minimum), which 
makes it particularly useful in process optimiza-
tion [34]. The significance of the regression co-
efficients plays an important role in assessing 
the quality of the model and allows determining 
which variables have a real impact on the depen-
dent variable. In second-degree polynomial re-
gression, where both linear and quadratic terms 

Figure 1. Block diagram of the experimental procedure
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are taken into account, significance analysis al-
lows reducing the model by eliminating irrelevant 
terms, which reduces the risk of overfitting and 
improves the interpretability of the results. In 
classical regression analysis, the Student’s t-test 
is used for each regression coefficient. This test 
examines the null hypothesis that a given inde-
pendent variable has no significant impact on the 
dependent variable. If the null hypothesis is true, 
it means that the given coefficient can be removed 
from the model, because its impact is statistically 
insignificant. In turn, the alternative hypothesis is 
that this coefficient is different from zero, which 
means that the given variable has a significant 
impact on the dependent variable and should 
remain in the model [35]. To check whether the 
coefficient is significant, the value of the test sta-
tistic is calculated. The value of this statistic is 
then compared to the critical values ​​of the Stu-
dent t-distribution for the appropriate level of sig-
nificance. Alternatively, the so-called p-value is 
calculated, which is the probability of obtaining 
such or more extreme values ​​of the test statistic, 
provided that the null hypothesis is true. If p < 
0.05, then the null hypothesis is rejected and the 
coefficient is considered to be statistically sig-
nificant. This means that the variable in question 
does indeed affect the dependent variable. If p > 
0.05, then there is no sufficient evidence to reject 
the null hypothesis, which suggests that the vari-
able in question has no significant effect on the 
dependent variable and can be removed from the 
model. In summary, analyzing the significance of 
regression coefficients allows for a better under-
standing of the model and ensures that the vari-
ables considered really affect the dependent vari-
able. Eliminating irrelevant parameters improves 
interpretation, reduces the risk of overfitting, and 
increases modeling efficiency [36].

Description of artificial intelligence models

The moisture content of cellular concrete 
was estimated using four artificial intelligence al-
gorithms: GPR, SVM, Tree and neural network 
(NN). In the case of the GPR algorithm, Matern 
5/2 GPR preset model with automatic kernel 
scale was used. In the case of the SVM algorithm, 
Linear SVM preset model was used with linear 
kernel function and automatic kernel scale. In the 
case of the Tree algorithm, Fine Tree preset mod-
el was applied with minimum leaf size equal 4 
and finally for neural networks, Trilayered Neural 

Network was applied with the following sets: 
number of fully connected layers – 3, sizes of all 
layers were set to 10.

For teaching of the AI models the following 
amount of data was used: in the case of the aer-
ated concrete 400 kg/m3 the number of responses 
was equal 264, for concrete 500 kg/m³ - 336 and 
600 kg/m³ - 360. The length of predictors for all 
densities was equal to 1023. The AI models were 
derived using Matlab software [37].

Regression and AI models fitting measures

An important aspect during the construction 
of regression models and AI models is the analy-
sis of the degree of fit of these models to empirical 
data, which requires assessment using various fit 
measures. The most commonly used measures are 
root mean squared error (RMSE), mean absolute 
error (MAE) and determination coefficient (R2).

The root mean squared error is the square root 
of the arithmetic mean of the squares of the differ-
ences between the predicted and observed values. 
RMSE measures the average distance, expressed in 
original units, between the empirical values ​​of the 
explained variable and the theoretical values ​​ob-
tained on the basis of the model, cf. [38]. In other 
words, RMSE determines how much the empirical 
values ​​of the explained variable deviate on average 
from the theoretical values ​​calculated on the basis 
of the built model. The smaller the RMSE value, 
the closer the theoretical values ​​are to the actual 
values, which indicates a better fit of the model.

The mean absolute error is another measure 
that assesses how much the observed values ​​of 
the dependent variable differ, in absolute value, 
from the values ​​predicted by the model. MAE is a 
metric that treats all errors equally, regardless of 
their size, meaning that it does not favor or dis-
criminate against errors with a larger range [39]. 
Furthermore, when comparing MAE to RMSE, 
the RMSE value is usually larger, suggesting that 
there are errors with a larger range. Analyzing the 
difference between RMSE and MAE values ​​can 
indicate the presence of large errors that have a 
significant impact on the model.

The determination coefficient indicates how 
well the predictor variables describe the variabil-
ity of the explained variable. This coefficient de-
termines what part (percentage) of the variance 
of the dependent variable is explained by the in-
dependent variables. The closer the R2 coefficient 
value is to 100%, the better the regression model 
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describes the behavior of the dependent variable 
being studied [40]. Adding insignificant predic-
tor variables to the regression equation often in-
creases the value of the R2 coefficient. In order 
to eliminate this phenomenon, the so-called ad-
justed determination coefficient should be used.

RESULTS AND DISCUSSION

The moisture content of cellular concrete 
was estimated using different methods: regres-
sion models and artificial intelligence algorithms. 
The aim of this analysis is to determine which 
approach best predicts moisture content based on 
material properties such as permittivity (ε) and 
density (ρ).

Deterministic models

At first, two regression models for estimat-
ing the moisture content of cellular concrete were 
analyzed. Deterministic models were developed 
based on the values ​​of electrical permittivity read 
with FP/mts probes and the moisture values de-
termined gravimetrically in the laboratory. The 
θ(ε) model was based solely on the apparent per-
mittivity (ε), for each density separately. Model 
θ(ε,ρ), on the other hand, is an ensemble model 
that combines the permittivity readings from all 
samples with different densities. Table 1 presents 
the regression models developed to estimate the 
moisture content of cellular concrete based on 
dielectric permittivity and, in one case, apparent 
density. For each density level (400, 500, and 600 
kg/m³), separate models were developed using 
only dielectric permittivity as the predictor. These 
models show that the relationship between permit-
tivity and moisture content is nonlinear and varies 
depending on the density of the material, which 
means that each density class requires an individ-
ual calibration for accurate moisture estimation. 
Additionally, a universal model was developed 
using the data from all densities combined. This 
model includes both dielectric permittivity and 

density as variables, aiming to generalize the pre-
diction across different material types. However, 
despite the inclusion of density, earlier statistical 
analysis indicates that its influence on moisture 
estimation may not be statistically significant. 
This suggests that dielectric permittivity remains 
the dominant factor in predicting moisture con-
tent, while the role of density may be limited or 
dependent on the specific context.

The performance of the obtained models is 
also presented graphically. Figure 2 shows the re-
lationship between the values ​​obtained using the 
TDR method for three density levels and those 
predicted by the single-variable regression model 
θ(ε). In each subplot, the predicted values (yel-
low) follow the overall trend of the actual values 
(blue), which indicates that the model captures 
the general behavior of the data. However, some 
discrepancies between predicted and true values 
are visible, especially in the regions with rapid 
moisture content changes. This suggests that 
while the model is effective, there may be certain 
areas where its predictive accuracy decreases, po-
tentially due to variability in material structure or 
measurement noise.

Figure 3 presents the estimated values ​​along 
with the fit lines for this model. The closer the 
points lie to the diagonal (perfect prediction line), 
the better the model performance. For all three 
densities, the points generally align along the di-
agonal, confirming that the θ(ε) model provides 
reasonably accurate predictions. The 600 kg/
m³ model appears to have the tightest clustering 
around the diagonal, indicating the highest ac-
curacy among the three. The 400 kg/m³ model 
shows greater scatter, suggesting slightly lower 
prediction accuracy for lower-density concrete.

Table 1 also includes the universal model of 
two variables θ(ε,ρ). This model additionally in-
cludes the density (ρ) and is a universal model, 
applied for all densities simultaneously. Figure 
4 presents the relationship between the values ​​
obtained using the TDR method together for all 
density levels and the values ​​predicted by the 
θ(ε,ρ) universal regression model (a) and the 

Table 1. Regression model equations
Density [kg/m3] Regression model

400 θ(ε)= –0.1009∙ε2+3.6079∙ε–2.3334

500 θ(ε)= –0.1114∙ε2+3.9804∙ε–2.9716

600 θ(ε)= –0.1018∙ε2+3.9148∙ε–1.8776

all θ(ε,ρ)= –0.09574∙ε2+3.693∙ε+0.00003591∙ρ2–0.02321∙ρ+0.2936
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Figure 2. Relationships between values ​​obtained using the TDR method and those predicted by the θ(ε) model 
for: (a) density 400 kg/m3, (b) density 500 kg/m3 and (c) density 600 kg/m3

Figure 3. Estimated values ​​along with the θ(ε) model fit line for: (a) density 400 kg/m3, (b) density 500 kg/m3 
and (c) density 600 kg/m3

Figure 4. (a) Relationships between the values ​​obtained using the TDR method and predicted values by the θ(ε, 
ρ) model and (b) the estimated values ​​together with the fit line of the θ(ε, ρ) model

estimated values ​​together with the fit line (b). On 
the left (a), predicted values (blue) closely follow 
the true values (yellow), indicating good model 
performance, though some deviations appear at 
lower and mid moisture levels. On the right (b), 
the predicted values aligning well along the line 

of perfect prediction confirm this, showing high 
accuracy. On the basis of Table 2, the parameter 
ε is consistently statistically significant across all 
models (400, 500, 600, and the universal model). 
All associated p-values are less than 2e-16, indi-
cating a very strong significance level (denoted 
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by ***), suggesting that permittivity has a robust 
and reliable influence on the model outcomes. In 
contrast, parameter ρ is not statistically signifi-
cant in the universal model. The p-values for ρ² 
(0.102), ρ (0.294), and the y-intercept (0.957) are 
all greater than the standard significance thresh-
old of 0.05. This indicates that density does not 
have a statistically significant effect in this con-
text. According to Malicki [12], including den-
sity and permittivity in the model to estimate the 
moisture content of porous media improves the 
model fit. However, in this paper, the statistical 
analysis showed no significance of density as an 
independent variable, which suggests that in the 
case of lightweight porous materials such as cel-
lular concrete, apparent permittivity is a sufficient 
parameter to assess the moisture content.

AI models

The AI models generated using artificial intel-
ligence such as GPR, SVM, Tree (Decision Tree) 
and NN (Neural Networks) were also analyzed. 
Figures 5, 6, 7 present the relationship between 
the values ​​read using the TDR method and those 
predicted using AI models for densities of 400, 
500 and 600 kg/m³, respectively. The GPR and 
Tree models consistently demonstrated the high-
est prediction accuracy, with data points closely 
aligned with the actual values and minimal scat-
ter. The SVM model showed larger prediction er-
rors and deviations, particularly at higher mois-
ture content levels. Neural networks captured the 
overall trend well but exhibited greater variability 

and some local inaccuracies. An increase in con-
crete density did not significantly affect the per-
formance of the top models, confirming their ro-
bustness and generalizability. In summary, GPR 
and Tree emerged as the most reliable models for 
predicting the moisture content of aerated con-
crete based on dielectric permittivity measure-
ments across different densities.

Figures 8, 9, 10 show the estimated values ​​
with the fit line for these models. In all three 
cases, GPR models show the highest prediction 
accuracy, with data points closely aligned along 
the ideal prediction line. Neural networks, par-
ticularly those with multiple layers, also perform 
well, especially in predicting moisture content and 
density. In contrast, Tree models show significant 
scatter and poorer accuracy, particularly for high-
er values. Linear SVMs perform moderately but 
are generally less accurate than GPR and neural 
networks. Overall, GPR models prove to be the 
most effective in capturing complex relationships 
between input data and material properties. These 
results suggest that advanced nonlinear models 
like GPR and deep neural networks are well-suit-
ed for modeling the behavior of cellular concrete.

The quality assessment of deterministic 	
and AI models

In order to assess the quality of fit of re-
gression and AI models to real data, three stan-
dard measures of error and accuracy were used: 
RMSE, mean absolute error (MAE) and the deter-
mination coefficient (R2). The values ​​of individual 

Table 2. Significance of regression coefficients
Model Parameter coefficient at p-value

400

ε2 <2e-16    (***)

ε <2e-16    (***)

y-intercept 7.6e-9 (***)

500

ε2 <2e-16    (***)

ε <2e-16    (***)

y-intercept 7.43e-8 (***)

600

ε2 <2e-16    (***)

ε <2e-16    (***)

y-intercept 0.000108 (***)

Universal

ε2 <2e-16    (***)

ε <2e-16    (***)

ρ2 0.102

ρ 0.294

y-intercept 0.957
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Figure 5. Relationships between values ​​obtained using the TDR method and predicted values for a density of 
400 kg/m3 by AI models: (a) GPR, (b) SVM, (c) Tree, (d) NN

Figure 6. Relationships between values ​​obtained using the TDR method and predicted values for a density of 
500 kg/m3 by AI models: (a) GPR, (b) SVM, (c) Tree, (d) NN
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Figure 7. Relationships between values ​​obtained using the TDR method and predicted values for a density of 
600 kg/m3 by AI models: (a) GPR, (b) SVM, (c) Tree, (d) NN

Figure 8. Estimated values ​​with fit line for density 400 kg/m3 of AI models: (a) GPR, (b) SVM, (c) Tree, (d) NN
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Figure 9. Estimated values ​​with fit line for density 500 kg/m3 of AI models: (a) GPR, (b) SVM, 
(c) Tree, (d) NN

Figure 10. Estimated values ​​with fit line for density 600 kg/m3 of AI models: (a) GPR, (b) SVM,
(c) Tree, (d) NN
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measures of model fit are presented in Tables 3 
and 4. The θ(ε) model performed best for a den-
sity of 400 kg/m³, where it had the smallest errors 
and the highest coefficient of determination value 
of 0.9433. This means that in this case, the model 
predicted moisture very well. However, for high-
er densities (500 and 600 kg/m³) the quality of 
prediction deteriorated significantly – RMSE in-
creased and R2 dropped to about 0.9280 - 0.9363. 
The universal θ(ε,ρ) model achieved a better fit 
than the θ(ε) model for densities of 500 and 600, 
but not for 400. The overall R2 coefficient was 
0.9340, which means better stability, but still not 
equal to the AI ​​models.

The AI models were much more accurate in 
predicting moisture. The GPR model was found 
to be the best model. It achieved almost perfect 
fit with R2 values ​​close to 0.9999. Its errors were 
extremely low (RMSE at the level of 0.0021 - 
0.0032 cm3/cm3), which means that they allowed 
the error values ​​to be reduced almost tenfold 
compared to deterministic models. This type of 
model almost perfectly predicts moisture based 
on permittivity. The SVM and NN models also 
achieved very good results. The R2 coefficients of 
determination at the level of 0.9914–0.9960 mean 
that these models predict moisture very well. The 
RMSE are smaller than those in regression mod-
els by a factor of 5. This means that they are a 
much better alternative to classical regression. 
The weakest of the AI ​​models turned out to be the 
Tree model. Although the model achieved better 
results than deterministic regression models, it 
was significantly worse than GPR, SVM and NN. 
The RMSE and R2 values ​​of this model suggest 
that it makes larger errors and has lower accuracy. 

It is still better than regression models, but it is 
not the best choice.

In summary, the AI models are the most accu-
rate at estimating the moisture content of cellular 
concrete – especially GPR, which fits the data al-
most perfectly. If the goal is maximum accuracy, 
this is the model to use. Regression models have 
limited effectiveness – although they give decent 
results, their accuracy is much lower than that of 
AI models. Including density (ρ) improves the 
prediction but does not solve all problems – even 
the universal model θ(ε,ρ) still has larger errors 
than AI models. If model simplicity is key, regres-
sion can be used, but AI provides much higher 
precision. If accuracy is a priority, GPR should 
be chosen. If simplicity and ease of interpretation 
are more important, the regression model θ(ε,ρ) 
can be a compromise, but one has to reckon with 
a larger error.

When comparing the obtained measurement 
errors with those indicated by other authors, it 
should be noted that they are comparable to or 
smaller than those obtained by other authors, 
even when it comes to deterministic models. 
Many basic articles on this method emphasized 
that these RMSE errors range from 0.01 to 0.066 
cm3/cm3 depending on the characteristics of the 
tested material (Ju et al. [41]), Roth et al. [42] 
established the RMSE of their research at the 
level of 0.08–0.037 cm3/cm3, Malicki [12] with 
two-parameter model, taking into account the ef-
fect of density, estimated the RMSE for soils at 
the level of 0.03 cm3/cm3. Byun et al. [43] at the 
level of 0.04–0.05 cm3/cm3. More recent studies 
have also explored the use of predictive models 
for estimating moisture content. Paśnikowska 

Table 3. The fit measures of deterministic and AI models

Model
400 500 600

RMSE 
[cm3/cm3]

MAE 
[cm3/cm3] R2 RMSE 

[cm3/cm3]
MAE 

[cm3/cm3] R2 RMSE 
[cm3/cm3]

MAE 
[cm3/cm3] R2

θ(ε) 0.0244 0.0203 0.9433 0.0332 0.0255 0.9280 0.0339 0.0265 0.9363

GPR 0.0021 0.0015 0.9996 0.0037 0.0023 0.9991 0.0032 0.0021 0.9995

SVM 0.0095 0.0082 0.9914 0.0127 0.0109 0.9895 0.0123 0.0100 0.9917

Tree 0.0115 0.0067 0.9875 0.0189 0.0081 0.9771 0.0161 0.0056 0.9857

NN 0.0140 0.0087 0.9816 0.0148 0.0097 0.9858 0.0085 0.0056 0.9960

Table 4. The fit measures of universal regression model
Model RMSE [cm3/cm3] MAE [cm3/cm3] R2

θ(ε,ρ) 0.0321 0.0253 0.9340
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et al. reported a RMSE of 0.07 cm3/cm3 [44] 
and Kojima et al. [45] between 0.066 cm3/cm3 
and 0.220 cm3/cm3 using conventional models. 
However, it is important to note that these ex-
periments were conducted using a non-invasive 
probe on silicate material. Similarly, the authors 
themselves in their previous studies obtained: 
RMSE values ​​for TDR sensors of various types 
at the level of 0.024 to 0.032 cm3/cm3 [46] or 
0.013 cm3/cm3 [47]. 

The use of machine learning methods im-
proves the accuracy of moisture estimation using 
the TDR method several times, which was con-
firmed by Wan et al. [48], who observed similar 
capabilities of machine learning algorithms in 
relation to the studies using TDR equipment or 
Méndez-Patiño et al. [49], who observed a four-
fold decrease in MSE errors compared to data 
analyzed using classical methods. Similar rela-
tionships were observed by the authors of this 
study in their works using artificial intelligence, 
e.g. Mikušová et al. [50] in which the use of SVM 
algorithms allowed for a reduction of RMSE er-
rors by approximately a factor of 3, while GPR 
algorithms reduced moisture estimation errors 
about ten-fold. In another research Paśnikowska 
et al. [44] confirmed that machine learning mod-
els enabled prediction of silicate brick moisture 
with RMSE errors equal to 0.015 cm3/cm3 (GPR) 
and 0.025 cm3/cm3 (SVM).

CONCLUSIONS

The most important conclusions resulting 
from the conducted research include the follow-
ing observations:
1.	Taking into account the effect of density on 

moisture estimation in the case of aerated 
concrete does not significantly improve the 
quality of the estimation. This is confirmed by 
the significance levels of the p-value of the 
estimators responsible these parameters of the 
model. Unlike the Malicki model, which was 
developed for soils, in the case of aerated con-
crete, this is due to the small variation in the 
value of this parameter.

2.	The use of machine learning methods improves 
the quality of moisture prediction of aerated 
concrete several times.

3.	Of all the machine learning algorithms, the 
most effective are GPR models, which are 
characterized by approximately ten-fold 

smaller RMSE error values comparing to the 
deterministic methods.

4.	SVM and tree algorithms are characterized by 
worse predictive capabilities than GPR algo-
rithms, but they reduce RMSE errors by more 
than two-fold compared to traditional deter-
ministic models based on single- and two-fac-
tor regression.
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