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INTRODUCTION 

Time series trend prediction is crucial across 
various fields, from finance to engineering. Accu-
rate forecasts of a system’s upward or downward 
trends enable informed decision-making, such as 
stock trading or predictive maintenance in en-
gineering systems [1, 2]. Traditionally, analysts 
have relied on statistical models and domain-spe-
cific expertise to evaluate trends. For example, 
traders in financial markets use technical analysis 
on price charts (including Japanese candlestick 
charts) to infer future market direction. With the 
rise of deep learning, researchers are increasing-
ly exploring whether patterns in time series data 
can be learned automatically by neural networks, 
potentially surpassing human-crafted methods 
[3, 4]. Deep learning models, especially CNNs, 
have demonstrated powerful image-analysis 

pattern recognition capabilities [5–7]. This sug-
gests an intriguing approach for time series data, 
i.e., convert time series signals into images and
apply CNNs for classification or forecasting
[8, 9]. This image-based paradigm leverages the
maturity of computer vision techniques to analyze
temporal data transformed into a visual format.

Several recent studies highlight the promise 
of image-based time series analysis. For instance, 
Casolaro et al. (2023) encoded earthquake ground 
motion signals as 2D images (using techniques 
like recurrence plots and wavelet transforms) and 
trained CNNs to classify seismic damage pat-
terns [8, 10]. Their CNN achieved up to ~79.5% 
accuracy in classifying structural damage levels 
from these time-series images [8], demonstrating 
that visual representations can capture relevant 
features for time series classification. In the fi-
nancial domain, candlestick chart images have 
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been used to predict market movements. Gangu-
ly et al. (2024) converted candlestick time series 
data into Gramian Angular Field images. They 
applied a CNN to recognize candlestick patterns, 
achieving about 90.7% classification accuracy 
across multiple pattern classes [10]. More recent-
ly, Aryal et al. (2020) constructed a rich dataset 
of candlestick chart “sub-images” with annotated 
patterns and trained a CNN to predict the next 
price movement; their model attained a remark-
ably high accuracy of ~99% on forex trend pre-
diction [11, 12]. These studies suggest that CNNs 
can extract and learn visual features correlating 
with future trends or patterns. 

However, the literature also points out chal-
lenges. Sezer et al. (2018) investigated purely 
image-based stock trend models and found that a 
CNN using raw candlestick chart images maxed 
out at around 70% accuracy [13]. They reported 
that explicitly detecting known candlestick pat-
terns (using an object detection model) and feed-
ing them into the CNN did not significantly im-
prove performance over using the raw chart im-
ages alone [13]. This indicates that while CNNs 
can learn from chart images, there may be limits 
to the predictive power contained purely in visual 
candlestick patterns without additional data. It 
also underscores the importance of combining 
multiple modalities or features for more complex 
forecasting tasks [14]. 

In light of these developments, the research 
goal is to apply CNN to classify time series trend 
direction using candlestick chart images and 
examine the interpretability of the model’s de-
cisions. Stock market trends are used as a case 
study for demonstration. This solution can be 
broadly applied to other time series in engineer-
ing and science. 

It is hypothesized that a CNN can learn subtle 
shape patterns in candlestick charts corresponding 
to bullish or bearish trends, thus performing effec-
tive classification. It is also posited that visualiza-
tion tools like Grad-CAM++ can identify which 
parts of the chart image are deemed important by 
the CNN, thereby validating that the model’s fo-
cus aligns with domain knowledge (e.g., particu-
lar candlestick formations or support/resistance 
levels). Integrating these techniques contributes 
to the growing knowledge on deep learning for 
time series by showcasing an image-based clas-
sification framework that yields strong predictive 
accuracy and offers human-interpretable insights 
into the model’s reasoning.

BACKGROUND 

Early deep learning applications to time 
series data often employed recurrent neural 
networks or 1D convolutional networks operat-
ing directly on the numerical sequences. More 
recently, there has been a shift toward lever-
aging 2D CNN architectures by transforming 
time series into image-like representations [15, 
16]. This approach benefits from the extensive 
developments in CNN architectures trained on 
image data. Standard techniques for creating 
time series images include recurrence plots, 
which visualize recurrences in a dynamic sys-
tem’s state space, and Gramian Angular Fields 
(GAF), which encode time series values into 
polar coordinate matrices that can be interpret-
ed as textures or images. These methods allow 
patterns in time series (e.g., periodicity, trends, 
anomalies) to manifest as visual textures that a 
CNN can potentially recognize. 

The candlestick chart is a naturally occur-
ring image representation of price data over 
time in financial time series. Each candlestick 
packs four values (open, high, low, close) into 
a single visual element for a given period, and 
a sequence of candlesticks conveys the price 
trajectory with rich detail [17, 18]. Tradition-
al candlestick pattern analysis involves identi-
fying visual motifs (like “hammer”, “doji”, or 
“engulfing” patterns) that traders believe sig-
nal trend reversals or continuations [3, 17, 19]. 
These patterns are essentially shape features in 
the chart, which suggests that a sufficiently tra-
ined CNN might learn to detect them or even 
more complex combinations. 

Chen and Tsai’s GAF-CNN approach con-
firmed that encoding candlestick data as im-
ages can be effective, i.e., their model outper-
formed an LSTM in classifying eight key can-
dlestick patterns, indicating CNNs’ advantage 
in image-based features. Similarly, other works 
have used hybrid models (CNN-LSTM) or mul-
ti-channel images to integrate additional infor-
mation (such as technical indicators) into the 
image classification framework [12, 20].

Beyond finance, image-based time series 
classification has succeeded in various engi-
neering applications. Besides the seismic dam-
age classification example [16], researchers 
have explored machine vision techniques on 
sensor data transformed into images. For ex-
ample, vibration signals from machinery can be 
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converted into spectrograms or wavelet scalo-
grams and then analyzed by CNNs to detect 
faults or operating states. Using image clas-
sification for time series is thus gaining trac-
tion as a general paradigm. A comprehensive 
survey of deep learning for time series classifi-
cation noted the emergence of “shadow imag-
es” techniques and encouraged exploring such 
cross-domain approaches [21]. Overall, the lit-
erature suggests that while CNNs can excel at 
picking out visual features correlated with time 
series behavior, the choice of image encoding 
and the inclusion of complementary data (mul-
tivariate channels, annotations, etc.) are critical 
factors for success [13, 22].

Another important aspect raised in recent 
studies is the interpretability of deep learning 
models on time series. Because CNNs operat-
ing on images are essentially black-box function 
approximators, understanding why a model pre-
dicts a particular trend is valuable for trust and 
insight [23]. Techniques like Gradient-weighted 
Class Activation Mapping (Grad-CAM) and its 
enhanced version, Grad-CAM++, have been ap-
plied to highlight regions of input images most 
influential in a CNN’s decision [24]. Initially 
developed to explain image classifiers in com-
puter vision, these methods can also be used 
when the “image” is a transformed time series. 
For instance, if a Grad-CAM++ heatmap over a 
candlestick chart highlights the last few candles 
as the key focus for an upward trend prediction, 
it aligns with domain intuition that recent price 
actions carry significant weight in short-term 
trends. This study, Grad-CAM++, is incorporat-
ed as an explainability tool to probe the model’s 
behavior, complementing quantitative perfor-
mance with qualitative insights.

In summary, prior work provides both in-
spiration and caution. Deep CNNs can learn 
from image representations of time series and 
achieve high accuracy in pattern recognition 
and trend forecasting tasks [11, 12]. However, 
the efficacy of purely image-based approaches 
can vary depending on the dataset and wheth-
er crucial information is lost or retained in the 
visual encoding. Building on these insights, an 
image-based CNN for trend classification will 
be implemented and evaluated, using a rigor-
ous methodology with special attention paid to 
model interpretability and broader applicability 
in engineering contexts.

MATERIALS AND METHODS 

Sample characteristics and software stack

The study used historical daily stock data 
from ten major publicly traded U.S. companies 
across various sectors, selected to provide diver-
sity in market capitalization and sectoral behav-
ior. The analyzed companies included:
	• Apple Inc. [AAPL],
	• Tesla Inc. [TSLA],
	• Microsoft Corporation [MSFT],
	• Amazon.com Inc. [AMZN],
	• Nvidia Corporation [NVDA],
	• Meta Platforms Inc. [META],
	• Alphabet Inc. (Google) [GOOG],
	• JPMorgan Chase & Co. [JPM],
	• Advanced Micro Devices Inc. [AMD],
	• Bank of America Corporation [BAC].

The dataset spans from February 20, 2020, to 
December 18, 2023, covering nearly four years 
of market activity. Five thousand two hundred 
eighty-three labeled image samples were generat-
ed from candlestick chart segments, representing 
both uptrend and downtrend classifications. The 
number of samples varied slightly by company, 
with Tesla (TSLA) contributing the highest num-
ber of segments (691) and Microsoft (MSFT) the 
fewest (420). This distribution reflects data avail-
ability and volatility differences that are suitable 
for image generation.

To prepare, process, and visualize the finan-
cial time series data, the following Python librar-
ies were used:
	• pandas (v2.2.3): for data loading, manipula-

tion, and preprocessing.
	• mplfinance (v0.12.10b0): to generate can-

dlestick charts with integrated technical 
indicators.

	• ta (v0.11.0): to compute technical analysis 
features such as RSI and MACD.

	• scipy (v1.15.2): for advanced numerical rou-
tines including smoothing and detrending.

	• tqdm (v4.67.1): to monitor the progress of 
data processing and training loops.

	• pillow (PIL) (v11.2.1): for reading, manipulat-
ing, and saving image files in various formats.

This infrastructure enabled efficient genera-
tion and transformation of visual financial rep-
resentations into model-ready image inputs for 
CNN-based trend classification.
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Data and image generation 

For the case study, historical stock market 
data was utilized to create a dataset of candlestick 
chart images labeled with trend outcomes. The 
data consist of daily price records (open, high, 
low, close) for a publicly traded stock over a sub-
stantial period. Each candlestick in a chart cor-
responds to one trading day, capturing the day’s 
price movement range and direction (bullish or 
bearish). Instead of directly using the raw time 
series values, segments of this time series were 
transformed into candlestick chart images, which 
serve as inputs to the CNN model.

A fixed window length N (e.g., 30 days) was 
defined to construct each candlestick chart im-
age. This means each image depicts a sequence 
of N daily candlesticks, providing the model with 
recent historical context. This window was slid 
across the time series to generate multiple train-
ing samples. The candlestick chart for each win-
dow segment was plotted and labeled according 
to the trend on a target day (for instance, whether 
the closing price on day N+1 was higher or lower 
than on day N).

In this way, the classification task is to pre-
dict an uptrend vs. a downtrend for the immedi-
ate next day based on the pattern of the preceding 
N days. The use of images inherently normalizes 
certain aspects of the data. Each chart is drawn 
to fit a consistent image size (with axes scaled to 
the recent data range), allowing the CNN to fo-
cus on shape patterns rather than absolute price 
values. All images were generated with a uni-
form style (white background, colored candle-
sticks, i.e., typically green for up days and red 
for down days) to mimic the visuals used by trad-
ers. Figure 1 provides a schematic illustration of 

the image generation pipeline. The candlestick 
chart and selected technical overlays, including 
Bollinger-like trend channels, MACD oscillator 
lines, and RSI indicators, are rendered. These 
components are visualized within a 100 × 100 
RGB canvas using standardized colors and pro-
portions. The image is not numerically encoded 
but instead visually composed in a trader-like 
style, allowing the CNN to learn from spatial 
and shape-related cues, similar to how human 
analysts interpret such charts.

In addition to the candlestick patterns, 
technical indicators such as relative strength 
index (RSI), MACD, and dynamic trend chan-
nels were visually embedded in the image by 
graphically plotting them in separate panels or 
overlays. RSI and MACD curves were plotted 
below the candlestick chart in separate sub-
areas, using consistent color coding (e.g., blue 
for RSI, green/red for MACD). Trend channels 
were drawn directly onto the candlestick chart 
as filled polygonal bands in a semi-transparent 
color. Thus, the CNN receives a fully rendered 
image containing all relevant visual cues, simi-
lar to how a human trader would interpret chart 
data. No feature values were manually encoded 
into RGB channels or fed as separate inputs; all 
relevant signals were embedded visually in the 
image structure. Every candlestick panel is ren-
dered on a logarithmic price axis to enhance the 
visual salience of percentage-based moves. Be-
fore plotting, the close-price series within each 
window is transformed to natural logarithms, 
so equal vertical distances correspond to equal 
percentage changes. This makes small but mean-
ingful swings in low-priced periods as visible as 
identical percentage swings in high-priced peri-
ods and helps the CNN focus on relative, rather 

Figure 1. Schematic depiction of the image rendering process used to construct CNN input images.
Visualized overlays include trend channels, RSI (blue), and MACD (red/green)
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than absolute, price dynamics. Figure 2 shows 
an example of the candlestick chart input images 
produced from the data, illustrating bullish and 
bearish trends. 

After preparing the images, the dataset was 
split into training, validation, and test sets. It is 
ensured that different periods were represented in 
each subset to test the model’s ability to generalize 
to unseen data. For instance, approximately 70% 
of the images (from earlier portions of the time-
line) were used for training, 15% for validation 
(to tune hyperparameters and avoid overfitting), 
and the remaining 15% (from later portions of the 
timeline) were held out for final testing. Each set’s 
class distribution (uptrend vs. downtrend) was bal-
anced roughly. Before inputting the images to the 
CNN, pixel values were normalized and, if neces-
sary, simple augmentations (such as slight scaling 
or random shifts of the chart within the image) 
were applied to increase robustness. However, be-
cause the candlestick structures must be preserved 
for meaningful patterns, augmentation was used 
sparingly (transformations that would distort the 
candle shapes or temporal order were avoided). 

CNN architecture 

The predictive core of the proposed system 
is a lightweight convolutional neural network 
crafted to the visual statistics of candlestick 
charts. Figure 3 provides a three-dimensional 
“exploded” view of the layer stack; each slab’s 
colour denotes its function (blue = Conv2D, red 
= Batch Normalisation, yellow = Leaky ReLU, 
teal = MaxPooling2D, purple = Flatten, pink = 
Drop-out, orange = Dense). The width of a slab 
is proportional to the number of feature maps or 

neurons, whereas its depth represents the spatial 
resolution after pooling. A legend in the footer of 
the figure identifies the palette.

The network ingests a 100 × 100 × 3 RGB 
chart that depicts a 30-day sliding window with 
technical overlays (RSI, MACD, trend chan-
nels). A trade-off between representational ad-
equacy and computational efficiency drove the 
choice of a 100 × 100 resolution for the input 
images. Larger input sizes, such as the 224 × 224 
resolution commonly used in general-purpose 
image classification tasks (e.g., ImageNet), were 
empirically tested in a limited ablation study. 
However, in the case of candlestick charts, 
which predominantly consist of geometric and 
symbolic patterns (rather than photographic de-
tail), higher resolutions did not yield meaningful 
accuracy gains but significantly increased train-
ing time and risked overfitting. In contrast, the 
100 × 100 format provided sufficient fidelity to 
represent candlestick structures, trend lines, and 
technical overlays, while keeping the number of 
trainable parameters relatively low. Given the 
limited dataset size, this compact size allowed 
faster convergence and better generalization 
while preserving visually discernible features 
necessary for effective CNN learning.

The first convolutional block contains 32 
learnable 3 × 3 kernels. This receptive field 
is large enough to span an entire candlestick 
body yet small enough to preserve the fine 
geometry of wicks; it allows the kernels to 
behave as edge, colour-contrast or micro-pat-
tern detectors. Immediately after convolution, 
Batch Normalisation rescales activations to 
zero mean and unit variance, reducing covar-
iate shift and enabling a higher learning rate; 

Figure 2. Examples of candlestick chart images generated from historical stock data with technical indicators. 
(a) Uptrend segment with increasing price momentum and RSI rising above baseline. (b) Sideways/consolidation 

segment with flat trend and limited directional bias. (c) Downtrend segment with declining price action and 
weakening MACD signals. These images serve as CNN inputs, visualizing recent market behavior including 

trend channels, moving averages, RSI (blue), and MACD lines (green/red)
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the Leaky ReLU activation (α = 0.01) ensures 
a non-zero gradient in the negative half-space, 
preventing the “dying ReLU” problem that oc-
casionally surfaced in early prototypes. A 2 × 2 
max-pool then subsamples the feature map to 
50 × 50 pixels, retaining only the strongest lo-
cal activations and thus embedding a first layer 
of translation invariance.

The second and third blocks repeat this pat-
tern with 64 and 128 filters, respectively. Dou-
bling the channel count at each stage is a de-
liberate design choice: the spatial grid shrinks, 
so representational capacity is recovered by 
increasing depth. In practice, the 64-filter block 
begins to fire selectively on higher-order visual 
words – e.g., a bullish engulfing pair or a doji 
following a strong candle – while the 128-filter 
block responds to motifs that span several con-
secutive days and include contextual cues such 
as volume spikes or indicator crossings. After 
the final pooling, the spatial support is only 12 × 
12, and the tensor size has stabilised at 128 chan-
nels (a total of 18,432 activations per example).

A dropout layer with rate = 0.50 separates 
the convolutional backbone from the dense head, 
randomly deactivating half the feature maps per 
mini-batch and forcing the network to develop re-
dundant, hence more robust, internal codes. The 
tensor is flattened and forwarded to a fully-con-
nected layer of 128 Leaky ReLU neurons. This 
dimension was selected through grid search (32 
/ 64 / 128 / 256); 128 neurons offered the best 
validation accuracy without inflating parameter 
count. A second drop-out (again 50 %) is insert-
ed to prevent co-adaptation in the dense ensem-
ble. The soft-max output layer (2 units) emits a 
probability distribution [prise]; during training 
the model minimises categorical cross-entropy 
with Adam (initial η = 10–3, β1 = 0.9, β2 = 0.999). 
Early-stopping monitors validation loss with a 
patience of five epochs.

To curb over-fitting further, every convolu-
tional kernel is penalised with L2 weight decay 
of 1 × 10–4. The final architecture contains ∼ 0.98 
million trainable parameters, two orders of mag-
nitude fewer than general-purpose backbones 

Figure 3. A three-dimensional schematic of the CNN is used for candlestick chart classification.
The network receives a 100 × 100 × 3 RGB chart, passes it through three convolutional blocks

(Conv → Batch Norm → Leaky ReLU → MaxPool), applies a global drop-out, flattens the feature tensor,
and feeds a dense ReLU layer (128 units) followed by a second drop-out and a 2-unit soft-max output.
Block widths are proportional to the number of filters or neurons; depths indicate the spatial resolution

after successive pooling operations. A legend at the bottom identifies each colour-coded layer type
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such as VGG-16 (14.7 M) or ResNet-50 (25.6 M). 
Despite its frugality, the model attains 92.83% 
test accuracy, an average class-wise F1-score of 
≈ 0.93, and shows no sign of degradation after 30 
unseen trading weeks.

Interpretability experiments corroborate that 
the network has learned domain-relevant con-
cepts. Grad-CAM++ heat-maps peak on the most 
recent five to seven candlesticks – exactly the 
temporal window a human chartist would consult 
– while often ignoring grid lines, axis labels, or 
volume bars, which confirms that the CNN ex-
ploits pattern geometry rather than artefacts of the 
plotting software. Likewise, filter-visualisation of 
the first convolutional layer reveals kernels that 
resemble textbook bullish/bearish bodies, pin 
bars, and hammer silhouettes.

In summary, the architecture balances com-
plexity and parsimony: three convolutional stages 
are deep enough to capture multi-candle structures 
yet shallow enough to train rapidly on a mid-sized 
dataset; batch normalisation and Leaky ReLU ex-
pedite convergence; dual drop-out and weight de-
cay deliver reliable generalisation; and the overall 
parameter footprint fits comfortably on commodi-
ty GPUs, making the approach immediately reus-
able in industrial decision-support pipelines.

Training procedure 

The CNN model was implemented using Py-
thon with the TensorFlow/Keras deep learning 
framework. The model was trained on the training 
set of candlestick images using a supervised learn-
ing approach. The cross-entropy loss function was 

used for optimization (binary cross-entropy for the 
two-class scenario). We chose the Adam optimizer 
with an initial learning rate of 0.001, which gen-
erally provides fast convergence for CNNs. The 
training was performed in mini-batches (with a 
batch size around 32), shuffling the training data at 
each epoch to avoid ordering effects. 

Training was conducted for a maximum of 50 
epochs. However, an early stopping strategy was 
employed by monitoring the validation loss, i.e., 
if the validation loss did not improve for five con-
secutive epochs, training was halted to prevent 
overfitting. The model’s performance was evalu-
ated on the validation set during training after 
each epoch. Figure 4 shows the training history 
plots, including the accuracy and loss curves for 
training and validation sets. The figure shows that 
the model’s training accuracy increases steadily 
while the validation accuracy improves and sta-
bilizes, indicating convergence. The gap between 
training and validation performance remained 
small, suggesting that the model did not severely 
overfit the training data. 

After training, the model version from the ep-
och with the best validation accuracy (or lowest 
validation loss) was selected for final evaluation. 
This model was applied to the independent test 
set to obtain unbiased performance results. Met-
rics were computed, including overall classifica-
tion accuracy, precision, and recall for each class 
and the F1-score. Additionally, to gain insight 
into the model’s performance on each class, we 
generated a confusion matrix summarizing the 
counts of correct and incorrect predictions for up-
trend vs. downtrend classes. 

Figure 4. Training progress of the CNN model. The left plot shows the accuracy of the training and validation 
sets over 50 epochs, and the right plot shows the corresponding loss curves. The model’s performance improves 

rapidly in the first dozen epochs and decreases thereafter. Validation metrics closely track training metrics, 
indicating good generalization without significant overfitting
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Table 1. Classification metrics for the CNN model (uptrend vs. downtrend)  
Class Precision (%) Recall (%) F1-score (%) 

Uptrend 91.86 94.00 92.92 

Downtrend 93.86 91.67 92.75 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
(𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 =  282 + 275
282 + 275 + 25 + 18 = 92.83% 

 

 Note: True Positives (TP): 282, True Negatives (TN): 275, False Positives (FP): 25, False Negatives (FN): 18

Evaluation and interpretability 

Beyond standard accuracy measures, the in-
terpretation of what the trained CNN had learned 
was aimed at. Two approaches were taken, i.e., vi-
sualization of internal CNN features and post-hoc 
explanation of model predictions. For the former, 
the activation maps from the first convolutional 
layer of the network were extracted for some in-
put charts. By plotting these activation maps as 
images, it can be seen that the visual features 
the filters respond to (e.g., one filter might high-
light vertical edges corresponding to candlestick 
wicks, while another might highlight rectangular 
shapes corresponding to candle bodies). Examin-
ing these filter activations can assess whether the 
CNN’s first layer captures meaningful basic ele-
ments of candlestick charts.

The Grad-CAM++ algorithm was applied to 
explain model predictions. Grad-CAM++ uses 
the gradients of the prediction score concerning 
feature maps in the last convolutional layers to 
produce an important heat map. In practice, we 
took a test image (candlestick chart) and com-
puted the Grad-CAM++ heatmap for the pre-
dicted class. This heatmap was then overlaid onto 
the original candlestick chart image to visualize 
which regions (which specific days or candle-
sticks) were considered most influential by the 
model in making its prediction. This technique 
provides a form of explainable AI for time series 
classification, i.e., if the model relies on sensible 
patterns (for example, a cluster of recent red can-
dles when predicting a downtrend), the heatmap 
will highlight those areas, thereby increasing trust 
in the model’s decision. Conversely, suppose the 
highlighted areas are inexplicable or focus on ir-
relevant parts of the image (e.g., the borders or 
an area with no candles). In that case, it might 
indicate the model is picking up spurious cues. 

The following section presents the results of 
the CNN on the test set, along with figures illus-
trating the confusion matrix, sample filter activa-
tions, and Grad-CAM++ explanations.

RESULTS 

Classification performance 

On the held-out test dataset of candlestick 
chart images, the CNN classifier achieved a high 
level of accuracy in distinguishing between up-
trend and downtrend cases. The overall test ac-
curacy was approximately 92.83%, indicating 
that the model effectively learned to recognize 
visual patterns in candlestick sequences that cor-
relate with future trend directions. Table 1 sum-
marizes the model’s numerical performance and 
presents the confusion matrix for the two-class 
classification. As depicted in the matrix, the mod-
el correctly predicted upward trends with a recall 
of 94.00% and downward trends with a recall of 
91.67%. Misclassifications were relatively bal-
anced between the two classes, and no substantial 
bias was observed. Most errors occurred in cases 
where the trend was weak or ambiguous, such as 
marginal upward or downward movements, mak-
ing classification inherently difficult. The model 
also achieved substantial precision and F1-scores 
for both classes. Specifically:
	• Uptrend class:

−	 Precsion: 91.86%
−	 Recall: 91.86%
−	 F1 – score: 92.92%

	• Downtrend class:
−	 Precision: 93.86%
−	 Recall: 91.86
−	 F1 – score: 92.75%

These results demonstrate that the CNN 
model maintains high classification quality 
across both trend categories, with minimal devi-
ation in performance. This provides compelling 
evidence for the suitability and effectiveness of 
image-based deep learning models, particularly 
convolutional neural networks, for time series 
analysis in financial applications.

Comparing these results to other approach-
es, the proposed image-based CNN performs 
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competitively. The literature notes that some tra-
ditional time series models or machine learning 
methods (like support vector machines or gradient 
boosting on technical indicators) report accuracies 
in the 60–70% range for similar trend prediction 
tasks [12]. CNN’s accuracy (well above chance 
50%) indicates that the visual pattern recognition 
approach captures useful information. It is also on 
par with recent deep learning results; for exam-
ple, the ~ 70% accuracy reported by [25] for pure 
image-based models is in line with our findings, 
though the proposed model achieved slightly high-
er accuracy, possibly due to differences in dataset or 
windowing strategy. Meanwhile, the exceptionally 
high accuracy (~ 99%) reported by Sood et al. [12] 
involved additional steps like incorporating known 
candlestick patterns and technical indicator con-
firmation, which the model did not explicitly use. 
This suggests that there is still room to improve 
by enriching the image inputs or combining data 
sources, but even without those augmentations, the 
CNN demonstrated substantial predictive power. 

Specific cases of misclassification were also 
examined to understand their nature. Many images 
the model got wrong were characterized by side-
ways trends or volatile whipsaw movements, where 
even human experts might be uncertain about the 
trend. In a few instances, the model predicted an 
uptrend when the actual next day was marginally 
down (or vice versa), likely because the visual pat-
tern resembled typical bullish (or bearish) setups 
except for an unexpected minor reversal. These 
errors highlight the inherent difficulty in trend pre-
diction for borderline cases and suggest that no 
model can be 100% accurate in such scenarios due 
to noise and inherent market unpredictability. 

CNN filter activations 

The activation maps from the first convolu-
tional layer for sample input charts were visual-
ized to gain insight into what the CNN learned 
about visual features. Figure 5 depicts a set of ac-
tivations (feature maps) for one candlestick chart 
image passed through the first layer of the CNN. 
Each small image in the figure corresponds to the 
output of one convolutional filter in that layer, 
showing which parts of the candlestick chart trig-
gered that filter. It can be observed that different 
filters have learned to detect different primitive 
shapes in the chart. For example, one filter acti-
vation highlights the vertical line segments in the 
image, effectively detecting the candlestick wicks 

(shadows). Another filter seems to respond strong-
ly to the rectangular body areas of the candles, 
distinguishing between filled (red, bearish) and 
hollow (green, bullish) parts. However, another 
filter activation may emphasize edge transitions 
or corners, which could correlate with the tops or 
bottoms of candlestick bodies (important for iden-
tifying patterns like “morning star” or “hammer” 
where a small body and long wick are significant). 

These activation visualizations confirm that 
CNN indeed focuses on relevant visual features. 
In essence, the network’s early layers function as 
feature extractors that turn the raw pixel data of 
the chart into representations that emphasize in-
formative structures (like the shape and color of 
candlesticks, or sequences thereof). The deeper 
layers (not directly visualized here) would build 
on these to detect composite patterns – for ex-
ample, a sequence of increasing green candles 
or an arrangement of alternating reds and greens 
that might signal consolidation. The fact that 
we can interpret the first-layer filters in terms of 
known chart elements adds some transparency 
to the model, i.e., it suggests the CNN’s learning 
is aligned with human-understandable chart fea-
tures rather than arbitrary artifacts. 

Grad-CAM++ explanations 

While filter activations tell us what can be 
detected by the model, what parts of a specific 
image were pivotal for a particular prediction 
are shown by Grad-CAM++ heatmaps. Grad-
CAM++ was applied to several correctly classi-
fied test images to see if the model’s focus corre-
sponds to reasonable technical analysis intuition. 
An example is shown in Figure 6, where a can-
dlestick chart image (classified as an “uptrend” 
by the CNN) is overlaid with the Grad-CAM++ 
heatmap. The heatmap is color-coded (from blue 
= low importance to red = high importance) to 
indicate which regions of the chart contributed 
most strongly to the model’s prediction of an 
upcoming uptrend. In this instance, the model 
concentrated on the most recent portion of the 
chart, specifically, the cluster of candlesticks at 
the rightmost end. Within that cluster, a particu-
lar pattern of candles (highlighted in red) appears 
to have driven the prediction. Notably, those 
highlighted candles include a sequence of small-
bodied, predominantly green candles following a 
noticeable dip, which resembles a known bullish 
signal where a downward swing is followed by 
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Figure 5. Visualization of CNN filter activations (feature maps) from the first convolutional layer
for a given candlestick chart input. Each sub-image corresponds to one filter’s output.

Brighter regions indicate stronger activation. Certain filters pick up on specific chart elements
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a recovery (sometimes referred to as a “morning 
star” formation or simply a bullish pullback re-
versal). The CNN likely picked up on this subtle 
configuration to indicate an upward turn. 

In this example, the model correctly pre-
dicted a downtrend (confidence: 0.86), primarily 
focusing on the most recent sequence of bear-
ish candles toward the right edge of the image. 
The red-highlighted areas indicate high feature 
importance as interpreted by the CNN, suggest-
ing that the decision was influenced by the post-
peak dip and closing formations, consistent with 
technical trading heuristics. Earlier portions of 
the chart contribute less, as reflected by their 
predominantly blue shading.

The Grad-CAM++ results across multiple 
samples generally revealed a sensible pattern, i.e., 
the model emphasizes the last several candles in 
the chart window, which aligns with the idea that 
recent price action most indicates the immediate 
trend. The heatmaps often highlighted recent red 
candles or a bearish engulfing pattern in predicted 
downtrends. In cases of uptrends, the focus was 
on recent green candles or bullish reversal pat-
terns after a dip. This proves that the CNN’s in-
ternal reasoning is not a mysterious “black box” 
but corresponds to recognizable visual cues ex-
perienced traders use. Moreover, it helps validate 
that the model is not basing its decisions on spu-
rious parts of the image (such as labels, axes, or 
random noise) – a potential concern when using 
images. All heatmaps concentrated on the region 
where the candlesticks were, and none indicated 
reliance on non-informative areas. 

Together, the filter activation analysis and 
Grad-CAM++ explanations give us confidence 
that the CNN is both practical and reasonable in 
how it derives its predictions. It has learned to 
parse the chart into meaningful components and 
focus on the most relevant time series segments 
for making a trend call. This interpretability is 
particularly important for deploying such a mod-
el in practice, as it allows analysts to double-
check the model’s rationale and increases trust 
in automated predictions. 

DISCUSSION 

It is demonstrated by experiments that trans-
forming time series data into candlestick chart 
images and applying a CNN is a viable approach 
to trend classification. The model accurately pre-
dicted short-term stock trends (up vs. down) from 
visual patterns alone. This contributes to the grow-
ing evidence that deep learning can extract com-
plex features from time series when provided in a 
two-dimensional format [8, 10]. In case, combina-
tions of candlestick shapes and sequences that cor-
relate with bullish or bearish outcomes were likely 
learned to be recognized by the CNN, automating 
what might be done by eye by a technical analyst, 
but with greater consistency and speed.

One notable aspect is that the approach 
required minimal feature engineering – no 
hand-crafted technical indicators were calculat-
ed, and chart patterns were not explicitly labeled 
in the training data. Instead, the CNN inferred 

Figure 6. Grad-CAM++ visualization of CNN attention during trend prediction 
(a) Original candlestick chart image with technical overlays (trend channel, MACD, RSI);

(b) Grad-CAM++ activation heatmap superimposed on the input chart, highlighting regionswith strong influence 
on the model’s prediction; (c) Isolated heatmap visualization showing spatial saliency distribution
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relevant features directly from raw price charts. 
This aligns with the promise of deep learning to 
uncover patterns that may be difficult to quantify 
manually. At the same time, it places the burden 
on having sufficient training data for the model to 
learn from. In the study, the amount of historical 
data was enough for the model to generalize well, 
as evidenced by the validation and test perfor-
mance. In scenarios with limited data, one might 
consider data augmentation or transfer learning 
(e.g., pre-training on a large set of generated fi-
nancial charts or related time series images) to 
boost performance. 

Some consistency and discrepancies are ob-
served when comparing the findings of other 
studies. High accuracy is encouraging and in line 
with Chen and Tsai’s pattern classification results 
(around 90% for eight patterns) [10], suggesting 
that visual cues in charts are indeed learnable by 
CNNs to a high degree of precision. On the oth-
er hand, Ding et al.’s ~70% accuracy report for 
pure image-based models might seem lower [4]. 
However, they dealt with a more diversified set of 
assets (stocks, forex, crypto) and aimed to predict 
a more general notion of “market strength” [14].

In a more focused context (one stock, near-
term trend), the patterns might be more internally 
consistent, allowing higher accuracy. Additional-
ly, differences in window length, image resolu-
tion, and class definition can impact results signif-
icantly – these hyperparameters require tuning for 
each application. For example, N widow’s days 
were: if N is too small, the chart may not contain 
enough information to discern a trend, but if N 
is too large, the older part of the chart may intro-
duce noise or irrelevant history. Performed Grad-
CAM++ analysis indicated the model naturally 
emphasized the last part of the window, hinting 
that one could potentially reduce N and maintain 
performance, an avenue for future optimization. 

The interpretability analysis (filter activations 
and Grad-CAM++) provided reassurance that the 
CNN’s behavior aligns with domain knowledge. 
This is important because financial decisions of-
ten require an explanation. If an artificial intelli-
gence model were to be used by traders or ana-
lysts, they would want to know why it forecasts a 
particular trend. Grad-CAM++ visualizations can 
provide a rationale – e.g., “the model predicts an 
uptrend because it sees a particular bullish pattern 
in the last few days”. This explanation can bridge 
the gap between AI and human decision-making, 
making integrating the tool in practice easier. It 

also helps identify when the model might be mak-
ing an error for the wrong reasons (though evi-
dence was not found in research tests – the focus 
areas were always logical chart regions). 

Despite the positive results, there are several 
limitations and considerations to discuss. First, 
the scope of the experiment was a binary clas-
sification of short-term trend on a single stock. 
Market dynamics can be far more complex; ex-
tending this approach to multi-class classification 
(e.g., predicting up, down, no significant change, 
or predicting different magnitudes of movement) 
would increase its utility and difficulty. Prelim-
inary exploration suggests that distinguishing a 
“no change” class is tricky because slight ups/
downs might visually resemble flat movements. 
Another limitation is that the proposed model 
does not incorporate fundamental data or macroe-
conomic context, which often drives longer-term 
trends. It purely looks at price history in chart 
form. For many engineering applications, simi-
larly, one might need to integrate multiple data 
streams (for example, temperature and pressure 
sensor readings together) – one could encode 
those as multi-channel images (RGB channels or 
more) to feed a CNN, which is a promising direc-
tion supported by literature. 

From a methodological perspective, one 
challenge with image-based time series analysis 
is ensuring that important quantitative informa-
tion is not lost in translation. Plotting candle-
sticks involves decisions like scaling the y-axis 
(price axis). Inconsistent scaling could trick the 
CNN – for instance, a slight price fluctuation in 
a zoomed-in chart might look like a big move. 
This was addressed by fixing the window length 
and letting the y-axis scale adapt to each win-
dow’s range, so the CNN learns pattern shape ir-
respective of absolute scale. In other applications, 
one might need to standardize this (maybe using 
fixed scales or adding reference gridlines to imag-
es) to avoid misinterpretation by the model. The 
advantage, though, is that CNNs are somewhat 
scale-invariant due to pooling and learned filters; 
the model likely learned shape patterns that are 
robust to moderate variations in scale. 

Finally, while the study emphasized stock 
market data as a case study, the approach has 
broad applicability. Any time series data that can 
be visualized meaningfully – whether it is an en-
gine’s vibration frequency spectrum, an electro-
cardiogram (ECG) signal plotted over time, or a 
meteorological time series depicted in a colored 
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map – can potentially be fed into a CNN for clas-
sification or anomaly detection. Prior works have 
shown CNNs distinguishing heartbeat arrhythmi-
as from ECG plots, or identifying machinery faults 
from spectrograms, echoing the same underlying 
principle we applied. The key is to tap into an ex-
tensive repository of computer vision techniques 
and architectures using images. This opens oppor-
tunities to use pre-trained CNNs (on massive im-
age datasets) as feature extractors for time series 
images, or to leverage visualization-driven meth-
ods for debugging and improving models. 

In conclusion, the discussion underscores that 
image-based deep learning is a powerful tool for 
time series analysis. However, it should be applied 
carefully, considering its assumptions and lim-
itations. The success seen here with candlestick 
charts encourages further exploration, such as 
combining image-based features with traditional 
time-series features (a form of model ensemble 
or feature fusion) to achieve even better results, 
possibly. Additionally, ensuring interpretability 
through methods like Grad-CAM++ makes such 
models more transparent and likely to be adopted 
in real-world decision-making. 

CONCLUSIONS 

This paper presented an approach to time series 
trend classification using deep learning on image 
representations of the data. A convolutional neural 
network’s strength in visual pattern recognition was 
leveraged to predict short-term market trends by 
converting stock price series into candlestick chart 
images. The CNN model achieved high classifica-
tion accuracy on out-of-sample data, confirming 
that significant predictive signals exist in the visual 
patterns of candlestick charts. We demonstrated 
that the model’s learned features correspond to 
intuitive chart components (such as candle shapes 
and arrangements). Using Grad-CAM++, the study 
provided visual explanations for the model’s pre-
dictions, enhancing trust in the results. 

The implications of these findings extend be-
yond the stock market example. The methodol-
ogy can be generalized to other fields where time 
series data can be visualized – for instance, in-
dustrial sensor data, medical signals, or climate 
patterns – enabling the application of advanced 
image-based deep learning models in those do-
mains. This cross-pollination of techniques al-
lows researchers and practitioners to utilize CNN 

architectures, which are well-developed in com-
puter vision, for time-oriented data analysis. Ad-
ditionally, the built-in interpretability tools from 
the vision domain (like class activation map-
pings) can be repurposed to aid understanding of 
time series models, as shown. 

Future work will explore several directions to 
build on this research. One direction is to incor-
porate multi-channel images (for example, plot-
ting multiple related time series as separate color 
channels or panel sub-images) so that the CNN 
can learn from multiple signals jointly. This could 
enhance performance in complex scenarios, such 
as considering price and trading volume charts 
together for trend prediction. Another perspective 
is integrating the proposed image-based approach 
with traditional numerical features, i.e., a hybrid 
model could take raw price sequences (or techni-
cal indicators) and candlestick images as inputs, 
potentially marrying the strengths of both repre-
sentations. Moreover, evaluating the approach on 
different types of assets (commodities, cryptocur-
rencies) or even non-financial time series will help 
assess its generality. Lastly, from an interpretabil-
ity standpoint, we plan to investigate other expla-
nation techniques (such as SHAP or LIME adapted 
for images) to cross-verify what the CNN learns, 
aiming to solidify further confidence in deploying 
such models in decision-critical applications. 

In summary, converting time series data into 
images for deep learning is a promising strategy 
that bridges time-series analysis and computer 
vision. The study confirms that a CNN can ef-
fectively classify trends from candlestick chart 
images and that its decision process can be trans-
parent. This contributes to the toolkit of advanced 
signal processing and prognostics in engineering 
and finance, opening up new possibilities for ac-
curate and explainable predictive analytics. 
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