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INTRODUCTION

Modelling of technical and organizational 
processes plays a key role in modern produc-
tion and maintenance management systems. Not 
only does it provide a better understanding of 
the dynamics of the operation of machines and 
production lines, but it also makes it possible to 
simulate different operating scenarios and assess 
the impact of parameter changes on the efficien-
cy of the overall system. Mathematical, simula-
tion and machine learning based models are in-
creasingly used to analyze and predict complex 
environmental phenomena, such as the metabo-
lism of aquatic ecosystems, pollutant emissions 
or the efficiency of recycling processes [1–3]. In 
the literature, one finds both approaches based on 
deterministic and simulation models (e.g., En-
terprise Dynamics) and statistical or regression 

methods to predict system and non-system be-
havior based on historical data [3–6]. The inte-
gration of modeling with advanced data analyt-
ics and machine learning opens up new possi-
bilities for predictive maintenance, enabling not 
only the detection of potential failures, but also 
the optimization of service schedules and the 
minimization of operating costs [8–10].

Predictive maintenance (PdM) has become a 
key strategy in industrial applications to minimize 
unplanned downtime and operational costs. Us-
ing sensor data and machine learning (ML). PdM 
enables early detection of equipment failures and 
optimizes maintenance schedules [11]. Tradi-
tional approaches such as time-based or reactive 
maintenance are increasingly being replaced by 
data-driven solutions that analyze variables such 
as temperature, vibration and machine condition 
to predict maintenance needs [12–14].
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In recent years, PdM solutions have increas-
ingly been realized with the direct use of edge de-
vices, such as PLCs or smart sensors [15]. This 
allows data to be processed and predictions to be 
made in real time, minimizing latency and the 
need to send data to the cloud. Thus, even with 
limited computing resources, state-of-the-art al-
gorithms, including neural networks, are effi-
ciently implemented on compact industrial plat-
forms [16]. Recent research in machine learning 
has demonstrated the effectiveness of algorithms 
such as decision trees, neural networks, or SVM 
support vector machines for PdM tasks. How-
ever, complex architectures are most often used 
to achieve high accuracy, except for analyses 
related to resource-constrained industrial condi-
tions [17]. Table 1 summarizes the research on 
predictive maintenance that serves as a reference 
point for this article and the models analyzed in 
it. It highlights the variety of machine learning 

algorithms, levels of model complexity, and ap-
plication domains explored in the literature.

Table 1 summarizes a selection of publica-
tions on predictive maintenance, ranging from 
simple, interpretable algorithms (e.g., decision 
trees, logistic regression, SVM, KNN) to ad-
vanced deep learning models (LSTM, CNN, or 
transforms). The differences in the above studies 
are the level of complexity of the models and the 
domain of application, ranging from manufactur-
ing to water infrastructure to aviation. The results 
of these studies show that classical methods often 
achieve high accuracy (from 85.2% to over 99%) 
and F1 scores above 84.8%, with low to moderate 
training and inference time, making them suitable 
for mobile and edge deployments. In contrast, 
more advanced approaches, i.e., deep learning, 
while achieving accuracy of 92.2–96.6% and F1-
score of 95.9–97.1%, have higher computational 
resource requirements. Much of the literature 

Table 1. Overview of machine learning approaches in predictive maintenance across studies and application 
domains

Study Study 
type Machine learning algorithms used Model complexity level Application domain

[18] Empirical

Support vector machine (SVM), linear 
discriminant analysis (LDA), random forest 
(RF), decision tree (DT), k-Nearest neighbor 
(kNN)

Simple/interpretable Manufacturing (bearings)

[19] Empirical

Recurrent neural network (RNN), long short-
term memory (LSTM), gated recurrent unit 
(GRU), convolutional neural network (CNN), 
transformer, hybrid transformer-GRU

Advanced deep learning/
hybrid

Water infrastructure 
(pumps)

[20] Empirical
Logistic regression, support vector machine 
(SVM), random forest (RF), XGBoost, long 
short-term memory (LSTM)

Mixed (simple and 
advanced) Industrial (ball bearings)

[12] Empirical
Logistic regression, support vector machine 
(SVM), random forest (RF), XGBoost, long 
short-term memory (LSTM)

Mixed (simple and deep 
learning) Manufacturing

[21] Review

Deep learning architectures: Multilayer 
perceptron (MLP), convolutional neural 
network (CNN), recurrent neural network 
(RNN), long short-term memory (LSTM), 
gated recurrent unit (GRU), deep belief 
network (DBN), restricted Boltzmann machine 
(RBM), autoencoder (AE), variational 
autoencoder (VAE), generative adversarial 
network (GAN)

Advanced deep learning Manufacturing (varied)

[22] Empirical Deep neural network (DNN), recurrent neural 
network (RNN) Advanced deep learning Manufacturing (machines)

[23] Empirical Multi-head attention (transformer), long short-
term memory (LSTM) Advanced deep learning Manufacturing (turbofan 

engines)

[24] Empirical Compressed recurrent neural networks 
(RNNs)

Advanced deep learning 
(resource-constrained)

Manufacturing (induction 
motors)

[25] Empirical
Decision tree (DT), k-Nearest neighbor (kNN), 
support vector machine (SVM), random forest 
(RF), AdaBoost, naive bayes (NB), XGBoost

Simple/interpretable Manufacturing (smart 
maintenance)

[26] Empirical

Deep learning ensemble (Neural Network), 
tree ensembles, support vector machine 
(SVM), gradient boosting machine (GBM), 
random forest (RF)

Mixed (simple and 
advanced) Aviation (turbofan engines)
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has focused on maximizing prediction accuracy 
without always considering the practical aspects 
of implementation, such as error cost, predic-
tion and training times, or model size [27]. De-
spite the dynamic development of PdM methods, 
there remains a significant gap in the literature for 
evaluating models that balance predictive perfor-
mance with computational power and practical 
approaches to implementation [28]. Especially in 
the context of a limited number of key input vari-
ables and implementation aspects in industrial en-
vironments with limited computing resources [29]. 
Much of the research relies on extensive feature 
sets or high-frequency sensor data, which may not 
be feasible in legacy systems or environments with 
limited data infrastructure [30].

This study fills a gap in the literature by com-
paring the effectiveness and efficiency of six 
ML algorithms (decision trees, neural networks, 
SVM, KNN, naive bayes, and logistic regression) 
for the task of machine maintenance prediction. 
The novelty of the study lies in the focus on three 
fundamental and easily measurable input vari-
ables: temperature, vibration, and machine state. 
In addition to standard classification metrics such 
as accuracy, F1-score, and AUC, the evaluation 
also includes practical aspects relevant to real-
world industrial use, such as training time, pre-
diction speed, and model size. This comprehen-
sive evaluation provides insight not only into the 
predictive capabilities of the models, but also into 
their applicability in time-critical and resource-
constrained environments.

RESEARCH METHODOLOGY

The objective of the modeling task was to pre-
dict whether a given machine instance requires 
maintenance, based on key indicators measured 
during its operation. The goal was to develop an 
accurate, efficient, and deployable classification 
model capable of distinguishing between normal 
operating conditions and those requiring preven-
tive intervention.

All models were developed and evaluated us-
ing a consistent dataset consisting of 90,000 train-
ing observations and 10,000 test observations. 
Each instance included three predictors (tempera-
ture, vibration, machine condition) and a binary 
response variable (maintenance required) repre-
senting two classes: 0 and 1 [31]. The variable 
“temperature” was measured in degrees Celsius 

in the range of 20 °C to 120 °C. “Vibration” was 
measured in mm/s in the range 0.1 to 10 mm/s. 
The “machine condition” was coded as a discrete 
variable: 0 (normal condition), 1 (warning con-
dition), 2 (emergency condition). The response 
variable “maintenance required” was binary (0 – 
no need, 1 – service intervention required).

To ensure robustness and comparability be-
tween classifiers, each model configuration was 
validated using a 5-fold cross-validation strategy. 
This approach allowed estimation of generaliza-
tion performance while mitigating variance due 
to data partitioning. Final performance metrics 
were obtained on the independent test set after re-
training the best performing configurations on the 
full training data. 

The three input features used for classifica-
tion represented distinct data types. Temperature 
and vibration were treated as continuous numeri-
cal variables and were standardized using z-score 
normalization to improve the stability and conver-
gence of training. In contrast, machine status was 
a categorical feature encoded as integer values 
(0, 1, 2), reflecting different discrete operation-
al modes of the machine. As such, this variable 
was excluded from standardization and directly 
passed to models that can natively handle cate-
gorical inputs. For classifiers requiring numerical 
inputs (e.g., SVM, logistic regression), the encod-
ed form was used without further transformation. 

The dataset exhibited a naturally imbalanced 
class distribution, with approximately 80.3% of 
observations labeled as class 0 (no maintenance 
required) and 19.7% as class 1 (maintenance re-
quired). This imbalance reflects typical industrial 
conditions, where failure or maintenance events 
are relatively rare. The same distribution was pre-
served in both the training and test sets. Despite 
this imbalance, no synthetic resampling tech-
niques were applied. Instead, model performance 
was assessed using metrics sensitive to imbalance, 
such as the F1 score and ROC AUC, and confu-
sion matrices were analyzed to evaluate the trade-
off between false positives and false negatives.

The following classification algorithms were 
evaluated in this study: decision trees, neural net-
works, support vector machines (SVM), k-Near-
est neighbors (KNN), naive bayes, and logistic 
regression.

The decision tree classifiers were designed 
to evaluate the influence of model complexity on 
classification accuracy. The split criterion was 
consistently defined using the Gini diversity index, 
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while surrogate decision splits were disabled in all 
models. Three variants were examined, differing in 
the maximum number of splits allowed: 4, 20, and 
100. These limits reflected increasing tree depth 
and thus increasing model capacity. The goal was 
to investigate the balance between underfitting and 
overfitting as a function of tree granularity.

Fully connected feedforward neural networks 
were developed in several configurations to as-
sess the effect of architectural complexity. The 
number of hidden layers was varied from one to 
three, and the size of the hidden layers was test-
ed with 10, 25, and 100 neurons. Each network 
used the ReLU activation function, and training 
was limited to a maximum of 1000 iterations. No 
regularization was applied, as the regularization 
parameter λ was set to zero for all models. All 
input features were standardized prior to training 
to improve the stability and convergence rate of 
the optimization. This range of configurations al-
lowed the evaluation of depth and width trade-
offs in nonlinear representation learning.

Support vector machine classifiers were 
analyzed using different kernel functions and 
regularization parameters. Radial basis function 
(Gaussian) kernels were tested with kernel scales 
of 0.43, 1.7, and 6.9, while all configurations ap-
plied a constant box constraint level of 1. In ad-
dition, linear, quadratic, and cubic kernel variants 
were implemented with automatic kernel scaling 
and the same regularization settings. The classi-
fication scheme used the one-vs-one strategy for 
binary classification. Predictor standardization 
was applied throughout, with the exception of 
kernel expansion variants. The purpose of these 
experiments was to explore the ability of different 
kernel mappings to transform the input space for 
optimal separation.

The K-Nearest Neighbors classifiers were 
configured by varying the number of neighbors, 
distance metrics, and weighting schemes. The 
number of neighbors was set to 1, 10, or 100 to 
observe the effect of local versus more general-
ized neighborhood structures. Distance metrics 
included Euclidean, Minkowski with a cubic ex-
ponent, and cosine similarity, while the weight 
applied to neighbor contributions followed either 
an equal weighting scheme or a squared inverse 
weighting function. All KNN models were trained 
on standardized data to avoid scale bias. These 
variations facilitated a comprehensive investiga-
tion of locality-sensitive classification behavior.

Two probabilistic models based on the 
Naive Bayes assumption were constructed to 
evaluate generative approaches to classifica-
tion. One model used kernel density estimation 
with Gaussian kernels for continuous predic-
tors, while the other relied on the assumption 
of normally distributed numerical features. In 
both cases, no categorical variables were used, 
and the kernel-based variant did not include data 
standardization, while the Gaussian model op-
erated under standard preprocessing conditions. 
These models allowed the assessment of distri-
butional assumptions and their impact on perfor-
mance in a low-dimensional feature space.

Two logistic regression models were used 
to represent discriminative linear classification 
strategies. The first, called efficient GLM logistic 
regression, used automatic selection for the op-
timization solver and regularization technique, 
along with a beta tolerance of 0.0001 to control 
convergence. The second, Binary GLM Logistic 
Regression, used a default configuration with no 
user-defined hyperparameters. Both models were 
used to examine the effectiveness of linear sepa-
ration in binary classification under standardized 
data input conditions. In order to identify the 
best-performing classification model among the 
architectures tested – namely decision trees, neu-
ral networks, SVM, KNN, naive bayes, and lo-
gistic regression – a structured evaluation proce-
dure based on multiple performance metrics was 
applied. These metrics were chosen to provide a 
comprehensive assessment of both predictive ac-
curacy and computational efficiency, while taking 
into account potential class imbalance and practi-
cal deployment constraints. The primary metric 
used for model comparison is classification accu-
racy on the test set, defined as the proportion of 
correctly classified observations. It is calculated 
using the following formula:

	 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇=𝐹𝐹𝐹𝐹=𝐹𝐹𝐹𝐹 (1) 

 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (2) 
 
𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (3) 
 

	 (1)

where:	TP and TN represent the counts of true 
positives and true negatives, while FP and 
FN denote false positives and false nega-
tives, respectively. 

Accuracy was evaluated on both the valida-
tion folds (via 5-fold cross-validation) and the in-
dependent test set. The test accuracy serves as the 
primary indicator of generalization capability.
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Complementary to accuracy, the error rate 
quantifies the proportion of incorrect predictions 
and is defined as:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇=𝐹𝐹𝐹𝐹=𝐹𝐹𝐹𝐹 (1) 

 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (2) 
 
𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (3) 
 

	 (2)

A lower error rate reflects fewer misclassifica-
tions and provides an alternative view on model 
precision, particularly in high-accuracy scenarios.

To address potential limitations of accuracy 
in imbalanced class scenarios, the weighted F1 
score was used as a secondary but critical perfor-
mance metric. This score incorporates both preci-
sion and recall through the harmonic mean:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇=𝑇𝑇𝑇𝑇=𝐹𝐹𝐹𝐹=𝐹𝐹𝐹𝐹 (1) 

 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (2) 
 
𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (3) 
 

	 (3)

The weighted variant adjusts the contribution 
of each class in proportion to its support in the 
data set. This is particularly useful for binary clas-
sification tasks with unequal class representation. 
A high F1 score indicates that the model has both 
low false positive and low false negative rates.

To evaluate the practical usability of each 
model, prediction speed (measured in observa-
tions per second), training time (in seconds), and 
model size (in bytes) were included as additional 
evaluation dimensions. High prediction speed is 
critical in real-time systems or large-scale deploy-
ment environments. Reduced training time and 
model size are beneficial for resource-constrained 
applications and iterative development workflows.

In addition to the scalar evaluation metrics, 
each classifier was evaluated using the confusion 
matrix, which summarizes the performance of 
the model by reporting the number of correctly 
and incorrectly classified instances for each class. 
For a binary classification problem with classes 
labeled 0 and 1, the confusion matrix takes the 
form shown in Figure 1, where:
	• TP (true positives): the number of class 1 in-

stances correctly predicted as class 1,
	• TN (true negatives): the number of class 0 in-

stances correctly predicted as class 0,
	• FP (false positives): class 0 instances incor-

rectly predicted as class 1,
	• FN (false negatives): class 1 instances incor-

rectly predicted as class 0.

The selection of the six classification methods 
- decision trees, neural networks, support vector 
machines, k-Nearest neighbors, naive bayes, and 
logistic regression-was guided by their comple-
mentary algorithmic properties and widespread 
use in practical applications. Each represents a 

distinct family of learning paradigms: tree-based 
methods are interpretable and fast, neural net-
works are capable of capturing complex nonlin-
ear relationships, SVMs offer strong performance 
in high-dimensional spaces, and KNN provides 
instance-based learning with minimal assump-
tions. Logistic regression serves as a strong linear 
foundation, while Naive Bayes provides probabi-
listic inference under independence assumptions. 
Together, these models provide a representative 
benchmark across the spectrum of complexity, 
interpretability, and computational cost, allow-
ing for a thorough and balanced comparative 
evaluation.

RESULTS

Six machine learning models were used to 
predict machine maintenance needs: decision 
tree, naive Bayes classifier, KNN, neural network, 
logistic regression, and layered neural network. 
All models were trained on the same dataset with 
three input variables. 

The best performing decision tree model cor-
responded to the coarse tree configuration, de-
veloped with a maximum of four allowed splits 
and using the Gini diversity index as the splitting 
criterion. Among neural networks, the highest 
accuracy was achieved by a model with a single 
hidden layer of 25 neurons. In the support vector 
machine category, the most effective model used 
a radial basis function (Gaussian) kernel with a 
kernel scale of 0.43 and a box constraint level of 
1. Classification was performed using a one-vs-
one multiclass coding scheme with standardized 

Figure 1. General model of the matrix



38

Advances in Science and Technology Research Journal 2025, 19(11), 33–44

input data. The optimal k-Nearest neighbors 
model was configured with 10 neighbors, using 
the Euclidean distance metric and squared inverse 
distance weighting; input features were also stan-
dardized. Within the Naive Bayes group, the best 
results were obtained using a custom implemen-
tation based on kernel density estimation with a 
Gaussian kernel. Finally, the most effective logis-
tic regression model followed the Efficient Lo-
gistic Regression setup with automatic choice of 
solver and regularization strategy, with automatic 
optimization of the regularization strength and a 
relative coefficient tolerance (beta tolerance) of 
0.0001 to ensure convergence. The results for the 
models are shown in Table 2.

The highest prediction accuracy on the test 
set was achieved by the decision tree and neural 
network models, each of which exceeded 98.2% 
accuracy. Their results were also accompanied 
by the lowest error rates (1.76–1.77%) and the 
highest values of the F1 score measure (98.23–
98.24%), indicating their high performance in 
maintenance needs prediction tasks. 

In particular, the decision tree model offers a 
favorable balance between accuracy and compu-
tational efficiency. It not only achieved the highest 
prediction speed (more than 421,000 observations 
per second) and the shortest training time (5.49 s), 
but also the smallest model size (4702 bytes). Its 
speed was significantly higher than the other mod-
els, including the neural network, which, while 
also effective, took more than 2300 seconds to 
learn and had a larger model (6718 bytes).

The Neural Network model achieved very 
similar predictive performance (98.23% accura-
cy), but with a much longer training time (2372 
seconds) and a larger model size (6718 bytes). Its 
prediction speed was about 277,000 observations 

per second, which also makes it practical, although 
less efficient than the Decision Tree model. 

SVM and KNN models also provided high 
predictive performance, with test accuracies above 
97.6% and F1 scores above 97%. Naive Bayes 
and logistic regression showed lower predictive 
performance, with test accuracies of 96.34% and 
92.83%, respectively, and higher error rates. Lo-
gistic regression, although efficient in terms of 
learning time (~ 34 sec) and model size (11573 
bytes), had the lowest F1 scores, indicating a 
higher tendency to misclassify minority classes - 
an important factor in maintenance prediction sce-
narios where false negatives can be costly.

The best models (decision tree, NN) achieved 
≈ accuracy (~ 98.2%) in the F1 test set, confirm-
ing their balanced performance across all classes. 
In addition, the Tree model showed the highest 
computational efficiency, making it the most 
practical choice for predictive systems in indus-
trial applications.

Figure 2 presents the ROC curves for all de-
veloped models, illustrating their class-separat-
ing capacity independently of the classification 
threshold. All models, except logistic regres-
sion, achieved AUC scores above 0.95, confirm-
ing their ability to distinguish between positive 
(maintenance) and negative (non-maintenance) 
classes. The decision tree showed an AUC = 
0.9553, achieving TPR = 1 for class ‘0’ and FPR 
≈ 0.089 (TPR ≈ 0.91 for class ‘1’), demonstrat-
ing excellent class separation with minimal false 
alarms. The neural network model (medium) 
achieved an AUC = 0.9543, with an operating 
point identical to the decision tree - TPR = 1 
and FPR ≈ 0.089 for class ‘0’ and TPR ≈ 0.91 
with FPR = 0 for class ‘1’, indicating high sen-
sitivity and an excellent balance between de-
tecting maintenance cases and avoiding false 

Table 2. Evaluation metrics and runtime characteristics
Model Decision tree Neural network SVM KNN Naive Bayes Logistic regression

Accuracy % (validation) 98.36 98.35 98.23 97.72 96.31 92.87

Error rate % (validation) 1.64 1.65 1.77 2.28 3.69 7.13

F1 score % (validation) 98.36 98.35 98.23 97.72 96.31 92.87

Accuracy % (test) 98.24 98.23 98.19 97.67 96.34 92.83

Error rate % (test) 1.76 1.77 1.81 2.33 3.66 7.17

F1 score % (test) 98.24 98.23 98.19 97.67 96.34 92.83

Prediction speed (obs/s) 421370.61 277443.56 10818.27 28891.43 167.09 232941.02

Training time (s) 5.49 2372.12 1787.27 189.84 2288.31 34.38

Model size (bytes) 4702 6718 532087 5171525 8657033 11573
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classifications. The other models also achieved 
an AUC > 0.95, corresponding to a strong ability 
to discriminate between classes, although their 
TPR for class ‘1’ ranged from approximately 
82% to 91%. Efficient logistic regression per-
formed weaker (AUC = 0.9007), with an FPR 
≈ 0.005, a TPR ≈ 0.66 for class ‘1’ and a higher 
FPR for class ‘0’ (~0.34), suggesting a greater 

trade-off between false alarms and detection of 
true maintenance needs.

The operating points indicated on the ROC 
curves (Figure 2) correspond to the default clas-
sification threshold of 0.5. These points are auto-
matically generated by MATLAB’s classification 
learner app based on posterior class probabilities. 
Manual threshold optimization was not applied. 

Figure 2. ROC Curves for developed models

Figure 3. The confusion matrices (test dataset) for developed models
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The two markers shown on each ROC curve re-
flect class-wise performance at that threshold (for 
class 0 and class 1, respectively), not different 
datasets. Complementing the ROC analysis, Fig-
ure 3 presents the confusion matrices obtained on 
the test dataset using the default threshold (0.5). 
These matrices provide insight into the actual 
classification behavior of each model. 

Both decision tree and neural network showed 
almost identical predictive behavior: each model 
made 176 false negative (FN) classification er-
rors, i.e. cases where the system did not recog-
nize a real maintenance need (class 1 classified 
as 0). The number of false positive (FP) errors, 
i.e. unjustified predictions of maintenance needs, 
was close to zero – 0 for decision tree and 1 for 
NN – indicating very high accuracy relative to the 
negative class.

The SVM model recorded 177 cases of FN 
and 4 cases of FP, indicating a slightly higher ten-
dency to misclassify both cases of actual main-
tenance need and its unjustified prediction. The 
KNN model showed a total of 233 misclassifica-
tions – 177 FN and 56 FP. Of particular concern 
is the number of false alarms, which can lead to 
unnecessary maintenance and operational costs.

In the case of Naive Bayes, although no FP 
cases (i.e., predicting maintenance when it was 
not needed) were recorded, the model made as 
many as 366 FN errors, meaning that a signifi-
cant number of actual maintenance needs were 
missed – making the model particularly risky in 
applications requiring high sensitivity. The lo-
gistic regression model had the highest number 
of errors (717) and the lowest accuracy for the 
test set at 92.83%. The high FN (676) indicates a 
significant risk of missing maintenance cases. All 
models showed an advantage in negative classifi-
cation (‘0’ classes), but differed in their ability to 
capture positive cases. Decision trees and neural 
networks achieved the lowest FP and FN num-
bers, resulting in the highest overall performance. 

The decision tree model showed the best 
overall performance for predictive maintenance. 
It achieved the highest accuracy (98.24%), the 
lowest error rate (1.76%), and the highest F1 
score (98.24%), while maintaining an excellent 
AUC of 0.9553. Its confusion matrix showed 
no false positives and minimal false negatives, 
confirming high precision and recall. What sets 
it apart is its exceptional efficiency: the shortest 
training time (5.49 s), the smallest model size 
(4702 bytes), and the fastest prediction speed 

(over 421,000 obs/s), making it ideal for real-time 
industrial applications. Although the neural net-
work achieved similar accuracy, it required much 
longer training time and slower inference speed. 
Other models performed well but had trade-offs 
in size, speed, or sensitivity. Overall, the decision 
tree stands out as the most accurate, efficient, and 
practical solution for maintenance prediction.

DISCUSSION

The objective of this study was to identify the 
most effective machine learning algorithm for the 
task of predicting machine maintenance needs 
based on three input variables. A comprehensive 
comparison of six classifiers was performed: de-
cision tree, neural network, SVM, KNN, Naive 
Bayes classifier, and logistic regression. Under 
the conditions of a consistent data set and uniform 
cross-validation, the decision tree model proved 
to be the most balanced and effective solution.

Decision Tree achieved the highest classifi-
cation accuracy (98.24%), the lowest error rate 
(1.76%) and the highest F1 score (98.24%). Con-
fusion matrix analysis showed that the model 
generated no false alarms (FP = 0) and made only 
176 FN errors, confirming its high sensitivity in 
detecting actual maintenance needs. In addition, 
the model had the highest AUC (0.9553) and an 
ideal TPR = 1 for the “0” class, demonstrating its 
excellent separation ability. At the same time, the 
computational efficiency of the decision tree mod-
el significantly outperformed the other methods, 
with a training time of only 5.49 s, a model size of 
4702 bytes, and a prediction speed of more than 
421 000 observations per second. This makes the 
model particularly attractive for industrial appli-
cations where not only relevance but also response 
time and resource efficiency are important.

The neural network achieved comparable 
classification performance (98.23% accuracy, 
F1), but required much longer training (> 2.300 
s) and had a larger model size, which limits its 
operational efficiency. SVM and KNN models 
also achieved high AUCs (> 0.95), but at the ex-
pense of low prediction speed (SVM) or large 
model size and higher false alarms (KNN). In 
contrast, Naive Bayes and logistic regression 
showed lower performance in terms of accura-
cy, F1 and number of errors. In particular, lo-
gistic regression proved to be the least suitable 
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for detecting maintenance cases, with a high FN 
(676) and the lowest AUC (0.9007).

The results of this study are part of current 
research trends to optimize predictive models for 
industrial applications [25–27]. The demonstrated 
superiority of simple interpretable models over 
complex deep learning architectures is confirmed 
by work on edge device implementations, where 
models such as decision trees or SVMs achieve 
over 97% accuracy with minimal resource con-
sumption [35, 36]. Similarly, studies integrating 
predictive maintenance with ERP systems (e.g., 
SAP, QAD) highlight the key role of model in-
ference speed and compactness, especially in the 
context of real-time processing of IoT sensor data 
[34, 37]. In contrast to work focusing on hybrid 
deep learning models, this study confirms that 
even with a limited number of input variables, 
simple algorithms can compete with neural net-
works in terms of efficiency, which is particu-
larly important in low-latency environments (e.g., 
manufacturing systems) [38, 39]. These results are 
consistent with recommendations from literature 
reviews that point to the increasing importance of 
computational efficiency in PdM, even at the ex-
pense of a marginal decrease in accuracy [40].

The study provides both practical and theoret-
ical conclusions regarding the effectiveness of se-
lected machine learning algorithms in predictive 
maintenance tasks. The results clearly indicate 
that models with low computational complexity - 
such as decision trees - can provide performance 
comparable to more complex models, while sig-
nificantly reducing training and prediction costs 
[41]. This is an important observation from the 
point of view of designing machine monitoring 
systems, especially in industrial environments 
where computational resources are limited or re-
al-time operation is required.

In many industrial classification tasks, such 
as predictive maintenance, datasets are inherently 
imbalanced due to the rarity of failure events. 
While this study evaluated models without resa-
mpling, future improvements could consider 
techniques like SMOTE or cost-sensitive learn-
ing. These methods, as shown by Awtoniuk et al., 
can significantly enhance minority class detection 
even under severe imbalance conditions [42].

From a theoretical point of view, the study 
confirms that with well-chosen input features and 
properly performed parameter selection, classical 
machine learning methods are still strong com-
petitors for more complex solutions, especially in 

the context of small or medium complex datasets. 
This points to the need for further research on the 
trade-off between complexity and model perfor-
mance, especially in industrial applications where 
reliability and speed are critical.

CONCLUSIONS

The aim of this paper is to comprehensively 
evaluate the effectiveness and usefulness of se-
lected machine learning algorithms in the task of 
predicting the maintenance needs of industrial 
machinery. Six models representing different 
classification approaches were analyzed: decision 
tree, neural network, SVM, KNN classifier, na-
ive Bayes classifier, and logistic regression. The 
models were trained and tested on a common 
dataset containing only three simple predictors: 
temperature, vibration and machine state, allow-
ing their performance to be evaluated under con-
ditions of limited information.

The evaluation was not only based on clas-
sical performance measures such as prediction 
accuracy, F1 measure and area under the ROC 
curve (AUC), but also took into account practi-
cal aspects such as training time, prediction speed 
and model size. In addition, the analysis of the 
confusion matrix allowed the evaluation of false 
positive (FP) and missed maintenance (FN) er-
rors, which is crucial in the context of real indus-
trial applications.

The study showed that decision tree and neu-
ral networks (two-layer and medium) achieve 
the best performance in predicting maintenance 
needs, with an AUC > 0.95, an F1-score of 97–
99% and the lowest misclassification costs. Deci-
sion Tree is also characterized by minimal compu-
tational requirements (training time of 5.5 s, more 
than 420,000 objects/s prediction, model size < 5 
KB), making it ideal for real-time systems.

The use of decision trees can significantly re-
duce operational costs and unplanned downtime, 
while neural networks can provide slightly higher 
accuracy in highly variable data environments, 
despite their higher resource requirements.

Despite the high relevance of the results ob-
tained, this study has some limitations. First, the 
analyses were performed on a synthetic data set 
with a fixed structure and a limited number of 
input variables (temperature, vibration, machine 
state), which could have simplified the classifica-
tion problem. Second, all models were tested in an 
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offline environment, without taking into account 
dynamic changes of the data over time or model 
degradation under real conditions (concept drift). 
Finally, the selection of architectures and learning 
parameters was done manually, which may limit 
the optimization potential of more complex mod-
els such as neural networks or SVMs.

In future studies, it would be worthwhile to 
extend the analysis to real-world data from in-
dustrial monitoring systems, including tempo-
ral and sequential variables such as equipment 
operating history or service intervention data. 
The use of ensemble techniques (e.g. random 
forest, gradient boosting) could further improve 
the classification performance, especially in the 
detection of minority classes. It is also recom-
mended to automate the selection of hyperpa-
rameters (e.g. through Bayesian optimization or 
grid search), which could increase the potential 
of higher complexity models. Importantly, fu-
ture work may explore rebalancing strategies 
to further improve the detection of minority 
class instances. This includes techniques such 
as SMOTE (synthetic minority oversampling 
technique), adaptive resampling, cost-sensitive 
learning, and hybrid ensemble methods like 
RUSBoost. These approaches have proven effec-
tive in recent studies on industrial fault predic-
tion, where early detection of rare failure events 
is critical to minimizing unplanned downtime 
and ensuring system reliability. An important 
direction of development will also be the evalu-
ation of models in an online setting, taking into 
account the real-time data variability, to better 
reflect the operational challenges of implement-
ing predictive maintenance systems in real pro-
duction facilities.
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