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INTRODUCTION

Lossy mode resonance (LMR) sensors based 
on coated optical fibers have emerged as a prom-
ising platform for highly sensitive and selective 
detection in various chemical and biological ap-
plications. Advances in thin-film deposition tech-
niques have enabled the fabrication of nanometric 
coatings with controlled thickness, significantly 
enhancing the performance of such sensors [1]. 
However, the development and prototyping of 
LMR devices remain both expensive and time-
consuming, limiting their broader adoption. To 
overcome these limitations, simulation-based 
approaches have gained increasing attention as 
a cost-effective alternative to experimental proto-
typing [2, 3].

Optical fiber sensors based on resonance phe-
nomena have attracted considerable interest since 
the 1980s because of their sensitivity and versa-
tility. Among the most studied mechanisms are 
surface plasmon resonance (SPR) [4] and, intro-
duced about a decade later, lossy mode resonance 
[5, 6]. While SPR sensors have found widespread 
use, LMR sensors offer several unique advan-
tages, including the possibility of using a wider 
range of coating materials and compatibility with 
both polarizations of light.

In recent years, experimental efforts have in-
creasingly focused on identifying novel coating 
materials—often complex nanocomposites—for 
use in LMR-based platforms [7–9]. However, 
such materials frequently exhibit unknown or 
poorly characterized optical properties, making 
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analytical or empirical determination of reflec-
tance parameters difficult. In this context, accu-
rate modeling and numerical simulation of the 
optical response become essential for both sensor 
design and material characterization. To address 
these challenges, several computational tools 
have been developed [10–12], with varying de-
grees of flexibility and accessibility.

In author’s recent work [3], a free and open-
source software framework for LMR simula-
tion and optimization was introduced, initially 
developed in MATLAB and subsequently reim-
plemented in the R environment. This platform, 
referred to as LMR, incorporates a graphical in-
terface as well as supports customization of sen-
sor geometry and materials, thereby providing an 
accessible tool for researchers and practitioners.

The present study was built on this frame-
work to explore the influence of fitness function 
design on the optimization of straight-core LMR 
sensors with cylindrical geometry. Specifically, 
the widely used mean squared error (MSE) met-
ric was compared with a novel criterion, valley 
error (VE), which is tailored to capture key spec-
tral features such as the position and shape of the 
resonance dip. Using TiO2 coatings of varying 
thicknesses as a case study, it was demonstrated 
that the VE metric offers superior performance 
in scenarios where layer thickness is unknown, 
but precise determination of refractive index 
and extinction coefficient is required. This ca-
pability positions LMR sensors as potential low-
cost alternatives to ellipsometry for material 
characterization.

The remainder of this paper is organized 
as follows: Section 2 describes the theoretical 

model and numerical implementation used for 
LMR simulation, including a detailed definition 
of the MSE and VE metrics. Section 3 outlines 
the simulation parameters. Section 4 presents the 
results of comparative optimization experiments. 
Finally, Section 5 discusses the implications of 
the findings and potential future directions.

LMR MODELING

The mathematical framework used for mod-
eling the LMR sensor response relies primarily 
on geometrical optics, supplemented by classical 
electromagnetism to account for light reflection at 
material boundaries. A crucial quantity of interest 
is the wavelength-dependent transmitted power 
T(λ) through the modified optical fiber. The sys-
tem is characterized by the following parameters: 
D denotes the fiber core diameter, L is the length 
of the sensing region, α represents the skewness 
angle of light rays, and θ is the angle between a 
ray and the local surface normal. The free-space 
wavenumber is defined as k0 = 2π/λ, where λ is the 
wavelength. For clarity, a schematic representa-
tion of these parameters is provided in Figure 1.

Power transmission through the sensor

When a beam enters the modified fiber struc-
ture, it excites both meridional and skew rays, 
with mixed transverse electric (TE) and transverse 
magnetic (TM) polarization components. As the 
rays propagate, they undergo multiple reflections 
at the interface between the fiber core and the 
deposited coating. To describe the transmission 

Figure 1. Illustrative drawing of a modified optical fiber [3]. In this paper, the considerations were limited to a 
single layer deposited on the core and described by a complex refractive index ñ = 𝑛𝑛1 + 𝑖𝑖𝑖𝑖1 . (a) the meridional 

cross section, (b) the transverse cross-section
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quantitatively, the reflection coefficient for a sin-
gle reflection is averaged over both polarizations:

	 𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)(𝜃𝜃, 𝜆𝜆) = 𝑅𝑅𝑇𝑇𝑇𝑇
𝑁𝑁(𝜃𝜃,𝛼𝛼) + 𝑅𝑅𝑇𝑇𝑇𝑇

𝑁𝑁(𝜃𝜃,𝛼𝛼)

2  
 

(1) 
 

𝑁𝑁(𝜃𝜃, 𝛼𝛼) = 𝐿𝐿
𝐷𝐷tan𝜃𝜃cos𝛼𝛼 
 

(2) 
 

𝑇𝑇(𝜆𝜆) =
∫ ∫ 𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐
𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∫ ∫ 𝑘𝑘02
𝜋𝜋/2
𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

 

 
(3) 

 

𝑇𝑇(𝜆𝜆) = 𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)

, 
 

(4) 
 

𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= ∑∑𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃∆𝜃𝜃∆𝛼𝛼
𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼max

0
 

 
(5) 

 
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= 1
4 (𝑛𝑛𝑐𝑐𝑘𝑘0)

2𝛼𝛼max(1 + cos2𝜃𝜃𝑐𝑐𝑐𝑐). 
 

(6) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(

𝑛𝑛

𝑖𝑖=1
𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2 

 
(7) 

 
 
 

𝑉𝑉𝑉𝑉 = ∑ 𝑑𝑑5
𝑖𝑖=1 (𝑜𝑜𝑖𝑖, 𝑡𝑡𝑖𝑖), (8) 

 

	 (1)

where:	N(θ, α) denotes the approximate number 
of reflections along the sensing area and 
is given by:

	

𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)(𝜃𝜃, 𝜆𝜆) = 𝑅𝑅𝑇𝑇𝑇𝑇
𝑁𝑁(𝜃𝜃,𝛼𝛼) + 𝑅𝑅𝑇𝑇𝑇𝑇
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2  
 

(1) 
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(3) 

 

𝑇𝑇(𝜆𝜆) = 𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)
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(4) 
 

𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 
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𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(

𝑛𝑛

𝑖𝑖=1
𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2 

 
(7) 

 
 
 

𝑉𝑉𝑉𝑉 = ∑ 𝑑𝑑5
𝑖𝑖=1 (𝑜𝑜𝑖𝑖, 𝑡𝑡𝑖𝑖), (8) 

 

	 (2)

Consequently, the normalized transmitted 
power can be expressed as [10, 11]:

	

𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)(𝜃𝜃, 𝜆𝜆) = 𝑅𝑅𝑇𝑇𝑇𝑇
𝑁𝑁(𝜃𝜃,𝛼𝛼) + 𝑅𝑅𝑇𝑇𝑇𝑇

𝑁𝑁(𝜃𝜃,𝛼𝛼)

2  
 

(1) 
 

𝑁𝑁(𝜃𝜃, 𝛼𝛼) = 𝐿𝐿
𝐷𝐷tan𝜃𝜃cos𝛼𝛼 
 

(2) 
 

𝑇𝑇(𝜆𝜆) =
∫ ∫ 𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐
𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∫ ∫ 𝑘𝑘02
𝜋𝜋/2
𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

 

 
(3) 

 

𝑇𝑇(𝜆𝜆) = 𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)

, 
 

(4) 
 

𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= ∑∑𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃∆𝜃𝜃∆𝛼𝛼
𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼max

0
 

 
(5) 

 
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= 1
4 (𝑛𝑛𝑐𝑐𝑘𝑘0)

2𝛼𝛼max(1 + cos2𝜃𝜃𝑐𝑐𝑐𝑐). 
 

(6) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(

𝑛𝑛

𝑖𝑖=1
𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2 

 
(7) 

 
 
 

𝑉𝑉𝑉𝑉 = ∑ 𝑑𝑑5
𝑖𝑖=1 (𝑜𝑜𝑖𝑖, 𝑡𝑡𝑖𝑖), (8) 

 

	(3)

where:	nc is the refractive index of the fiber core 
and θcr = arcsin(nclad/nc) is the critical an-
gle determined by the refractive indices 
of the core and cladding.

Calculation of reflection coefficients and 
integrals

The reflection coefficients RTE and RTM are cal-
culated using the transfer matrix method, a stan-
dard approach for modeling multilayer optical 
structures. This method relates the tangential com-
ponents of the electromagnetic fields at the first and 
last interfaces of the layered stack. In brief, the total 
transfer matrix M is the product of individual ma-
trices corresponding to each layer. Once M is deter-
mined, the reflection coefficients can be extracted 
and used to evaluate the transmission T(λ). Full de-
tails of this procedure can be found in [3, 13]. To 
calculate T(λ) the numerator and denominator are 
calculated separately. The numerator is calculated 
as numerical integrals (two summing loops), while 
the denominator is calculated using an equation for 
solving the integrals analytically. Thus:

	

𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)(𝜃𝜃, 𝜆𝜆) = 𝑅𝑅𝑇𝑇𝑇𝑇
𝑁𝑁(𝜃𝜃,𝛼𝛼) + 𝑅𝑅𝑇𝑇𝑇𝑇

𝑁𝑁(𝜃𝜃,𝛼𝛼)

2  
 

(1) 
 

𝑁𝑁(𝜃𝜃, 𝛼𝛼) = 𝐿𝐿
𝐷𝐷tan𝜃𝜃cos𝛼𝛼 
 

(2) 
 

𝑇𝑇(𝜆𝜆) =
∫ ∫ 𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝜋𝜋/2
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Fitness functions

One of the most commonly used error mea-
sures, and often the measure of first choice, is the 
mean squared error:

	

𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)(𝜃𝜃, 𝜆𝜆) = 𝑅𝑅𝑇𝑇𝑇𝑇
𝑁𝑁(𝜃𝜃,𝛼𝛼) + 𝑅𝑅𝑇𝑇𝑇𝑇

𝑁𝑁(𝜃𝜃,𝛼𝛼)

2  
 

(1) 
 

𝑁𝑁(𝜃𝜃, 𝛼𝛼) = 𝐿𝐿
𝐷𝐷tan𝜃𝜃cos𝛼𝛼 
 

(2) 
 

𝑇𝑇(𝜆𝜆) =
∫ ∫ 𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐
𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∫ ∫ 𝑘𝑘02
𝜋𝜋/2
𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

 

 
(3) 

 

𝑇𝑇(𝜆𝜆) = 𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐)

, 
 

(4) 
 

𝑎𝑎(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= ∑∑𝑅𝑅𝑁𝑁(𝜃𝜃,𝛼𝛼)𝑘𝑘02𝑛𝑛𝑐𝑐2sin𝜃𝜃cos𝜃𝜃∆𝜃𝜃∆𝛼𝛼
𝜋𝜋/2

𝜃𝜃𝑐𝑐𝑐𝑐

𝛼𝛼max

0
 

 
(5) 

 
𝑏𝑏(𝑘𝑘0, 𝑛𝑛𝑐𝑐, 𝛼𝛼max, 𝜃𝜃𝑐𝑐𝑐𝑐) = 

= 1
4 (𝑛𝑛𝑐𝑐𝑘𝑘0)

2𝛼𝛼max(1 + cos2𝜃𝜃𝑐𝑐𝑐𝑐). 
 

(6) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑(

𝑛𝑛

𝑖𝑖=1
𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2 

 
(7) 

 
 
 

𝑉𝑉𝑉𝑉 = ∑ 𝑑𝑑5
𝑖𝑖=1 (𝑜𝑜𝑖𝑖, 𝑡𝑡𝑖𝑖), (8) 

 

	 (7)

where:	 ti and oi stand for the original and opti-
mized transmission, respectively, and i is 
index of sequent λ.

For this reason, MSE was also implemented 
in the LMR program. However, later simulations 
showed some shortcomings of this approach. 
This issue was discussed in detail in the “Results 
and Discussion” section. Here, however, another 
measure was proposed, which was called the Val-
ley Error. Its essence can be explained using the 
illustrative Figure 2, where five points are marked 
on each function. Two represent the limit values 
on the x axis, one is the global minimum of the 
function, and the last two points represent two 
maxima, one to the left and one to the right of the 
minimum of the function. It should be noted that 
both axes are normalized using the values of the 
target function. Therefore, the value of the evalu-
ated function can have values outside the range 
of 0–1. The next step is to sum the distances of 
corresponding points (for both axes) on the target 
graph and evaluated graphs. The Manhattan met-
ric was taken to express the distance between the 
points, due to its computational simplicity. Thus:
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where:	d(,) is a distance (here it is the manhat-
tan one), and i ∈ {1, 2, 3, 4, 5} respec-
tively: 1 –  the first point (on the left), 2 
– the last (the first on the right), 3 – global 
minimum, 4 – maximum on the left form 
the point number 3, 5 – maximum on the 
right from the point number 3. If there is 
more than one point of the same value, 
the closer point to number 3 is taken.

SIMULATION

As outlined in the Introduction, the design 
and analysis of LMR-based optical fiber sen-
sors increasingly rely on numerical methods due 
to the high cost and complexity of experimental 
prototyping. This is particularly relevant when 
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such sensors are considered not only as detection 
platforms but also as potential tools for material 
characterization. In such applications, the retriev-
al of optical constants (n, k) from the transmission 
spectrum—especially under uncertainty with re-
spect to layer thickness—poses significant mod-
eling and optimization challenges.

To address these issues, a simulation frame-
work was used to evaluate the effectiveness of two 
distinct fitness functions in optimizing LMR sen-
sor parameters. The first is the widely used MSE, 
while the second, VE, is a custom-designed met-
ric tailored to capture key spectral features, such 
as the position and shape of the resonance dip. 
The simulations were carried out using the pro-
prietary open-source platform LMR [3], which 
supports flexible geometry and material configu-
ration. The following sections describe the spe-
cific simulation scenarios, parameter ranges, and 
target structures used to validate and compare the 
performance of both optimization strategies.

Defining a suitable fitness function is typi-
cally a nontrivial task, especially in the context of 
global optimization of LMR-based sensors. The 
goal is often to find such values of geometric and 
material parameters that the resulting transmis-
sion spectrum exhibits clear, deep, and narrow 
minima—typically one or more—which are sen-
sitive to changes in the surrounding medium re-
fractive index (SMRI). In this sense, the ultimate 
objective is to design a highly sensitive sensor.

In this work, the potential of an LMR sensor 
was further investigated to serve as an alternative 
to ellipsometry. To the best of authors’ knowledge, 

this is a novel approach that has not been previ-
ously reported in the literature. In the consid-
ered scenario, the LMR sensor would be used to 
characterize a material deposited directly on the 
core in the sensing region. Under ideal deposi-
tion conditions, it is assumed that the thickness 
of the layer is known precisely. However, this as-
sumption may not always hold. Thus, when both 
the refractive index n and extinction coefficient k 
of the deposited layer are to be determined from 
the transmission spectrum—without certainty re-
garding its thickness—the demands on the fitness 
function increase considerably.

To explore these challenges, two fitness func-
tions were evaluated: the conventional MSE and a 
custom-designed metric, VE, introduced earlier in 
this paper. The validation involved a well-charac-
terized LMR sensor based on a TiO2 coating, for 
which both theoretical and experimental results 
are available in [14]. Two thickness configurations 
were considered: 333 nm and 1165 nm. Using the 
proprietary LMR simulation tool described in [3], 
a full optimization process was performed sepa-
rately for the MSE and the VE metric. Its aim was 
to check the optimization process in the case of 
changing the thickness of the optical fiber.

In the first variant of the sensor test, the objec-
tive function was calculated for a device charac-
terized by parameters D = 200 μm,  L = 2.5 cm 
and d = 333 nm. In the search for results, the fol-
lowing optical fiber diameters were used  D ∈ {8, 
50, 63, 100} μm. Moreover, L ∈ {1, 1.5, 2, 2.5, 
3} cm and d was swept in the range [313, 353] 
nm in 1 nm increments. The waveguide with core 

Figure 2. Examples of two functions, where the points used to calculate VE are marked. ti’s lay on the function 
named target, oi’s – on the function named optimized, while i ∈ {1, 2, 3, 4, 5}
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D = 200 μ m was intentionally excluded from 
the search space to prevent the algorithm from 
converging self-explanatory to the reference so-
lution regardless of the error measure used. The 
next sensor test variant, with the TiO2 layer thick-
ness increased to 1165 nm, provided transmission 
showing 5 minima (unlike the first case with 1 
minimum in the investigated range 0.5 < λ < 1.5 
μm). The optimization process was repeated for d 
varying in the range [1145, 1185]  nm.

RESULTS AND DISCUSSION

Ranking of solutions

Throughout this section, the solution indices 
(e.g., #1, #41, #42) refer to the rankings generated 
by the employed open-source LMR optimization 
software [3]. The software employs global opti-
mization strategies guided by the selected fitness 
function (either MSE or VE). The solution that 
offers the closest match to the target transmission 
is assigned index #1, with higher indices denot-
ing progressively less accurate fits. This ranking 
enables consistent reference across different com-
binations of parameters and fitness functions.

Case study: 333 nm coating thickness

The transmission spectrum for the structure 
with a 333 nm TiO2 layer and D = 200 μm is 
presented in Figure 3 as the target function. As 

it can be seen, in the investigated range 0.5 < 
λ  < 1.5 μm, a single resonance dip is present. 
The optimization results reveal that VE provides 
better alignment in dip position and shape com-
pared to MSE. This confirms its suitability for 
spectral fitting in the cases where transmission 
minima carry the most meaningful information. 
Figure 4 illustrates the horizontal misalignment 
problem that arises when using MSE. The fig-
ure shows the transmission curves for the best 
(solution #1), as well as for solutions #41 and 
#42. All solutions with indices ≤ 41  correspond 
to  L = 1 cm, whereas solutions 41 < n < 83 
correspond to L = 1.5 cm. Thus, solutions #41 
and #42 lie on opposite sides of a discrete jump 
in L. The transmission curve for solution #42 is 
abruptly shifted towards shorter wavelengths, 
indicating a discontinuity in the solution space 
that ideally should be smooth. This highlights 
another weakness of MSE—it does not penal-
ize such spectral shifts effectively. Additionally, 
the deeper minimum observed in solution #42 
results from the increased interaction length L: 
a longer sensing region leads to more internal 
reflections, increasing overall attenuation and 
lowering transmission.

Case study: 1165 nm coating thickness

The 1165 nm case exhibits multiple resonance 
dips. Although the VE function was originally 
designed for single-minimum characteristics, it 
proves to be robust even in this more complex 

Figure 3. Theoretical analysis of sensor with 333 nm-thick TiO2 layer. Target function (blue line) is calculated 
for D = 200 nm and L = 2.5 cm. LMR software, for a fixed value D = 8 µm, provide best-fit solutions for L = 1 

cm according to MSE (orange) and VE (green) fitness function
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Figure 5. Theoretical analysis of sensor with 1165 nm-thick TiO2 layer. Target function (blue line) is calculated 
for D = 200 nm and L = 2.5 cm. LM R software, for a fixed value D = 8 µm, provide best-fit solutions for L = 1 

cm according to MSE (orange) and VE (green) fitness function

Figure 6. Theoretical analysis of sensor with 1165 nm-thick TiO2 layer. Illustration of the malfunction of the 
MSE measure, which allows for horizontal shifts of the transmission curve

Figure 4. Theoretical analysis of sensor with 333 nm-thick TiO2 layer. Illustration of the malfunc-
tion of the MSE measure, which allows for horizontal shifts of the transmission curve
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scenario. Figure 5 shows the target transmission 
along with the best fits according to VE and MSE. 
Again, the horizontal alignment of resonance po-
sitions is significantly better for VE, reaffirm-
ing its effectiveness. The trends observed in the 
single-resonance case also appear here. Figure 6 
shows analogs of solutions #1, #41, and #42. As 
in the previous case, the abrupt wavelength shift 
between solutions #41 and #42 is evident and un-
desirable. The deeper transmission minimum in 
solution #42 is again attributed to a longer sens-
ing length (L =   1.5) cm vs. L = 1 cm).

Implications of transmission invariance 	
for sensor design

Interestingly, the study reveals another im-
portant insight. An analysis of the solutions gen-
erated by the LMR software—both in tabular 
form (see Table 1) and through graphical repre-
sentations—demonstrated that it is possible to de-
sign multiple sensors with very similar transmis-
sion profiles, yet significantly different values of 
the parameters L and D. An illustrative group of 

such configurations is presented in Figure 7. This 
observation is particularly noteworthy in light of 
study [15], where the authors show that an appro-
priate selection of L and D can nearly double the 
sensor’s sensitivity.

CONCLUSIONS

This study introduced and validated a novel 
fitness metric, Valley Error, for the optimization 
of LMR-based optical fiber sensors. Compared 
to the widely used Mean Squared Error, the VE 
metric demonstrated superior capability in pre-
serving critical spectral features, particularly the 
position and shape of the resonance dip, which 
are crucial in material characterization tasks. The 
conducted simulations showed that VE offers 
better performance in the optimization scenarios 
where the layer thickness is unknown, enabling 
more accurate retrieval of refractive index and 
extinction coefficient values. Additionally, it was 
observed that MSE tolerates spectral shifts and 
fails to penalize horizontal misalignments, which 
may lead to misleadingly high rankings of sub-
optimal solutions. A secondary yet significant re-
sult was the identification of structurally diverse 
sensor geometries that yield highly similar trans-
mission spectra. This opens up new possibilities 
for geometry-based tuning of sensor performance 
without sacrificing spectral fidelity. The findings 
underscore the importance of using problem-
specific error metrics in inverse modeling tasks, 
especially for the sensors intended as alternatives 

Table 1. Selected solutions for 333-nanometer TiO2 
coating layer leading to similar values of fitness 
function (FitFun) and the same values λmin = 733 nm

Rank number D [μm] L [cm] VE FitFun

#1 160 2.0 7.9*10−12

#4 210 2.5 0.0164

#19 110 1.5 0.0543

#99 310 3.0 0.4239

Figure 7. Set of similar transmission curves obtained for a sensor with a 333-nanometer TiO2 coating layer with 
different values of D and L  parameters
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to ellipsometry. Future work may explore refining 
VE to better handle multi-minimum spectra and 
extending the approach to more complex multi-
layer configurations.
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