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ABSTRACT
This work presents an integrated approach combining experimental testing and mathematical modeling to analyze 
fuel consumption and pollutant emissions in a spark-ignition engine vehicle. Experimental data were obtained from 
chassis dynamometer tests under the WLTP driving cycle, including time series of vehicle speed, energy consumption, 
and CO₂, CO, THC, and other compounds emissions. Two classes of artificial neural networks were implemented to 
capture the complex, nonlinear relationships between driving dynamics and emission profiles: Multi-layer perceptrons 
(MLP) and self-associative neural networks (SANN). These models were trained on real-world time series data to 
predict vehicle speed and energy consumption as functions of emission parameters and vice versa. The models demon-
strated high accuracy, especially in the validation phase, confirming their potential for forecasting and environmental 
performance assessment. The neural network models underwent training, validation, and testing processes, allowing 
for the assessment of their effectiveness in predicting energy consumption under various system operating scenarios. 
The results demonstrated high prediction accuracy, confirming the usefulness of ANN as a tool for analyzing complex 
relationships between emissions and energy efficiency. The best-performing model achieved a mean absolute error 
(MAE) of 0.034 MJ/km and a coefficient of determination (R²) of 0.91 for energy consumption prediction. The study 
developed models identifying the relationships between emission parameters and energy consumption characteristics, 
enabling precise modeling of combustion processes. The input data included key emission indicators such as carbon 
monoxide (CO), carbon dioxide (CO₂), and hydrocarbons (HC, NMHC and CH4), as well as operational parameters of 
energy systems. Additionally, the observed patterns in energy use were interpreted through a physical lens, considering 
the thermodynamics and chemical kinetics of combustion processes under different driving conditions. This hybrid 
methodology – combining data-driven AI with domain-specific physical insight – provides a robust framework for 
predicting the environmental impacts of internal combustion engines and optimizing their operation. The proposed ap-
proach applies to broader engineering contexts, including emission control strategy design, digital twin development 
for powertrains, and intelligent vehicle energy management systems. The proposed approach represents a significant 
step toward leveraging modern artificial intelligence methods to improve energy efficiency and develop emission 
reduction strategies through combustion condition optimization. The obtained results can serve as a foundation for 
further refining industrial processes in the context of sustainable development and environmental protection.
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INTRODUCTION

Reducing emissions from the transport sec-
tor is one of the key challenges in the context 
of global efforts to protect the climate and sus-
tainable development. Vehicles with combustion 
engines, especially those used in urban environ-
ments, emit significant amounts of greenhouse 
gases and harmful compounds such as nitrogen 
oxides (NOx), carbon monoxide (CO) and hy-
drocarbons (THC). Traditional emission estima-
tion models – such as the widely used COPERT 
– are based on simplified relationships between 
average speed and emissions, which do not allow 
for capturing the real driving dynamics, includ-
ing acceleration, braking or standstill phases. As 
shown by Lejri and Samaras et al., this approach 
may lead to significant underestimation of emis-
sions, up to 25% in congested conditions [1, 2]. 
In response to these limitations, increasing atten-
tion is being paid to artificial intelligence mod-
els, in particular neural networks. Their applica-
tion in energy-related socioeconomic analysis 
was demonstrated by Kulisz et al. [3], who used 
neural networks with Bayesian regularization 
to predict household heating inadequacy across 
Europe, achieving high accuracy. These models, 
trained on real measurement data, can represent 
complex, nonlinear relationships between engine 
performance parameters, traffic conditions, and 
emission levels. A similar approach has been used 
to analyze the impact of road surfaces on vehicle 
dynamics, where neural networks have shown 
high efficiency in classifying road surface types 
based on accelerometer data [4].

The classical approach to creating and train-
ing neural networks is described in detail in 
Haykin’s work [5]. This approach fits into the 
paradigm of deep machine learning, described by 
Goodfellow [6], among others. This paper pres-
ents a hybrid approach integrating data from tests 
conducted on a chassis dynamometer according 
to the WLTP procedure (worldwide harmonized 
light vehicles test procedure) with calculations 
based on artificial neural networks (MLP, SANN), 
aimed at improving the accuracy of emission 
and energy consumption forecasts. A similar ap-
proach, combining chassis dynamometer data 
with computational models, was used in the work 
of Zimakowska-Laskowska, where the synergis-
tic potential of experimental and numerical tools 
in the analysis of vehicle exhaust emissions was 
demonstrated [7, 8].

Therefore, there is a growing need for ad-
vanced analytical tools to accurately capture the 
complex, nonlinear dependencies between en-
gine operation, vehicle dynamics, and emissions. 
When trained on real measurement data, artificial 
neural networks offer high prediction accuracy 
even under transient operating conditions. This 
study addresses this gap by integrating experi-
mental WLTP-based emission data with predic-
tive models to improve the reliability of emission 
and energy consumption estimation. The pro-
posed approach contributes to developing digital 
twins and advanced emission control strategies 
in modern transport systems. The study aims to 
create and validate a predictive framework com-
bining experimental emission data and artificial 
neural networks to accurately estimate energy 
consumption and exhaust emissions under real-
world driving conditions.

BACKGROUND

According to the current state of knowledge, 
artificial neural networks are highly effective in 
predicting vehicle emissions. MLP (Multi- Layer 
Perceptron) models and their deep counterparts, 
such as DNN, allow for accurate mapping of CO₂, 
NOx, CO and THC emissions based on engine op-
erating parameters. In Seo studies achieved corre-
lation coefficients of up to 0.98 for CO and 0.96 
for CO₂, with relative errors below 1% [9]. Also 
Fu et al. and Hashemi confirmed the high preci-
sion of neural networks in applications to SI and 
CI engines [10, 11]. The effectiveness of ANN 
was also confirmed in the prediction of emissions 
from HVO-fueled diesel engines, where, despite 
the challenges related to data validation, high ac-
curacy of CO and NOx prediction was achieved 
in various operating regimes [12].

The choice of input data is crucial – the most 
commonly used are: vehicle speed, torque, air/
fuel ratio, coolant temperature, and mass air 
flow. The selection of these parameters can be 
improved by Pearson correlation analysis and p-
significance tests, which improves the efficiency 
and accuracy of the models.

In relation to emissions in real conditions 
(e.g. cold start), ANNs also show great useful-
ness, although the prediction accuracy for some 
components – especially THC – may be lower. 
LSTM models, belonging to the class of recur-
rent networks, also show high efficiency in 
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forecasting variable energy phenomena, which 
was confirmed, among others, in the analysis of 
energy production in PV systems using real data. 
Models based on time-aware architectures (e.g. 
LSTM, SANN) cope better with such dynamic 
phenomena. A detailed review of the applications 
of deep neural networks in time series analysis 
was presented by Kong [13]. An example is the 
work of Shin in which a DNN model optimized 
by the Bayesian method achieved R² = 0.9675 in 
the forecast of NOx emissions based on WLTP 
data [14]. This approach also finds application in 
modeling long-term CO₂ emissions at a national 
scale, where deep neural networks – especially 
LSTM – have shown superior performance in 
analyzing high-variability time series.

An analysis of the possibility of using neu-
ral networks to determine the parameters of the 
chemical composition of exhaust gases as a func-
tion of engine performance parameters obtained 
from the on-board diagnostics system such as 
crankshaft speed and engine load index was pre-
sented in [15]. For the purpose of building a neu-
ral network model, preliminary studies were car-
ried out in non-urban traffic (high-speed route). 
On the basis of the data obtained, processes of 
learning neural network structures with approxi-
mate properties with backward propagation of 
errors were carried out. Subsequently, tests were 
performed on the operational parameters of the 
vehicle and the chemical composition of exhaust 
gases in urban traffic.

Artificial neural network models for forecast-
ing the combustion and emission characteristics 
of ethanol/gasoline DFSI engines with combined 
injection strategy were presented in [16]. Models 
of artificial neural networks (ANN) were devel-
oped to reflect the performance of DFSI engines. 
The regression values were within the range of 
0.9387–0.9962, and the mean square relative er-
rors were within the range of 0.000184–0.03935 
between the ANN predicted and experimentally 
measured results.

A biofuel-powered study with deep learn-
ing neural networks and dragonfly algorithm: 
optimizing CRDI engine performance with ZnO 
nanoparticles and cotton seed methyl ester was 
presented in [16]. The engine combustion char-
acters are modelled using deep learning neural 
networks (DNN) and single-layered neural net-
works (ANN). Deep learning models accurately 
predicted key engine parameters like heat re-
lease rate (HRR) and in-cylinder pressure (ICP), 

achieving R2 > 0.95. The engine emissions are 
within an acceptable range, and the BTE is with-
in the range of 20% to 32% as a result of the en-
gine performance optimization.

An evaluation of machine learning algorithms 
on hydrogen boosted homogeneous charge com-
pression ignition engine operation for perfor-
mance and emission prediction was presented in 
[17]. The dataset included three input parameters 
namely hydrogen energy share (HES), equivalence 
ratio and injection timing, five output parameters 
like brake thermal efficiency (BTE), NOx, smoke, 
hydrocarbon (HC), CO. The total of 26 machine 
learning algorithms were trained and tested. The 
efficient machine learning model was identified by 
synthesized evaluation of MSE, root mean square 
error (RMSE), R-squared (R2) and MAE values. 
Among the algorithms considered, Matern 5/2 
GPR, Wide Neural Network and Fine Tree algo-
rithm were excellent for predicting the BTE with 
the R2 value of 0.9999, 0.9985, and 0.9961.

Artificial neural network and fuzzy expert 
system comparison for prediction of performance 
and emission parameters on a gasoline engine 
was presented in [18]. The study presented used 
ANN and a fuzzy expert system (FES) to model a 
gasoline engine in order to predict engine power, 
torque, specific fuel consumption, and hydrocar-
bon emissions. As a result, it has been shown that 
developed ANN and FES can be used reliably in 
automotive industry and engineering instead of 
experimental work.

An artificial neural network model to pre-
dict efficiency and emissions of a gasoline en-
gine was presented in [19]. In the study, an ANN 
model was built to predict three types of indica-
tors (power, emissions, and combustion phasing) 
together, including 50% combustion crank angle 
(CA50), CO, unburned hydrocarbons (UHC), 
NOx, indicated mean effective pressure (IMEP), 
and indicated thermal efficiency (ITE). The goal 
of this work was to verify that only one machine 
learning model can combine power, emissions, 
and phase metrics together for prediction. The 
predicted results showed that all coefficients of 
determination (R2) were larger than 0.97 with a 
relatively small RMSE, indicating that it is pos-
sible to build a predictive model with three types 
of parameters (power, emissions, phase) as out-
puts based on only one ANN model.

Modeling of CO emissions from traffic vehi-
cles using artificial neural networkswas presented 
in [20]. In the paper was presented a hybrid model 
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based on data mining and GIS models designed to 
predict vehicular CO emitted from traffic on the 
New Klang Valley Expressway, Malaysia. The 
model was developed using six traffic CO pre-
dictors: number of vehicles, number of heavy ve-
hicles, number of motorbikes, temperature, wind 
speed and a digital surface model. The network ar-
chitecture and its hyperparameters were optimized 
through a grid search approach. The traffic CO 
concentrations were observed at 15-min intervals 
on weekends and weekdays, four times per day. 
The results showed that the developed model had 
achieved validation accuracy of 80.6 %.

Predicting Fuel Consumption and Emissions 
Using GPS-Based Machine Learning Models 
for Gasoline and Diesel Vehicles was presented 
in [21]. In the study was investigated the use of 
real-world driving data from gasoline and diesel 
vehicles to model fuel consumption and exhaust 
emissions (CO2 and NOX). The results demon-
strate high predictive accuracy, with the ensemble 
bagged model consistently outperforming the de-
cision tree model across all datasets.

Equally promising results were obtained in the 
field of fuel consumption forecasting. ANN, SVM 
models and ensemble ML methods (random forest, 
gradient boosting) allow for errors of around 1.7% 
and determination coefficients above 0.90. The 
classic SVM method was developed by Cortes and 
has been the foundation of many machine learning 
algorithms for years [22]. Data on vehicle speed, 
vehicle weight, road gradient, as well as weather 
conditions and load are important here.

Integrating measurement data from the WLTP 
procedure with neural models allows for a sig-
nificant increase in the accuracy of emission and 
energy consumption prediction – also in transient 
conditions. As demonstrated by Dini this ap-
proach is also applicable in monitoring the aging 
of drive systems and early detection of anoma-
lies [23]. Integrating measurement data from the 
WLTP procedure with neural models allows for 
a significant increase in the accuracy of emission 
and energy consumption prediction – also in tran-
sient conditions, which was confirmed, among 
others, in studies on emission prediction in vari-
ous transport scenarios.

In summary, the literature review confirms 
the validity of using ANNs for predicting vehicle 
emissions and energy efficiency. Their effective-
ness in predicting emission time series values 
is also confirmed by the work of Tlelo-Cuautle 
[24]. The integration of real data with machine 

learning algorithms is the direction of develop-
ment of modern tools supporting environmental 
management, development of digital twins of 
drive systems and intelligent transport systems.

METHODOLOGY

Research site and data acquisition

The tests were carried out on a passenger car 
meeting the Euro 6 emission standard, equipped 
with a spark-ignition (SI) engine. The vehicle had 
a typical B-segment curb weight of around 1200 
kg, front-wheel drive and a six-speed gearbox. 
The vehicle was not modified for the tests, which 
ensured that the results were consistent with real-
world operating conditions. The tested vehicle 
was new and had very low mileage at the time of 
testing, ensuring minimal influence of component 
wear on emission results.

The measurements were taken in laboratory 
conditions, using a chassis dynamometer and de-
vices recording exhaust emissions in real time. 
Exhaust emissions were measured using a set of 
dual-range gas analyzers (AVL AMA i60 R2 and 
CEB II), compliant with WLTP standards. The 
system allowed for the measurement of CO, CO₂, 
THC, CH₄, NOx (including NO and NO₂), and 
N₂O, with high temporal resolution. The equip-
ment enabled both pre- and post-catalyst measure-
ments as well as EGR rate estimation. The WLTP 
(Worldwide Harmonized Light Vehicles Test 
Procedure), which is currently the homologation 
standard for vehicles in the European Union. Only 
data from the urban phase (low speed) and subur-
ban (medium speed), which corresponds to typical 
operating conditions in an urbanized environment.

The recorded parameters included vehicle 
speed (v, in km/h), instantaneous energy con-
sumption (EC, in MJ/km), and concentrations of 
gaseous pollutants such as CO₂, CO, total THC, 
NOx, CH₄, and particulate matter (PM).

The measurements were recorded at a fre-
quency of 1 Hz, which allowed obtaining accu-
rate time series for each parameter. The raw data 
were then subjected to preliminary cleaning (re-
moval of missing data, anomaly filtration) and 
normalization – each variable was rescaled to the 
range [0,1] to ensure the stability of the neural 
model training process. This type of normaliza-
tion is a standard element of preparing input data 
for machine learning. In the context of models 
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based on kernel functions, such as SVM, data res-
cale is particularly important for the correctness 
of the model.

The data set was divided into three subsets:
 • training set (70%) – used to train models,
 • validation set (15%) – used to optimize hyper-

parameters and prevent overfitting,
 • test set (15%) – enabling an independent as-

sessment of prediction accuracy.

The final dataset included 17 complete obser-
vation cycles, which were divided into training 
(12), validation (2), and test (3) subsets.

This data structure provides appropriate condi-
tions for building and evaluating predictive mod-
els based on artificial neural networks, enabling 
the estimation of both energy consumption and 
emissions of individual exhaust gas components.

The preliminary correlation analysis between 
CO₂ emissions and energy consumption showed a 
low correlation coefficient (r ≈ 0.22), which sug-
gests a nonlinear nature of the relationship and 
justifies the use of nonlinear methods such as neu-
ral networks. The use of correlation and statistical 
analysis as a preliminary modeling step has been 
extensively discussed by Hastie.

Mathematical tools used

Two types of artificial neural networks were 
used to model pollutant emissions and energy 
consumption: a multilayer perceptron network 
(MLP) and a simple artificial neural network. 
Neural network (SANN). Both models were 
trained on the experimental dataset obtained from 
tests compliant with the WLTC (worldwide har-
monized light duty vehicles test cycle). The data 
included instantaneous speed, torque, mass fuel 
consumption, coolant temperature and measured 
CO, CO₂ and HC emission values.

In order to map the relationships between ve-
hicle operating parameters and energy consump-
tion and emissions, predictive models based on 
machine learning methods have been developed. 
Advanced alternative approaches to classical 
ML models also appear in the literature, such as 
high-dimensional model representation (HDMR), 
which enables effective mapping of complex rela-
tionships without the need for full numerical cal-
culations. Three classes of algorithms were used: 
artificial neural networks (MLP and SANN) and 
SVM. This section presents the architecture of 
the models used, the method of data preparation 

and the metrics for assessing the effectiveness of 
prediction. This approach allows for the analysis 
of complex and nonlinear relationships character-
istic of the conditions of real vehicle operation.

The selection of MLP, SANN, and SVM 
models was based on their proven effectiveness 
in modeling complex, nonlinear relationships 
typical for vehicle emissions and energy con-
sumption. MLP networks are widely used due 
to their universal approximation capability and 
robustness in regression tasks involving multi-
dimensional input spaces. SANNs, as simplified 
network structures, offer faster training times and 
lower computational costs, making them suitable 
for initial testing and baseline comparisons. SVM 
with the RBF kernel was chosen as a classical 
yet powerful algorithm capable of handling small 
datasets with high dimensionality while main-
taining good generalization performance. These 
models have been frequently applied in related 
studies, demonstrating high accuracy in emis-
sion prediction tasks. Their selection in this study 
was also motivated by the desire to compare the 
performance of both neural and kernel-based ap-
proaches in the same experimental context. 

The machine learning process. which usually 
takes place in several stages: data preparation. 
model selection. model training. performance 
evaluation and optimization. All of these stages 
can be described using mathematical equations 
and concepts.

According to literature data, it can be de-
scribed as follows:

Data preparation

In the machine learning process, it is crucial 
to prepare the appropriate data. which will be 
used to train the model. Usually, we have a data 
set D={(x1.y1).(x2.y2).….(xn.yn)}. Where xi are 
features (input vectors), and yi are output values, 
e.g. classes in the case of classification. The goal 
of modeling is to identify a function that maps the 
relationship between the feature space x and the 
predicted values y.

Model selection

A machine learning model can be described 
as a function that maps input data x to its corre-
sponding predicted value y. Mathematically, the 
model represents a function f: X→Y. where X is 
the feature space (all possible inputs). and Y is 
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the value space. Depending on the problem, it can 
be either regression (where y is a real number) or 
classification (where y is a category).

The model equation in the case of linear re-
gression is expressed by the formula (1):

 y = wTx + by 
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where: w is the weight vector, x is the feature vec-
tor, b is the intercept, and y is the value 
predicted by the model.

Training the model

The goal of training a model is to find param-
eters (e.g. weights in linear models) that minimize 
the prediction error. In the case of classification, 
the most common method is to minimize the loss 
function, which calculates the difference between 
the model predictions and the actual y values. For 
linear regression, the standard loss function is the 
MSE (2) [25]:
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During training we optimize the model pa-
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where: η is the learning rate and ∇w L(w, b) is the 
gradient of the loss function with respect 
to the weights.

Performance evaluation

Accuracy are often used for classification (4) [26]:
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where: I is an indicator function, which is 1 if the 
model prediction is consistent with the 
true value of and 0 otherwise. (Heaviside 
unity).

In the case of regression. you can use the 
MAE or the MSE (5, 6) [25]:
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where: yi – the actual values, and 
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 – the model 
predictions.

Model optimization

After evaluating the model. if its performance 
is not satisfactory. various optimization tech-
niques are used. such as regularization. changing 
the model architecture. or using advanced algo-
rithms. e.g. global optimization algorithms. deci-
sion trees. neural networks.

Support vector machines (SVM)

Modeling process for SVM with RBF kernel 
(Radial Base Function) can be described in sever-
al stages. taking into account specific parameters. 
e.g.: C = 7C = 7C = 7. ϵ = 0.1. and γ = 1.75. Be-
low will be describe the details of the mathemat-
ics and the RBF kernel function. as well as how 
these parameters affect the model.

Data preparation

As in every case in machine learning. the first 
step is to prepare the data in the form of pairs (xi, 
yi) where xi ∈ Rd are feature vectors. a yi ∈ {–1.1} 
are the classification values   (assuming we have 
a binary classification problem). The dataset D =  
{(x1, y1), (x2, y2), ... , (xn, yn)} is then used to train 
the SVM model.

Kernel function definition

SVM is an algorithm that tries to find the best 
boundary (hyperplane) separating classes in fea-
ture space. The key element in SVM is the kernel 
function. which allows to transform the input data 
into higher dimensionality. in which it is easier to 
find a linear separating boundary.

In the case of the RBF kernel, the kernel func-
tion is given by (7) [27]:
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𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (7)

where: γ is a parameter that controls the ”stretch” 
of the kernel. The value of γ affects how 
much the data will be ”smeared” in feature 



458

Advances in Science and Technology Research Journal 2025, 19(9), 452–468

space. The value of γ = 1.75 that you pro-
vided means that the kernel will be rela-
tively ”wide”. This can make the model 
more sensitive to local changes in the data.

Optimization goal – Maximize margin

The goal of the SVM algorithm is to find a 
hyperplane that maximizes the margin (the dis-
tance between the closest data points from both 
classes). From a mathematical perspective, the 
optimization objective in SVM classification is 
to find a hyperplane that maximizes the margin 
between classes. This is equivalent to solving the 
following problem (8) [27]:

 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (8)

While maintaining the following conditions (9):

 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (9)

where: w – the weight vector, b – the intercept, 
yi  – the classification value.

Loss function and regularization

In SVM the loss function is combined with 
regularization. We introduce the parameter CCC. 
which controls the trade-off between maximizing 
the margin and allowing for classification errors. 
The value C = 7C = 7C = 7. that you provided. 
means that the model is relatively intolerant of 
classification errors – we want all points to be 
correctly classified. but not at any cost.

The loss function of SVM with regularization 
has the form (10) [25]:

 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (10)

where: ξi are truncated variables that represent 
classification errors (distances of points 
that are misclassified or fall in the margin 
zone). The value of C controls how large 
these errors can be.

Optimization

Optimization in the case of SVM is done us-
ing the dual method (in Lagrangian space). Using 
the RBF kernel, the optimization problem takes 
the form (11) [26]:

 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (11)

Lagrange variables and K(xi,xj) is the kernel 
function. in this case RBF. The variable αi  is re-
sponsible for the weights assigned to the train-
ing data. which determine which points have the 
greatest influence on the definition of the hyper-
plane (so-called ”support vectors”).

Performance evaluation

The model, its performance needs to be eval-
uated. SVM, like other classification models, can 
be evaluated using metrics such as accuracy. pre-
cision. recall. and F1 – score. In case of regression 
problem, other metrics are used, such as MSE.

Final result

After optimizing the model, we use it to pre-
dict the class for new points. If f(x) = wTx + b  
decision based on a decision function, then the 
classification is made based on the sign of this 
function (12):

 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

 

𝑚𝑚𝑖𝑖𝑛𝑛
𝛼𝛼 (∑𝛼𝛼𝑖𝑖 −

1
2

𝑛𝑛

𝑖𝑖=1
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖,𝑗𝑗=1
) 

 
�̂�𝑦 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑓𝑓(𝑥𝑥)) 

 
 

 

 (12)
where: 

y = wTx + by 

 

𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑛𝑛∑(𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1
 

 

𝑤𝑤⟵ 𝑤𝑤 − 𝜂𝜂∇𝑤𝑤𝐿𝐿(𝑤𝑤, 𝑏𝑏) 
 

𝑎𝑎ccuracy = 1
𝑛𝑛∑𝐼𝐼𝐼𝐼(𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝑖|𝑛𝑛

𝑖𝑖=1  (5) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (6) 
 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
2) 

 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤, 𝑏𝑏

1
2 ‖𝑤𝑤‖

2 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1, for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛  
 

𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝜉𝜉𝑖𝑖) =
1
2 ‖𝑤𝑤‖

2 + 𝐶𝐶∑𝜉𝜉𝑖𝑖
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 is the predicted value of af(x)f(x)f(x) is 
the result of the decision function.

Parameter summary

 • C = 7C = 7C = 7 – the model is less tolerant 
to classification errors and tries to best fit the 
training data.

 • ϵ = 0.1 – the epsilon parameter in SVM for 
regression controls the margin of allowable 
errors. and in the case of classification, ϵ can 
refer to the tolerance in evaluating the results.

 • γ = 1.75 – the γ parameter in the RBF kernel 
controls the shape of the kernel function, de-
ciding how much to “stretch” the influence 
of the training points. A higher γ makes the 
model more sensitive to local structures in the 
data, and a low γ makes the decision boundary 
smoother (Table 1).

Due to the limited sample size (n = 17), the 
obtained results should be considered preliminary 
and illustrative. They constitute a technical con-
firmation of the correctness of the adopted meth-
odology, but do not yet allow for a full assessment 
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of its effectiveness. In further stages, it is planned 
to expand the data set and re-validate the models 
using more diverse test scenarios.

The SVM model with the RBF kernel showed 
a very good fit to the training data. At the same 
time, significant differences in the MSE values 
and the correlation coefficient between the train-
ing and test sets indicate the presence of overfit-
ting. The high number of support vectors in rela-
tion to the number of observations (9 out of 17) 
confirms the relatively high complexity of the 
model in the context of the limited sample. Im-
proving the generalization ability requires both 
increasing the number of data and optimizing the 
hyperparameters, including the selection of the 
kernel and validation procedures.

RESULTS AND DISCUSSION

This chapter presents the results of the ap-
plied predictive models (MLP, SANN, SVM) and 
their evaluation in terms of the effectiveness of 
pollutant emission mapping and specific energy 
consumption. The accuracy was verified based 
on classical regression metrics: MSE, correlation 
coefficient (R) and standard deviation ratio (SD 
ratio). A similar approach to the evaluation of the 
effectiveness of ML models was also used in the 
analysis of production processes, including the 
prediction of surface roughness in milling based 
on sensor signals. A novel application of image 
analysis combined with physical property evalua-
tion in agricultural materials was recently demon-
strated by Gierz et al. [25], indicating the potential 
of cross-domain ML applications. The effective-
ness of ML in the analysis of measurement data 
was also noticed in material diagnostics, an ex-
ample of which is the application of deep learning 
methods to ultrasonic tomography. A similar ap-
proach was also implemented in the monitoring of 
hydrotechnical infrastructure, where ML models 
supported the analysis of impedance tomography 

images to detect leaks in flood embankments. In 
addition to industrial and environmental applica-
tions, deep learning models are also gaining rec-
ognition in road transport, including in adaptive 
fuel consumption modeling using meta-learning 
and on-board data. In agricultural machinery, Al-
Sammarraie et al. [26] successfully applied ma-
chine learning for predicting power take-off per-
formance, demonstrating the model’s flexibility 
beyond traditional transportation contexts. The 
importance of ML models for fuel consumption 
forecasting is also confirmed by analyses con-
ducted in the heavy goods vehicle sector, where 
classical algorithms were used to estimate aver-
age fuel consumption based on operational data.

Additionally, a spatial analysis of the re-
lationship between driving speed, energy con-
sumption and emissions of individual exhaust 
components was performed, using models to 
generate predictive surfaces. These results were 
compared with literature conclusions, enabling 
the assessment of the usefulness of selected al-
gorithms in the context of modeling operational 
and environmental processes. 

In summary, the research methodology fol-
lows a structured pipeline: real-time emission 
data acquisition in controlled conditions, data 
preprocessing and normalisation, selection and 
training of machine learning models (MLP, 
SANN, SVM), and evaluation of predictive 
performance using standard statistical metrics. 
Established standards for vehicle emission test-
ing and machine learning were implemented at 
each stage. This approach ensures transparency, 
repeatability, and the potential for extension to 
broader datasets and operational scenarios.

Model prediction performance   
(MLP, SANN, SVM)

Comparison of the results obtained by the ap-
plied AI models reveals significant differences in 
their predictive performance. The 6-10-1 MLP 

Table 1. Assessment of the quality of the SVM model fit for energy consumption prediction (EC [MJ/km])

Metrics Training set Test set The whole 
(overall) Comment

Number of samples 12 5 17 Small test set – Limited reliability

Number of support vectors 9 (6 limited) - - High SV number → possible overfitting

MSE 6.769 16.180 9.537 A significant difference between train and test – overfitting

Correlation coefficient (R) 0.931 0.816 0.905 Good fit but poorer generalization

SD ratio 0.377 0.611 0.435 Larger relative error in the test set
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model achieved an almost perfect fit to the train-
ing data (R = 0.998) with a very low MSE (ap-
prox. 2.21 MJ²/km²). At the same time, a signifi-
cantly higher error in the test set (MSE > 16 MJ²/
km²) and a decrease in R to ~0.85 indicate strong 
overfitting. This is a typical effect for networks 
trained on small data sets and requires further 
optimization using regularization or cross-valida-
tion. This model was also characterized by a low 
SD ratio (0.389), which confirms the stability of 
its predictions.

In turn, the SANN model, despite slightly 
lower correlation coefficients, proved particularly 
effective in predicting dynamic variables – such 
as speed or instantaneous changes in energy con-
sumption (EC) – thanks to its ability to process 
time series. It also reproduced well the shape of 
the curves in transient conditions, such as accel-
eration and braking phases in the WLTP cycle.

The SVM model, despite the high R = 0.930 in 
the training set, achieved a significantly lower test 
result (R = 0.824), and at the same time a higher 
MSE = 15.75 MJ²/km² and SD ratio = 0.610. This 
indicates the presence of overfitting, especially at 
a high value of the regularization parameter C = 
7.000. The model would require further optimiza-
tion or the use of dimensionality reduction tech-
niques. Table 2 presents the detailed results of the 
SVM models as a function of the variable gamma 
parameter at C = 7.

Due to the very limited size of the dataset (n 
= 17), the obtained results should be considered 
preliminary. Such a small sample size may affect 
the instability of metric estimation and suscepti-
bility of models to overfitting, even with seem-
ingly optimal hyperparameter settings.

Table 2 shows the effect of the gamma param-
eter on the accuracy of the SVM model at a con-
stant value of C = 7. With the increase of gamma, 
a moderate increase in the MSE error and a de-
crease in the correlation coefficient R are notice-
able. The best compromise between accuracy and 
stability was achieved for gamma = 0.175, for 
which the lowest test error (MSE = 15.75) and the 
highest correlation coefficient (R = 0.824) were 
obtained. The SD ratio also indicates the optimal 
generalization of the model with this configura-
tion. Gamma values above 0.200 resulted in a de-
crease in the prediction accuracy and an increase 
in the susceptibility to overfitting.

The obtained results indicate an almost perfect 
fit of the model to the training data, with significant-
ly weaker performance in the test set. This suggests 

strong overfitting, typical for neural networks 
trained on small data sets. It is necessary to use reg-
ularization and cross-validation mechanisms.

Machine learning evaluation – SVM model for 
energy consumption prediction (EC [MJ/km])

For the SVM model with RBF kernel [27], 
a sample size of 17 observations was used, of 
which 12 were used for training and 5 for testing. 
The number of support vectors was 9, including 6 
constrained ones, which means that a significant 
part of the sample was used to determine decision 
boundaries, which may indicate model complex-
ity and the risk of overfitting.

The MSE was 6.769 for the training set, 
16.180 for the test set, and 9.537 for the entire data 
set. The significant difference between the training 
and test errors suggests the presence of overfitting, 
i.e. excessive fitting of the model to the training 
data at the expense of generalization ability.

The correlation coefficient (R) also confirms 
this trend – in the training set the value was 0.931, 
while in the test set it was 0.816. The overall val-
ue was 0.905, which indicates a good quality of 
fit, however the decrease in R in the test set may 
indicate limited effectiveness of the model in pre-
dicting new cases.

The SD ratio reached 0.377 for the training 
set, 0.611 for the test set and 0.435 overall. The 
low value in the training set confirms the good 
agreement of the model with the training data, 
while the higher value in the test set additionally 
confirms the weaker predictive ability.

In summary, the SVM model showed a high 
quality of fit to the training data, but relatively 
poor generalization. The high number of support 
vectors relative to the number of observations and 
the significant difference between Train and Test 
metrics suggest the need to optimize hyperparam-
eters and increase the size of the dataset (Table 3).

The obtained results indicate a very good fit 
of the SANN model to the training data. Although 
the correlation coefficient in the test set is high 
(R = 0.934), the significantly higher value of the 
MSE error relative to the training set (22.94 vs. 
11.64 MJ²/km²) may indicate prediction instabili-
ty or the presence of outliers. This difference sug-
gests a limited ability of the model to generalize, 
which may result from a small number of obser-
vations and the need for further optimization of 
the network structure.
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Error and correlation analysis

The analysis of residual error plots showed 
that the MLP and SANN models best reproduce 
the data in the speed range of 40–70 km/h, which 
corresponds to the optimal energy consumption. 
In the very low speed range (< 10 km/h), an in-
crease in prediction errors was observed, prob-
ably related to the greater randomness of driver 
behavior and reduced efficiency of the drive sys-
tem during stops and starts.

This trend is illustrated in Figure 1, which 
shows a clear inverse relationship between spe-
cific EC and vehicle speed.

The graph shows a clear downward trend: at 
low speeds, higher specific energy consumption 
is observed. This may be due to intensive accel-
eration phases and unfavourable operating condi-
tions of the drive system at low speeds.

One of the key areas of analysis was the re-
lationship between specific energy consump-
tion, driving speed and CO₂ emissions. MLP and 
SANN models made it possible to reproduce this 
relationship in a spatial system, revealing areas of 
optimal drive system operation (Figure 2).

In the center of the graph, the minimum CO₂ 
emissions are observed, corresponding to the 
range of moderate speed and optimal energy con-
sumption. Both low speeds with high EC and high 
speeds with increasing EC result in a significant 

increase in emissions, reflecting the typical trade-
off between dynamics and combustion efficiency.

In order to identify areas of intense CO emis-
sion, an analysis of the spatial relationship be-
tween EC, speed and predicted emission level 
was performed (Figure 3). The models enabled 
the identification of areas where the drive system 
shows the highest losses in the context of fuel 
oxidation (Figure 3).

CO emissions show two characteristic growth 
zones: at low speed and high specific energy con-
sumption (starting and driving conditions) and 
at higher speeds and intensive loads. Minimum 
emission values are observed in the moderate 
speed and medium EC range, suggesting the ex-
istence of an optimum engine operating range in 
terms of carbon monoxide emissions.

In order to assess the conditions favoring the 
emission of THC, their dependence on specific en-
ergy consumption and driving speed was analyzed. 
The models made it possible to generate the spatial 
distribution of emissions, allowing to indicate the 
areas with the highest emissions (Figure 4).

THC emissions are at their highest in conditions 
of low speed and high specific energy consumption 
– typical of starting, stopping and running cold. A 
second increase in emissions occurs at very high 
EC, which may be related to overloading the drive 
system. Minimum emissions are observed in the 
middle range of EC and speed, which indicates the 

Table 2. Comparison of the performance of SVM models for different gamma values (C = 7)
Gamma MSE (Train) MSE (Test) R (Test) SD ratio (Test)

0.140 8.548 17,658 0.822 0.638

0.150 8.344 17,377 0.821 0.634

0.167 7.097 15,751 0.824 0.610

0.175 6.936 15.648 0.824 0.607

0.180 6.936 15.679 0.824 0.607

0.200 6.818 15,771 0.822 0.607

0.250 6.522 15.931 0.818 0.604

0.300 6.326 16.509 0.815 0.603

Table 3. Assessment of the quality of the SVM model fit for energy consumption prediction (EC [MJ/km])

Metrics Training set Test set The whole 
(overall) Comment

Number of samples 12 5 17 Small test set – limited reliability

Number of support vectors 9 (6 limited) - - High SV number → possible overfitting

MSE 6.769 16.180 9.537 A significant difference between train and test – overfitting

Correlation coefficient (R) 0.931 0.816 0.905 Good fit but poorer generalization

SD ratio 0.377 0.611 0.435 Larger relative error in the test set
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existence of an effective operating regime limiting 
the emission of unburned hydrocarbons.

Methane (CH₄), as a representative of emis-
sions characteristic of gaseous fuels, shows a 
strong dependence on vehicle operating condi-
tions. Based on ML models, spatial distributions 
of CH₄ emissions were determined as a function of 
speed and specific energy consumption (Figure 5).

Methane emissions increase significantly at 
low speed and high EC, which may be the result 

of incomplete combustion during start-up and in-
sufficient catalyst temperature. A small increase 
in emissions is also observed at extremely high 
EC values, which may be related to engine over-
load. The minimum CH₄ emissions occur in the 
moderate speed range and average energy con-
sumption – similar to the observations for THC.

For a more complete characterization of hy-
drocarbon emissions, an analysis of the non-meth-
ane component (NMHC) was also performed. 

Figure 1. Relationship between energy consumption and vehicle speed (predicted data)

Figure 2. 3D relationship surface between energy consumption (EC), vehicle speed and CO₂ emissions
(ML model predictions)
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The models made it possible to represent the vari-
ability of NMHC emissions depending on the ve-
hicle operating conditions (Figure 6).

NMHC emissions are highest at low speed 
and high EC, indicating incomplete combus-
tion and inefficient operation of the exhaust gas 
after-treatment system. A similar increase in 
emissions is also observed at very high energy 

consumption, which may result from engine 
overload. Minimum emission values occur at 
moderate EC and speeds of 50–70 km/h, con-
firming the existence of an optimal zone for ef-
ficient hydrocarbon combustion.

The use of artificial neural networks, and in 
particular MLP and SANN models, allows for ef-
fective representation of the actual dependencies 

Figure 3. Spatial relationship between specific EC, vehicle speed and CO emissions (ML model predictions)

Figure 4. Predicted THC emissions as a function of specific EC and vehicle speed (ML model)
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between emissions and energy consumption in 
the WLTP cycle. These models can be used in:
 • real-time prediction of energy consumption 

(eco-driving),
 • digital twin drive systems,
 • supporting emission reduction strategies in 

fleet management systems.

The SANN model proved particularly use-
ful in applications based on time series data, 
while the MLP model provided the highest 
overall accuracy. In turn, the SVM can be an 
alternative in the case of appropriate hyperpa-
rameter optimization and the use of feature se-
lection procedures.

Figure 5. Predicted CH₄ emission depending on the specific EC and vehicle speed

Figure 6. Spatial relationship between specific EC, vehicle speed and predicted NMHC emissions
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To facilitate the evaluation of the effective-
ness of individual approaches, Table 4 presents 
a comparison of the most important features and 
metrics of the three models used: MLP, SANN 
and SVM.

In summary, integrating experimental data 
with machine learning methods is a promising 
avenue for developing accurate forecasting tools 
for low-emission transportation.

DISCUSSION

The analyses carried out confirm the high ef-
fectiveness of artificial intelligence models, in 
particular MLP and SANN neural networks, in 
predicting emissions and energy consumption in 
vehicles with SI engines operating in the WLTP 
cycle. The MLP model achieved very high pre-
diction accuracy, which is consistent with the re-
sults presented by Seo, who reported correlation 
coefficients above 0.98 for CO and 0.96 for CO₂ 
[9]. Also in our analysis the relationship between 
EC and CO₂ emissions was well reproduced, es-
pecially in the range of average speeds.

The SANN network has proven to be particu-
larly useful in the analysis of dynamic variables, 
such as instantaneous speed or THC and CH₄ 
emissions, whose values are particularly variable 
during acceleration and braking. According to the 
literature, models that take into account the tem-
poral nature of data better represent the real emis-
sion phenomena in urban conditions. The choice 
of the fuel system is also crucial for the emission 
level – non-commercial fuel systems can lead 
to exceeding the applicable environmental stan-
dards, which has been shown in studies on low-
power engines.

The SVM model, despite achieving good re-
sults in the training set, showed signs of overfit-
ting. This problem is also confirmed by the reports 
of Zhao et al., who point out the need for careful 

adjustment of SVM hyperparameters, especially 
in the analysis of real transportation data [28].

The relationships between emissions and 
speed and energy consumption were clearly non-
linear, as shown in Figures 2–6. Similar relation-
ships were also identified for diesel vehicles in 
the study by Seo et al., where the use of a hybrid 
ANN and vehicle dynamics model enabled accu-
rate prediction of NOx and CO₂ emissions under 
real operating conditions [29]. For all exhaust 
components, a tendency for increased emissions 
was observed under high engine load (high EC) 
and low driving speed conditions, which is con-
sistent with the results of Fang et al. and Arıkuşu 
et al., who also observed an increase in emissions 
during start-up and city driving [30–34].

The obtained results are consistent with the 
literature reports on the effectiveness of ANN 
methods in mapping the complex relationships 
between emissions and fuel consumption. They 
indicate the need to use a hybrid approach that 
integrates experimental data and domain knowl-
edge with ML algorithms. Such an approach 
supports the development of digital twins of ve-
hicles and strategies for optimizing the opera-
tion of drive systems. In parallel, the use of AI 
methods is finding wider application also out-
side the automotive industry – among others, 
in the transformation of energy systems, where 
they support resource optimization, scenario 
modeling and strategic decision-making. An 
analogous application of neural networks for en-
ergy system forecasting was shown by Orynycz 
et al. [31], who used ANN and decision trees to 
predict CHP unit parameters, underlining their 
potential in hybrid energy systems.

Further research is planned to expand the 
scope of data to include real road traffic condi-
tions and to implement feature selection and input 
space optimization methods, which can further 
increase the accuracy of the models and their ap-
plication potential.

Table 4. Comparison of machine learning models used to predict energy consumption and pollutant emissions

Model Data type Architecture / Parameters MSE (Train/Test) R (Train/Test) SD ratio 
(Test) Application

MLP Table / time 6-10-1, sigmoid + linear, 
backpropagation

– / – (no numeric 
values)

high 
(descriptive) -

Prediction of EC and 
emissions as a function of 
input variables

SANN Time series Auto-association, data 
with delays

– / – (no numeric 
values)

high 
(descriptive) - Modeling dynamic variables 

(e.g. speed, emissions)

SVM Blackboard C = 7, γ = 0.175, RBF 
kernel 7.10 / 15.75 0.930 / 0.824 0.610 High accuracy, but 

susceptible to overfitting



466

Advances in Science and Technology Research Journal 2025, 19(9), 452–468

A similar approach based on the analysis of 
data from actual vehicle operation was used in 
studies comparing exhaust emissions from en-
gines fueled with diesel oil and LNG, which con-
firms the validity of extending the data set with 
such conditions.

Despite the fact that the obtained results indi-
cate the effectiveness of ML models in mapping 
energy consumption and emissions, it should be 
emphasized that the dataset is limited (17 obser-
vations) [32]. Such a small sample size limits the 
possibility of generalizing the results and increas-
es the risk of overfitting, especially in the case 
of models of high complexity (e.g. SVM with 
RBF). The results should therefore be interpreted 
as a technical confirmation of the correctness of 
the proposed methodology. In the next stages, 
it is planned to expand the database and apply 
feature selection and cross-validation methods. 
An important direction of further research may 
also be the analysis of the energy consumption 
of individual architectures, in accordance with 
the approach presented by Tomiło et al.[34]. In 
future analyses, it is also worth expanding the 
set of model evaluation metrics to include MAE, 
RMSE and the coefficient of determination R², 
which will allow for a more accurate assessment 
of the prediction quality and a comparison of the 
efficiency of different algorithms.

CONCLUSIONS

The applied machine learning methods – in 
particular the MLP and SANN models – showed 
high effectiveness in mapping the relationships 
between driving speed, energy consumption and 
pollutant emissions in the WLTP cycle. The MLP 
model achieved the highest prediction accuracy, 
while the SANN network was better at analysing 
dynamic variables such as instantaneous speed or 
instantaneous emissions.

The SVM model, despite good results on the 
training set, revealed a tendency to overfitting, 
which indicates the need for further optimization 
of hyperparameters or the use of input dimen-
sionality reduction methods. At the same time, its 
flexibility in parameter selection can be used in 
selective modeling tasks.

Both statistical analysis and spatial depen-
dence of emissions on driving parameters con-
firmed the complex, non-linear nature of the 
EC–emissions relationship. In particular, it was 

noted that the lowest emissions occurred at mod-
erate speeds and medium engine loads, which is 
consistent with the physical interpretation of the 
combustion process in the SI engine.

Integration of experimental data with intelli-
gent predictive algorithms and physicochemical 
interpretation of combustion processes distin-
guishes the presented approach from previous 
studies. The obtained results can be the basis for 
designing energy management systems in vehi-
cles (eco-driving), digital twins of drive systems 
and emission reduction strategies in intelligent 
transport systems.

The proposed methodology can be success-
fully adapted to the analysis of emissions from 
vehicles powered by alternative fuels, in oth-
er test cycles (e.g. RDE) or in real road traffic 
conditions.

Further research is planned to expand data 
sets, introduce real operating scenarios, and 
compare ANN models with alternative ML algo-
rithms. The research results are a significant step 
towards intelligent modeling of vehicle emissions 
and energy in the context of sustainable transport 
development.

In further work it will be necessary to increase 
the number of observations and use advanced val-
idation techniques, which will enable a more reli-
able assessment of the predictive effectiveness of 
the proposed models.
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