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ABSTRACT

The geometric nonlinearity-based free vibration analysis of shear deformable functionally graded material (FGM)
plates is investigated in this paper. The nonlinear finite element equations are derived from hybrid hyperbolic
higher-order shear deformation theory (HSDT). The Green—Lagrange nonlinear strain—displacement relation is
incorporated in the formulation, along with all higher-order nonlinear strain terms to account for the geometric
non-linearity developed during analysis. Typically, the constituent isotropic ceramic and metal phases follow a
simple power-law distribution with the composition varying gradually with plate thickness. By adopting traction-
free boundary conditions on the top and bottom faces of the plate, the fundamental equations are derived using
a variational approach. An efficient C° continuity finite element formulation with 7 degrees of freedom (DOFs)
per node is developed using homemade MATLAB code to produce the fundamental frequency and mode shape
results. To prove the efficacy of the current model, convergence tests are conducted and the results are validated
with existing literature. Parametric studies are performed for varied thickness ratios, aspect ratios, skewness of the
plate, and volume fraction index with different boundary conditions, the fluctuation of nonlinear frequency ratio
with amplitude ratio is highlighted.

Keywords: functionally graded plates, shear deformation plate theory, nonlinear free vibration analysis, geometric
nonlinearity, finite element method.

INTRODUCTION

The behaviour of a plate with a large am-
plitude free flexural vibration (LAFFV) occurs
in many technical applications, particularly in
aeroplane panels. When a structure is deflected
significantly, say half its thickness, it develops
significant geometrical nonlinearity, owing to the
formation of in-plane membrane stresses. The
tensile nature of these membrane stresses stiffens
the plate. The stiffening effect causes resonance
frequencies to rise and mode shapes to change.
As aresult, the linear model is unable to fully pre-
dict the behaviour of the structures. As a result,
in comparison to static large deflection behaviour
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of plates, geometrically nonlinear flexural vibra-
tion of plates has attracted a lot of interest in re-
cent years. Functionally graded composites can
perform modern and distinctive functions that
conventional composite materials are unable to
accomplish. These are advanced composite mate-
rials which are manufactured using powder met-
allurgy techniques from the combination of metal
and ceramic, having microscopically inhomoge-
neous morphology. The FGM plate has a gradual
transition from metal to ceramic phases along its
thickness [1]. The effective properties character-
izing FGM can be adjusted to suit specific re-
quirements in diverse technical applications due
to the adjustable gradation of the composition of
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FGM. There are fewer stress discontinuities in
FGM since the material properties change gradu-
ally and smoothly across the thickness and inter-
laminar stress discontinuities are eliminated [2].
The nonlinear free vibration has garnered lot
of attention in recent years because linear model
cannot represent actual the structural behaviour
of the FGM plate [3—5]. The understanding of the
large amplitude free flexural vibration behaviour
of an FGM plate has got many technological appli-
cations, especially in aircraft panels. When a plate
structure has got deflections comparable to its
thickness, it develops significant geometrical non-
linearities, thus in-plane normal stresses may oc-
cur. Because the large amplitude vibrations cause
in-plane stretching of the plate, these in-plane
normal stresses are tensile in nature. They in-
crease the plate stiffness. The resulting additional
stiffening of the FGM plate causes resonance fre-
quencies to rise and mode shapes to change.
Because this is a relatively new field, there is
a shortage of published works on nonlinear forced
and free vibrations of FGM plates, with the bulk
of existing literature focused on linear problems.
Finite element models (FEM) and theoretical for-
mulations aimed at both dynamic and static anal-
yses of functionally graded material plates, uti-
lizing third-order shear deformation theory, were
presented by Reddy [6]. Vel and Batra [7] provid-
ed a 3D analytical solution addressing the forced
and free vibrations of simply supported rectan-
gular FGM plates. Their approach employed the
power series method to resolve the governing
equations through appropriate displacement func-
tions that adhere to the specified boundary condi-
tions. Efraim and Eisenberger [8] determined the
exact free vibration frequencies and modes for
thick annular FGM plates with variable thickness.
The geometrically nonlinear behaviour of circular
FGM plates subjected to mechanical and thermal
loads were investigated by Gunes and Reddy [9],
who employed the full Green—Lagrange strain
tensor. Nonlinear partial differential equations
were constructed by Chen et al. [10] for the vibra-
tion motion of initially strained FGM plates. The
formulation for the nonlinear vibrational behav-
iour of functionally graded materials (FGM) un-
der a general condition of arbitrary initial stresses
(CLPT) was derived utilizing classical laminated
plate theory. static analysis and free vibration of
FGM plates was investigated by Talha and Sin-
gh [11] using modified HSDT kinematics. The
fundamental equations were derived through the

variational approach by analysing the stress-free
boundary conditions present at both the top and
bottom surfaces of the plate. In a temperature set-
ting, forced and free vibration studies for initially
strained FGM plates were investigated by Yang
and Shen [12]. The analysis assumes material
properties that vary with temperature, utilizing
the formulations derived from Reddy’s high-
er-order shear deformation theory that considers
uniform temperature changes caused by thermal
effects. Sundararajan et al. [13] used von-Karman
assumptions to build a nonlinear formulation to
investigate the free vibration characteristics ex-
hibited by FGM plates affected by temperature. In
their study, FEM and a direct iterative approach
were adopted to solve Lagrange’s equations of
motion and create nonlinear governing equations

The nonlinear vibration of FGM plates with
non-uniform starting loads was demonstrated
by Chen [14]. By employing the Galerkin meth-
od, the governing nonlinear partial differential
equations have been reformulated into ordinary
nonlinear differential equations, and the Runge—
Kutta method was adopted to determine linear
and nonlinear frequencies. Parametric resonance
of FGM rectangular plates under harmonic in-
plane loading, were demonstrated by Ng et al.
[15]. Research revealed that altering the pow-
er-law exponent, which governs the distribu-
tion of materials within the structures, affects
the parametric resonance of FGM rectangular
plates. Allahverdizadeh et al. [16] developed
a semi-analytical method to analyze nonlinear
forced and free axis-symmetric vibrations in
thin circular FGM plates. The incorporation of
geometric nonlinearity follows the von Karman
approach, with the formulation being based on
the kinematics derived from Classical Lami-
nate Plate Theory. For the nonlinear free vibra-
tion behavior of FGM plates, Woo et al. [17]
proposed an analytical solution. The governing
equations for thin rectangular FGM plates were
derived using the von-Karman theory for sig-
nificant transverse deflection, with the solution
obtained through mixed Fourier series analysis.
Huang and Shen explored dynamic response and
nonlinear vibration of FGM plates in hot settings
[18]. The formulation of the equations relies on
HSDT kinematics and a general von-Karman
type equation, which takes temperature ef-
fects into consideration. Under transverse and
in-plane stresses, Yang and Shen [19] adopted
a semi-analytical approach for studying large

253



Advances in Science and Technology Research Journal 2025, 19(10), 252-264

deflection as well as post-buckling responses of
FGM rectangular plates. The kinematics of the
CLPT are used to create the formulas. Praveen
and Reddy [20] investigated the behavior of
FGM plates through finite element methods that
incorporate transverse shear strains, rotational
inertia, and significant rotations, in accordance
with the von-Karman theory. The gradation of
properties is presumed to follow a power-law
across the thickness, with a comparative analy-
sis conducted on homogeneous isotropic plates.
The theoretical approach used to model the
structure significantly influences the accurate
representation of the nonlinear behavior of func-
tionally graded materials. The standard laminat-
ed plate theory, which assumes that the normal
to the mid-plane remains perpendicular during
deflections, may not be suitable for FGM plates,
where the volume fractions of multiple materials
vary continuously with position in a designated
direction. This error stems from the failure to ac-
count for the transverse shear and normal strains
of the plate. The first-order shear deformation
theory and higher-order shear deformation theo-
ry may provide valuable insights for analysis due
to the continuous changes in material properties.
Mindlin’s first-order shear deformation theory
does not fulfill the requirement for a parabolic
distribution of transverse shear strain through
the thickness, which affects the accuracy of the
shear correction factors in the FSDT solutions.
Therefore, these factors must be integrated into
the adjustments for transverse shear stiffness.
Typically, in the kinematics of HSDT, in-plane
displacements are represented as a cubic func-
tion of the thickness coordinate, while out-of-
plane displacement is considered constant.

In order to ensure the accountability of
normal strain and its derivative in calculating
transverse shear stresses, the kinematics of the
structural model presumes a cubic variation of
in-plane displacement across the full thickness,
while the transverse displacement is assumed to
vary quadratically. Researchers have focused on
advancing higher-order shear deformation theo-
ry to gain insights into the mechanical behavior
of constructions utilizing FGM [21, 22]. In this
context, the analysis of geometrically nonline-
ar free flexural vibrations of FGM plates, em-
ploying higher-order shear deformation theory
with geometric nonlinearity in the Green—La-
grange framework, is essential for accurately
examining the responses of the FGM structure.
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The findings from the literature review reveal
a notable deficiency in the available research
concerning the nonlinear free vibration analysis
of functionally graded plates that apply high-
er-order shear deformation theory kinematics,
especially in relation to geometric nonlineari-
ty within the Green—Lagrange sense. The goal
of the presented study was to develop a novel
HSDT approach with such a shear deformation
function that it can accurately model the large
amplitude free vibration behavior of the plate
incorporating geometric nonlinearity. A simple
nonlinear C° continuous isoparametric FE is pre-
sented and the obtained findings were compared
to literature reports. The comprehensive para-
metric study has illustrated the variation of non-
linear fundamental frequencies with amplitude
ratios for various boundary conditions, volume
fraction indices, amplitude ratios, aspect ratios,
and thickness ratios.

THEORETICAL FORMULATION

Geometric configuration of the FGM plate

The FGM plate consist of single layer of
FGM with length a, breadth b, and a uniform
thickness t. Figure 1 illustrates the geometry of
a skew functionally graded material plate, which
features a gradual variation in metal and ceramic
compositions from the top to the bottom surface.
The upper surface, located at Z (h/2), is predom-
inantly composed of ceramic, while the lower
surface at Z (-h/2) is primarily metal. The coordi-
nates x, y, and z represent the in-plane and thick-
ness directions, respectively. The skew angle is
measured clockwise from the y-axis.

Ceramic

Metal

Figure 1. The geometry of the skew functionally
graded plate
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Material homogenization scheme

The material behaviour is considered to be line-
ar elastic for small strains and large displacements.
The composition of FGM is non-uniform and FGM
constituents, unlike alloys or other chemical com-
binations, retain their mechanical properties. How-
ever, the gradual variation of the ceramic and me-
tallic phases along the plate’s thickness allows the
use of various material homogenization schemes
which can predict the mechanical properties of
FGM at a particular depth. In Equation 1 the me-
chanical properties of ceramic P_and metal P_ are
employed to calculate the effective properties of
plate material, e.g. Young’s modulus E and density
p. The Vc(z) given in Equation 2 constitutes the
volume fraction of the ceramic and n corresponds
to the volume fraction index, whereas material
variation is described via power law distribution.
The aforementioned power-law theory calculates
a simple rule of mixtures (RM) that is utilized to
determine the effective mechanical properties of a
ceramic—metal graded plate. The RM only applies
in the thickness direction.

P(z) = By + (Pc — By) - Ve (2) (D
V. (2) ={1/2 4+ z/h}" (2)

Displacement fields

Figure 1 shows that the material coordinates
originate in the centroid of the plate. The kinemat-
ics of HSDT that has been proposed incorporates
a hybrid hyperbolic shape function for in-plane
displacements, thereby ensuring an accurate es-
timation of the transverse shear effects in the
mathematical model. The displacement fields are
described in Equation 3—5. The hybrid hyperbolic
shape function which ensures the parabolic shear
strain profile and removes the requirement of cal-
culating the shear correction factor is described in
Equation 6.

u(x,y,2) = ug(x,y) — 25 = fopex(x,y) (3)
v(6,7,2) = vo(x,y) — 257~ fibey (.Y) (4)
w(x,y,2) = wo(x,y) ()

4xz3 h 2-z
fZ " 3-h2.cosh (1)2 T2 tanh {T} (6)
The first-order derivatives produce second-
order derivative terms in strain-displacement re-

lationships and require C1 continuity (continuity

of primary field variable and their first-order
derivatives) in FE formulation. The algorithm
of C1 continuity is very difficult and complex,
hence the C1 continuity requirement must be
avoided. The C1 continuity is reduced to CO con-
tinuity which require the continuity of only pri-
mary field variables, by assigning new field vari-
ables to the first-order derivative terms expressed
in Equation 7.
9bx=z—2/'by=?,—‘; (7)
These new unknown field variables cause
artificial constraints in the governing equation
of the plate. Thus, a penalty approach is used to
enforce them into FE formulation. Equation 89
show the modified displacement fields for in-
plane displacements .

u(x,y,z) = ug(x,y) =z - Opr(x,y) -

—fz- Psx (x,¥) (®)
v(x,y,2) = vo(x,y) — 2 Opy(x,¥) — ©)
- fZ : ¢Sy(x! }’)

Strain-displacement relationship

The geometric non-linearity is incorporated
in the strain-displacement relationships expressed
in Equation 10 for FGM plate by using Green-
Lagrange theory. The non-linear terms containing
only transverse displacement are considered and
geometric non-linearity due to in-plane displace-
ments is ignored.

€ =%_ agbx_ a¢sx+l(awo)2
* ox ox Z ox 2\ ox

_ 9y, 00py 0psy | 1 (3w0)2
Cyy= oy z oy f2 dy +2 oy

_ du, Jdv, 06y, 69by}

y’fy_{ay * ax} Z{By T xS (10
(P, 9 | 1 9y 00,
e+ 52+ 5 (50 5)

ay x dx 0dy
owg 0fz
Vxz = 9x Opx + Eesx
aw, af
Yvz =G0 Opy + a_zesy

The strains € corresponding to € , €,y and
Ve and transverse shear strain terms y represent-
ing y_ and Yy, given in Equation 10 terms can be
rewritten in simplified form in Equation 11-12.
Here [B] is differential operator matrix and [H] is

thickness coordinate matrix.

e = [BP][HP}{8} + 3 [A™][G™][H™] {8} (11)

y = [B*][H*]{6} (12)
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Constitutive relationship

Equation 13 delineates the constitutive rela-
tionship that governs the relationship between
stresses and strain in the context of the FGM
plate domain. The modulus of elasticity E(z) and
Poisson ratio v(z) are calculated using RM for
estimating Q, = Q,, = E(z)/(1-v(2)*), Q,, = E(2)
v(z)/(1-v(z)’) and Q,,= Q,, = Q., = E(2)/2(1+v(z).
Further, Q°= [Q,] with i,j = 1,2,3 and Q*= [Q,]

with i,j = 4,5.
Oxx [Q11 Qiz O 0 0 Exx
Tyy Qiz Q2 0 O 0 Eyy
Tyl=l0 0 Q33 0 0 N Yy
Txz 0 0 Q44 Vxz
Tyz 0 0 0 Q5 sl LYyz
(13)

Strain energy of the FGM plate

Equation 14 can be used to calculate the strain
energy of the FGM plate. Putting the values of
€ and y into Equation 14, we get expression of
strain energy presented in Equation 15.

U=s[€"oav+-[yTeav  (14)
( {8} [B"1"[D1[B"1{8} +
+{8}"[B°I"[D*][B°1{6} +
1
U% f +5 GBI MG+ |50,
Y[ [AM]T (D] [B)(8) +
+%{5}T[Gnl]T[Anl]T[Dnl3][Anl][Gnl]{a}

(15)

Similarly, Equation 16 defines the kinetic en-
ergy of the FGM plate, where u = [H™]*5 repre-
sent the displacements.

= %-Up - (u)? 0xdy 0z =
_ % f (6)" D™{8}axay

The expression of the D°, D, D™, D!, D2
and D™ are presented in Equation 17.

(16)

h/
b= [ teriormeaz, b = |

—h/2

h/2
pnit — f [Hb]T[Qb][H”l]az,D"lz — f

—h/2

h/
Dnl3 :f Z[Hnl]T[Qb][Hnl]aZ, pm :f

—h/2
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Governing equations

By implementing the principle of virtual work
on the Lagrangian (L), the governing differential
equation of motion can be obtained, as expressed
in Equation 18. The given equation is derived by
principle which is a generalization of principal
of virtual work. The artificial constraints which
have been imposed for maintaining CO continuity
in the FE formulation is taken into consideration.

or  ou |

a{s} a{6

o} ote) 2 (18)
WOx)

+ijﬁ{(9bx_ : +}av =0
0{8}) 2 (+(8yy — woy)?

FINITE ELEMENT FORMULATION

The FE formulation is developed by imple-
menting nine-noded CO continuity isoparametric
elements. There are seven degrees of freedom
(DOFs) per node namely {u, v, w0, , by o
¢Sy}. The geometry of the FGM plate domain
and displacement fields can be interpolated us-
ing Lagrangian shape functions expressed in
Equation 19.

The use of nine-noded elements allow us
to use full-scale gauss quadrature integration
scheme which improves the accuracy of the re-
sults to great extent.

8§ =X Nibix = X Nixy,y = Y7oy Niy; (19)

Derivation of stiffness and mass matrix

When the expression of strain energy from
Equation 15 and kinetic energy from Equation 16
is introduced into Lagrange equation of motion
stated in Equation 18, the governing equation can
be expressed in Equation 20. Here, M denotes
the mass matrix, whereas K corresponds to the
stiffness matrix containing the contribution from
linear and nonlinear components i.e., K = K+
K+ K, + K, + K,,}, and K_is the stiffness
h/2

[H°]7[Q*][H?]0z
~h/2

h/2
[H™]T[QP][H"]0z (17)
—h/2
h/2
p[H™]"[H™]0z
—h/2
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matrix resulting from artificial constraints needed
for CO continuity of FE formulation.

[M1{8} + ([K] + [K.D{6} =0 (20)

Here M and K matrix are defined as follows:
[M] = f NT D™Nax0y,
Ky = [1B°1 [0*1B" 030,

K, = j [BS]7[DS][B<]0xdy,

21
K =5 [ 1B (D114 [6™) 0y, o

Koz = [ (6™ LA™Y (D21 B 030y

Koo = 5 [ 607 LA (D) 47 G ™) 00y

Solution procedure

The free vibration analysis is performed for
the given FGM plate without considering the ef-
fect of geometric nonlinearity i.e., K = K, + K.
The relationship between acceleration and dis-
placement for harmonic vibrations holds true and

{S} = —w?{6}. The effect of the artificial con-
straint is neglected and this that the Equation 20
will be reduced to Equation 22.

—w?[M]{8} + [K]{6} =0 (22)

The Reyleigh iteration approach is used to
tackle this eigenvalue problem. Initially, Equa-
tion 22 is solved, with all nonlinear terms [K ],
[K ], and [K .] set to zero by utilizing a zero
eigenvector, thereby yielding the linear response
with a normalized first mode. The mode shape
representing the transverse displacement of the
FGM plate obtained from linear fundamental
frequency (w,) is then scaled to achieve the de-
sired amplitude ratio w/h (where w denotes the
maximum transverse displacement and h signifies
the plate thickness). The scaled-up transverse dis-
placement vector [w ] is used to obtain nonlin-
ear stiffness matrices [K | 1, [K ], and [K .]. The
nonlinear fundamental frequency is derived for K
having non-linear stiffness and the corresponding
eigenvectors are calculated to update the non-lin-
ear stiffness matrices for the next iteration. This
procedure is repeated until the eigenvalues from
the next two iterations fall within the specified tol-
erance limit of less than < 10, The convergence
is expected to occur at the tolerance limit, and the
converged frequency is considered as the FGM

plate’s nonlinear frequency (o, ). The frequency
ratio (o, /@, ) corresponding to given amplitude
ratios (w/h) are compared with existing literature
for validation.

RESULTS AND DISCUSSION

This study investigated the effect of geometric
nonlinearity in free flexural vibration behaviour of
FGM plates. The FE model developed from the
Lagrange’s equation of motion based on proposed
HSDT kinematics is used to calculate the frequen-
cy and mode shapes. The Green-Lagrange theory
was added into the formulation to account for the
geometric nonlinearity due to large amplitude free
vibrations in the plate. There has been a computer
program created using MATLAB 9.6.0 (R2019a)
environment. To evaluate the accuracy of the algo-
rithm, its results are compared against established
findings in the literature. The current integration
scheme uses full integration scheme with 3X3
gauss quadrature rule of integration to compute the
stiffness and mass matrix accurately. The material
is assumed to behave elastically and the non-lin-
earity of the material behaviour has been ignored.
The convergence of mesh size is studied to find the
optimum mesh size for the application even though
such restrictions are not imposed by the FE mod-
el. In order to validate the efficacy of the model,
the converged results are contrasted with previous
findings. The comprehensive parametric studies are
performed on the model to explore the behaviour
of the FGM plate for various boundary conditions,
side-to-thickness ratios, aspect ratios, skewness,
and material properties. The boundary conditions
for the FGM plate are described as follows: -

1. All sides simply supported (SSSS):

v,w,0, and ¢, are0atx =0,a
u,W,By and ¢>y are0aty=0,b
2. All sides clamped (CCCC):
U, v, W, Oy, oy 0, and

¢yare0atx =0,aandy =0,b
3. Two sides simply supported two sides clamped
(SCSC):
v,w,0, and ¢, are0atx =0,a
u, v, W, 0y, ¢y 0, and ¢, are 0 aty = 0,b

Table 1 presents the material properties of
the metallic and ceramic materials used to create
FGM composite. The temperature T = 300 K is
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Table 1. Mechanical properties of the metal and ceramic at T =300 K

Material E (GPa) p (kg/md) ]
Aluminum (Al) 70 2707 0.3
Metal Titanium alloy (Ti-6Al-4V) 105.7 4429 0.298
Stainless steel (SUS304) 207.78 8166 0.28
Alumina (AL,0,) 380 3800 0.3
Ceramic Zirconia (ZrO,) 151 3000 0.30
Silicon nitride (Si,N,) 427 3210 0.28

used as reference temperature for the values of
modulus of elasticity (E), density (p) and Poisson
ratio (v) presented in the Table 1.

The accuracy of the current FE formulation,
which utilizes the proposed Higher-Order Shear
Deformation Theory alongside a general von-
Karman geometric nonlinearity, is confirmed
through a comparison of results with existing
studies [23]. A study of the mesh convergence
is also offered. The analysis of free vibrations is
conducted on an FGM square plate that is simply
supported along all four edges. The study consid-
ers various amplitude ratios (w__/h) with a vol-
ume fraction index of n = 2. The plate is square
with sides a = b = 0.2. The maximum deflection
at the center of the plate is denoted as w__. The
FGM plate is composed of titanium alloy (Ti—
6Al-4V) for the metal component and zirconia
(ZrO,) for the ceramic component. As shown in
Table 2, the results were calculated using the fre-
quency ratio (w_/o,) with various mesh divisions.
This demonstrates that the accuracy of the solu-
tion and the rate of convergence with mesh refine-
ment are satisfactory for the frequency ratio (o /
®,) across varying amplitude ratios (w__ /h). The
convergence leads to the conclusion that a 10X10
mesh is enough for nonlinear analysis. The pres-
ent study incorporates geometric nonlinearity
through the Green—Lagrange theory, addressing
all higher-order nonlinear strain components.

Nevertheless, a thorough investigation has shown
that the von-Karman geometric nonlinearity
yields reasonably accurate results up to (w__ /h) =
0.6, which is omitted here for simplicity.

The study examined the nonlinear free vi-
bration time periods of a square (a‘/h = 10) FGM
plate composed of stainless steel (SUS304) and
silicon nitride (Si,N,) across various volume frac-
tion indices. The variations in nonlinear time
periods for a simply supported FGM plate cor-
responding to different volume fraction indices
are shown in Table 3.The analysis is done for the
amplitude ratios 0.2, 0.6 and 1.0. Non-dimen-
sional linear period described in Equation 23 is
calculated and it is compared with the non-linear
period by Chen [21]. It can be seen that the higher
amplitude ratios result in lower time periods of
vibrations. A reduced index value for the volume
fraction suggests a more significant rise in the ce-
ramic volume fraction from the base layer of the
FGM plate.

T =T, = /{n2E/12(1 — v2)pa?}

(23)

The influence of varying thickness ratios (a’h),
from thick to thin plates, on the volume fraction
index n is shown in Table 4. The square FGM
plate composed of Ti-6AL-4V/ZrO, is simply
supported on all sides with the volume fraction in-
dex n defined as 1As the thickness ratio increases,
the frequency ratio (o /) decreases, with more

Table 2. Fundamental nonlinear frequency ratios o, / ®, for different amplitude ratios of a square SSSS (Ti-6AL—

4V/ZrO,) FGM plate with varying mesh sizes

Mesh size Amplitude Ratio (w,__ /h)
0.2 0.4 0.6 0.8 1.0

Ref [20] 1.0455 1.1409 1.2765 1.4244 1.6055
Present (4 x 4) 1.0451 1.1386 1.2702 1.4301 1.6098
Present (6 x 6) 1.0451 1.1387 1.2708 1.4314 1.6115
Present (8 x 8) 1.0451 1.1388 1.271 1.4316 1.6101
Present (10 x 10) 1.0451 1.1388 1.271 1.4317 1.6075
Present (12 x 12) 1.0451 1.1388 1.271 1.4318 1.6067
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Table 3. Comparison of nonlinear periods for different volume fraction indices (n) of simply supported (SUS304/

Si,N,) FGM plates (a/b =1, a/h = 10)

Amplitude ratio (w__/h)

n tg‘r‘f:(; 0.2 0.6 10
Ref [21] Present Ref [21] Present Ref [21] Present
10 11.008 10.703 12.3351 8.911 10.3013 7.034 8.1677
10.69 10.422 11.7132 8.6767 9.7484 6.845 7.7335
2 9.959 9.695 10.6014 8.045 8.7689 6.331 6.9411
1 9.136 8.897 9.5427 7.354 7.88 5.772 6.2233
0.5 8.231 8.011 8.4298 6.609 6.9816 5.187 5.5098
0.2 7.236 7.031 7.2355 5.811 6.032 4.562 4.7655
0.1 6.741 6.547 6.6597 5.416 5.5735 4.257 4.4077
Ceramic | 6.097 5.915 5.9286 4.901 4.9878 3.855 3.9513

significant variations observed at lower thickness
ratios compared to higher ones, meaning that cur-
rent HSDT is better suited to thick plates, whereas
higher-order terms should be considered in the
analysis of thick plates.. Furthermore, it is evident
that the frequency ratio expands in conjunction
with an increase in the amplitude ratio. The trends
of the frequency ratios are disrupted at various
places due to the presence of significant nonlinear-
ity and they have been shown in bold. As a result,
it can be argued that analyzing geometric nonlin-
ear systems in the Green—Lagrange theory is criti-
cal for closely monitoring structural reaction.

The influence that boundary conditions have
on the nonlinear frequency ratio (w_/o,) was stud-
ied for SCSC square SUS304/ Si,N, FGM plates.
As shown in Table 5, the frequency ratio (o /
o,) fluctuates in relation to the amplitude ratio
(w_,/h). The results indicate that the frequency
ratio increases with the volume fraction index n
until it reaches a peak at n = 2, after which it de-
creases with further increases in n. Notably, the
frequency ratio for a/h = 10 is higher than that
for a/h = 20. Furthermore, the frequency ratio
is positively correlated with the amplitude ratio,

as larger amplitude vibrations lead to increased
nonlinear frequencies. The influence of bound-
ary conditions on the nonlinear frequency ratio
(0, /o) was studied for CCCC square Al/ ZrO,
FGM plates. Table 6 demonstrates how the fre-
quency ratio (o /o) varies with the amplitude
ratio (w__ /h). The frequency ratio rises along
with the volume fraction index n until it reach-
es a certain threshold, specifically at n = 2, after
which it begins to decline with further increases
in n. When comparing a’/h = 20 to a/h = 10, the
frequency ratio is higher for a/h = 10. Addition-
ally, the frequency ratio grows with the amplitude
ratio, because non-linear frequencies increase for
large-amplitude vibrations.

The influence of gradation rate on the non-
linear free vibration can be tested by using two
set of FGM material. One with Al/Al O, having
E/E_= 5.42 and other Al/ZrO, having E/E_=
2.15. A higher E /E _ ratio results in a more sig-
nificant change in material properties relative to
thickness. The simply supported square plate with
thickness ratio (a/h=10) was taken for the analy-
sis. The nonlinear free vibration analysis was per-
formed for various n and amplitude ratios. It can

Table 4. Influence of varying thickness ratios (a/h) with the volume fraction index n for (Ti-6AL-4V/ZrO,) FGM

plates consistent with SSSS boundary condition

a/h Amplitude ratio (w__ /h)
0.5 1.0 1.6 2.0 2.5
5 1.2448 1.5238 1.787 1.7929 1.7196
15 1.2196 1.6312 1.6773 1.697 2.1885
25 1.2175 1.6243 1.675 1.7818 1.8321
50 1.2165 1.6206 1.8395 1.7811 1.68
100 1.2161 1.6194 2.0462 1.7117 1.6911
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Table 5. Influence of volume fraction index n and thickness ratio on the fundamental nonlinear frequency ratio

(®, /o) of a square SCSC (SUS304/Si,N,) FGM plate

" N Amplitude ratio (w__ /h)
0.4 0.8 1.2 1.6 2.0 24

0 1.057 1.2129 1.4355 1.5887 1.508 1.3085
0.5 1.0683 1.2357 1.4683 1.5466 1.5503 1.4799

1 1.0714 1.2405 1.4736 1.5403 1.5555 1.4844
10 2 1.0707 1.2361 1.4642 1.5402 1.5528 1.4788
1.0651 1.222 1.4411 1.5498 1.5423 1.4668
10 1.0613 1.215 1.4314 1.5625 1.5334 1.4698

20 1.0592 1.2126 1.4301 1.5725 1.5235 1.5094
0 1.0526 1.1977 1.4081 1.6487 1.5982 1.5279
0.5 1.0633 1.2197 1.4403 1.6852 1.5523 1.5949

1 1.0661 1.2239 1.4448 1.6885 1.5604 1.605

20 1.0652 1.2188 1.4339 1.6747 1.5649 1.606
1.0596 1.2042 1.4091 1.6442 1.585 1.5911

10 1.0561 1.1976 1.4 1.6338 1.5992 1.573

20 1.0542 1.1959 1.3999 1.6353 1.6033 1.5564

Table 6. Influence of volume fraction index n and thickness ratio on the fundamental nonlinear frequency ratio

(o /o)) of a square CCCC (Al/ZrO,) FGM plate

ath N Amplitude ratio (w,__ /h)
0.4 0.8 1.2 1.6 2.0 24
0 1.0421 1.1584 1.3274 1.4461 1.436 1.4549
0.5 1.044 1.165 1.3402 1.4148 1.4379 1.4535
1 1.0439 1.1649 1.34 1.4056 1.4316 1.4504
10 1.0425 1.1597 1.3301 1.4032 1.4236 1.4435
1.04 1.1507 1.3128 1.4123 1.4175 1.4371
10 1.0394 1.1486 1.3085 1.421 1.4193 1.4398
20 1.0398 1.1502 1.3116 1.4305 1.4241 1.4453
0 1.0389 1.1471 1.3067 1.496 1.4866 1.4621
0.5 1.0407 1.1538 1.3198 1.5084 1.4418 1.4774
1 1.0406 1.1534 1.3191 1.5037 1.436 1.4761
20 2 1.039 1.1477 1.3079 1.4919 1.4371 1.4699
1.0364 1.1381 1.289 1.4694 1.4542 1.4591
10 1.0359 1.1363 1.2853 1.4644 1.4701 1.4558
20 1.0364 1.1383 1.2894 1.4706 1.4798 1.4569

be observed that the variation in amplitude ratio
is more drastic for higher E/E_ AI/A1,O, FGM
plate. This implies that the effect of rate of change
of gradation influences the nonlinear free vibra-
tions of the plate.

The relationship between varying aspect ra-
tios (a/b) and the frequency ratio (o /o) for mul-
tiple amplitude ratios is depicted in Table 8. The
square Al/ZrO, FGM plate is simply supported on
all sides, with the volume fraction index n taken as
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1.The frequency ratio (o /o) increase as the as-
pect ratio increases, attaining the maximum value
near square geometry and then it decreases with
higher aspect ratios. The changes are more promi-
nent for smaller aspect ratios. The changes are al-
most symmetric about square geometry for plates
subjected to smaller amplitudes ratios. For higher
amplitude ratios, the maximum frequency ratio is
observed for plates with aspect ratio smaller than
unity. The impact of skew angles on the stiffening
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Table 7. The effect of gradation rate on the fundamental nonlinear frequency ratio (®_/®,) of a square simply

supported the FGM plate
Amplitude ratio (w,__/h)
FGM n
0.5 1 1.4 1.8 2.4 3.0
0 1.1615 1.56535 1.6369 1.7055 2.3157 2.484
0.5 1.2195 1.6432 1.6338 1.6585 2.2366 2.3986
1 1.2357 1.6615 1.6353 1.6567 2.1832 2.3459
AlZrO, 2 1.2346 1.6498 1.6257 1.6492 2.1376 2.3009
1.2111 1.6051 1.6157 1.6475 2.1338 2.2999
10 1.1922 1.5775 1.6259 1.671 21707 2.3404
1.1614 1.2108 1.6183 1.5684 1.7022 2.0646
0.5 1.2614 1.5532 1.5831 1.5811 1.6317 1.9504
AVALO, 1 1.299 1.7048 1.637 1.6038 1.6053 1.9019
1.3079 1.7077 1.6471 1.7032 1.633 1.9507
1.2729 1.6634 1.6224 1.6941 2.3037 2.0364
10 1.2388 1.6552 1.5742 1.7459 21733 2.4807

Table 8. The influence of aspect ratio on the fundamental nonlinear frequency ratio (®, /m,) of a square simply

supported the FGM plate
Amplitude ratio (w__/h)
a/b
0.5 1.0 1.4 1.8 2.4

0.5 1.3622 1.384 1.4905 1.612 1.7104
0.75 1.3117 1.7811 1.5815 1.8033 2173

1 1.299 1.7077 1.6224 1.7459 2.0646
1.5 1.3305 1.4479 1.5399 1.6546 1.8051

2 1.369 1.3161 1.3576 1.3919 1.4596

characteristics of a simply supported FGM plate
was investigated. The RM scheme was employed
to define the mechanical properties characterizing
the AlI/AL,O, FGM plate. A nonlinear free vibra-
tion analysis was conducted for both thin and
thick skew FGM plates, all with edges of equal
length. The fundamental frequency of linear free

vibration is compared with the findings of authors
[24] for an isotropic ceramic phase across vari-
ous plate thicknesses and skew angles. As shown
in Table 9, an increase in the skew angle results
in a general stiffening effect on displacement val-
ues, with larger skew angles corresponding to
lower frequency ratios. Overall trends of larger

Table 9. Influence of the skewness angles on the fundamental frequency ratios (o_/w) of the simply supported

FGM plate
ah Skew Ref Present Amplitude ratio (w__ /h) forn =1
Angle(B) Linear Linear 0.2 0.5 1 1.5
0° 1.7661 1.7194 1.1013 1.3362 1.4971 1.6866
15° 1.856 1.8113 1.097 1.3249 1.4522 1.6324
° 30° 21719 2.1361 1.0855 1.2931 1.3877 1.5597
45° 2.9129 2.901 1.0694 1.2452 1.3244 1.3388
0° 1.9311 1.9008 1.0944 1.3076 1.7132 1.612
15° 2.0379 2.0081 1.0907 1.2981 1.6767 1.5737
10 30° 2.4195 2.3964 1.0803 1.271 1.5965 1.5256
45° 3.3548 3.3605 1.0655 1.2304 1.4697 1.4531
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Table 10. Effect of the skewness angles on the fundamental frequency ratios (o, /o,) of the clamped AI/Al, O, FGM
plate

" Skew Amplitude ratio (w__ /h) for n =1
a
Angle (8) 0.2 0.5 1.0 15 2.5 2.0
0 1.0165 1.0974 1.3201 1.3454 1.5007 1.5161
5 15 1.0168 1.0992 1.3117 1.3415 1.4756 1.5112
30 1.018 1.106 1.2659 1.3309 1.4328 1.4697
45 1.021 1.1235 1.2316 1.3534 0.975 1.3366
0 1.0126 1.0757 1.2741 1.3957 1.4688 1.4225
10 15 1.0127 1.0761 1.2754 1.379 1.4747 1.4164
30 1.0129 1.0776 1.2804 1.3409 1.483 1.3982
45 1.0136 1.0814 1.2923 1.3113 1.4877 1.3783
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Figure 2. The mode shape distribution of AlI/Al, O, FGM plate for various boundary conditions and amplitude

ratios
amplitude ratio resulting in larger nonlinear fun- 2(1-2)peatn?
damental frequencies maintained. The fundamen- Wiinear = Wo * ‘/TZEC (24)
tal frequency ratio (o /o) decreases with thick-
ness of the plate corresponding to better flexural By securing the edges of the skew FGM plate,
strength of thicker plates. any complexities associated with uncertainties
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regarding rotational displacement at the slanted
edges are eliminated. The clamped skew plate
with all sides having equal length and thickness
ratio (a/h = 5, 10) for n = 1 is for nonlinear free
vibration. The frequency ratios are (onl/wl) esti-
mated for various the skew angle. The RM method
was employed to describe the effective mechani-
cal properties characterizing the Al/A1,O, FGM
plate. When edges are clamped, the displacement
is minimized due to the restriction of angular
displacements at those edges. This reduction in
movement lessens the effects of geometric non-
linearity, yielding smaller frequency ratios. The
increase in skewness reduces the deflection and
conversely the frequency ratios are (onl/wl) as
shown in the Table 10. The effect of nonlinearity
is more pronounced in thinner plates as compared
to thicker plates.

The mode redistribution phenomena for Al/
AlO, FGM plate with a/h =10 is shown in Fig-
ure 2 for SSSS,SCSC and CCCC boundary con-
ditions. For larger amplitude ratios, the mode
shapes start redistributing and shifting as can be
seen in contour plot of the transverse displace-
ment mode shape of the plate. This phenomenon
of mode distribution, namely the mode shape of
the plate shift towards one corner/edge of the
plate for higher modes of vibration is quite unique
and demonstrates the behaviour of plate subject-
ed to large amplitude vibrations. The shifting is
towards one corner for simply supported plate.
The clamped plate observes shifting to an edge
and clamped-simply supported plate observes the
combination of shifting towards edge as well as
towards a corner.

CONCLUSIONS

The present HSDT has been used to study
the geometrical nonlinear free flexural vibration
analysis of the FGM plate. The FE model was
developed from the proposed HSDT and green-
lagrange theory for non-linear analysis. The al-
gorithm for calculating the non-linear and linear
frequency ratios using the Rayleigh iteration
method is developed in MATLAB, utilizing nine-
noded CO continuous isoparametric Lagrangian
elements, each with seven degrees of freedom
per node. To ensure the accuracy of the current
formulation, convergence and validation stud-
ies were conducted. The numerical findings for
different combinations of boundary conditions,

volume fraction indices, thickness ratios, and

aspect ratios were provided. The findings under-

score the critical role and requirement for higher-
order nonlinear terms. The main observations can
be highlighted as follows:

e As the amplitude ratio increase, there is an in-
crease in nonlinear free vibration frequencies.

e Increasing ceramic volume fraction improves
the stiffness and decreases the nonlinear
frequencies.

e The effect of higher rate of change in mechani-
cal properties of ceramic to metallic phase
produces drastic changes in frequency ratios
of the plate.

e The effect of fundamental frequency ratio in-
creases along with thickness ratios.

e The fundamental frequency ratio shows maxi-
mum value for square geometry irrespective
of amplitude ratios.

e The clamped plate shows lesser values of fun-
damental frequency ratio compared to the sim-
ply supported plates.

e The influence of skewness of the plate has
overall stiffening effect and it shows lesser
values of fundamental frequency ratio.

e The modal redistribution happens for large
amplitude ratios and mode shape shifts to cor-
ner for simply supported plate and it shifts to
edges for clamped plates.

The algorithm can be implemented for dif-
ferent non-power-law distributions for material
properties (e.g., exponential, sigmoid, or arbi-
trary functions) to better reflect real-world man-
ufacturing capabilities or design requirements.
The current formulation can be implemented in
plates with material properties varying in two or
three directions (e.g., in-plane grading, or com-
bined thickness and in-plane grading). The ef-
fect of porosity, variable thickness profiles (e.g.,
tapered, stepped) and curved shell structures
which have more complex geometries and find
extensive use in aerospace and other industries
can be incorporated for analysis. The nonlinear
free vibration of FGM plates can be extended
to study of its behavior under different thermal
environments and moisture absorption condi-
tions which lead to hygro-thermo-mechanical
coupling. Better higher-order shear deformation
theories which might offer better accuracy for
very thick plates or specific loading conditions,
while still maintaining computational efficiency,
can be explored.

263



Advances in Science and Technology Research Journal 2025, 19(10), 252-264

REFERENCES

1.

10.

11.

12.

Koizumi, M. F. G. M. FGM activities in Japan. Com-
posites Part B: Engineering 1997, 28(1-2), 1-4.
https://doi.org/10.1016/S1359-8368(96)00016-9
Koizumi, M., Nino, M. Overview of FGM research
in Japan. Mrs Bulletin 1995, 20(1), 19-21. https://
doi.org/10.1557/S0883769400048867

Ansari M. 1., Kumar A., Fic S., Barnat-Hunek D.
Flexural and Free Vibration Analysis of CNT-Rein-
forced Functionally Graded Plate. Materials 2018,
11, 2387, https://doi.org/doi:10.3390/mal1122387

Singh J., Kumar A., Szafraniec M., Barnat-Hunek
D., Sadowska-Buraczewska B. Static analysis of
skew functionally graded plate using novel shear de-
formation theory. Materials 2022, 15, 4633. https://
doi.org/10.3390/mal15134633

Anish, A. Chaubey , A. Kumar, B. Kwiatkowski, D.
Barnat-Hunek, M. K. Widomski, Bi-Axial Buckling
of Laminated Composite Plates Including Cutout
and Additional Mass. Materials 2019, 12(11), 1750;
https://doi.org/10.3390/mal2111750

Reddy, J. Analysis of functionally graded plates. In-
ternational Journal fornumericalmethodsinengineer-
ing 2000,47(1-3), 663—684. https://doi.org/10.1002/
(SICI)1097-0207(20000110/30)47:1/3<663:: AID-
NME787>3.0.CO;2-8

Vel, S. S., Batra, R. C. Three-dimensional exact
solution for the vibration of functionally graded
rectangular plates. Journal of Sound and Vibration
2004, 272(3-5), 703—730. https://doi.org/10.1016/
S0022-460X(03)00412-7

Efraim, E., Eisenberger, M. Exact vibration analysis
of variable thickness thick annular isotropic and FGM
plates. Journal of Sound and Vibration 2007, 299(4-5),
720-738. https://doi.org/10.1016/}.jsv.2006.06.068

Gunes, R., Reddy, J. N. Nonlinear analysis of func-
tionally graded circular plates under different loads
and boundary conditions. International Journal of
Structural Stability and Dynamics 2008, 8(1), 131—
159. https://doi.org/10.1142/S0219455408002582

Chen, C. S., Chen, T. J., Chien, R. D. Nonlinear
vibration of initially stressed functionally graded
plates. Thin-walled structures 2006, 44(8), 844—
851. https://doi.org/10.1016/j.tws.2006.08.007

Talha, M., Singh, B. Static response and free vi-
bration analysis of FGM plates using higher order
shear deformation theory. Applied Mathematical
Modelling 2010, 34(12), 3991-4011. https://doi.
org/10.1016/j.apm.2010.03.034

Yang, J., Shen, H. S. Vibration characteristics and
transient response of shear-deformable functionally
graded plates in thermal environments. Journal of
Sound and Vibration 2002, 255(3), 579-602. https://
doi.org/10.1006/jsvi.2001.4161

264

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sundararajan, N., Prakash, T., Ganapathi, M. Nonlinear
free flexural vibrations of functionally graded rectangu-
lar and skew plates under thermal environments. Finite
Elements in Analysis and Design 2005,42(2), 152—168.
https://doi.org/10.1016/j.finel.2005.06.001

Chen, C. S. Nonlinear vibration of a shear deform-
able functionally graded plate. Composite Structures
2005, 68(3), 295-302. https://doi.org/10.1016/].
compstruct.2004.03.022

Ng, T. Y., Lam, K. Y., Liew, K. M. Effects of FGM
materials on the parametric resonance of plate struc-
tures. Computer Methods in Applied Mechanics and
Engineering 2000, 190(8-10), 953-962. https://doi.
org/10.1016/S0045-7825(99)00455-7

Allahverdizadeh, A., Naei, M. H., Bahrami, M. N.
Nonlinear free and forced vibration analysis of thin
circular functionally graded plates. Journal of sound
and vibration 2008, 310(4-5), 966-984. https://doi.
org/10.1016/j.jsv.2007.08.011

Woo, J., Meguid, S. A., Ong, L. S. Nonlinear
free vibration behaviour of functionally graded
plates. Journal of sound and vibration 2006, 289(3),
595-611. https://doi.org/10.1016/.jsv.2005.02.031

Huang, X. L., Shen, H. S. Nonlinear vibration and
dynamic response of functionally graded plates
in thermal environments. International Journal of
Solids and Structures 2004, 41(9-10), 2403-2427.
https://doi.org/10.1016/j.ijsolstr.2003.11.012

Yanga, J., Shen, H. S. Non-linear analysis of func-
tionally graded plates under transverse and in-plane
loads. International Journal of Non-Linear Mechan-
ics 2003, 38(4), 467—482. https://doi.org/10.1016/
S0020-7462(01)00070-1

Praveen, G. N., Reddy, J. N. Nonlinear transient
thermoelastic analysis of functionally graded ce-
ramic-metal plates. International journal of solids
and structures 1998, 35(33), 4457-4476. https://doi.
org/10.1016/S0020-7683(97)00253-9

Matsunaga, H. Free vibration and stability of function-
ally graded plates according to a 2-D higher-order defor-
mation theory. Composite structures 2008, 82(4), 499—
512. https://doi.org/10.1016/j.compstruct.2007.01.030

Mindlin, R. Influence of rotatory inertia and shear
on flexural motions of isotropic, elastic plates 1951.
https://doi.org/10.1115/1.4010217

Talha, M., Singh, B. N. (2011). Large amplitude free
flexural vibration analysis of shear deformable FGM
plates using nonlinear finite element method. Finite
Elements in Analysis and Design 2011, 47(4), 394—
401. https://doi.org/10.1016/j.finel.2010.11.006

Zhao, X., Lee, Y. Y., Liew, K. M. Free vibration
analysis of functionally graded plates using the
element-free kp-Ritz method. Journal of sound and
Vibration 2009, 319(3-5), 918-939. https://doi.
org/10.1016/.jsv.2008.06.025



