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INTRODUCTION 

Modern metal forming places great empha-
sis on advanced solutions for the efficient design, 
simulation and modelling of manufacturing pro-
cesses. Constantly emerging new goals and chal-
lenges in this field allow plastic forming to main-
tain its high position among other manufacturing 
techniques. The popularity of this technology is 
evidenced by the fact that, statistically, 90% of 
a car consists of components formed by metal 
forming processes [1]. A special example of a 
technological solution for metal forming is the 
sheet metal stamping process. 

This process involves bending and stretching 
the material using presses and tools in the form of 

dies. Compared to other technologies, such as cast-
ing, forging or machining, stamping allows the rap-
id shaping of lightweight products with complex 
shapes. Hence the widespread use of this method 
in almost every industrial manufacturing sector, 
especially the automotive industry [2]. Among the 
primary challenges of this technology, however, is 
the pursuit of higher product quality. This process 
is expected to be improved in the coming years 
through achievements from the industrial revolu-
tion (4.0, 5.0) for every stage of the manufacturing 
technology, particularly quality control [1]. The 
following factors favour this development:
• current environmental challenges associated

with the ever-increasing demand to reduce
negative environmental impacts;
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	• the need for continuous cost minimisation and 
the implementation of more-advanced geo-
metric product designs;

	• the need for innovative solutions in measure-
ment technologies;

	• production constraints on variable working 
conditions, the environment or the instability 
of the technological parameters in the produc-
tion process; and

	• the need to safely and effectively achieve the 
desired goals.

There being a need to accurately identify ex-
pectations for the creation of innovative quality-
control solutions, it is worth describing these fac-
tors in more detail. First, it is important to high-
light the ever-increasing expectations for improv-
ing the environmental impact of manufacturing 
processes and products in the automotive sector. 
European Union environmental recommenda-
tions strongly emphasis eliminating greenhouse 
gases [3]. This has led to a search for lighter and 
safer car designs, based on aluminium alloys and 
advanced high-strength steels [4]. The use of new 
materials poses new forming challenges, such as 
the greater tendency for material wrinkling due to 
a lack of adequate tool pressure and a local reduc-
tion in sheet thickness. This makes the process 
of inspecting the condition of the material much 
more difficult and points to the need for improved 
solutions in this area.

Second, as recent research [5] has indicated, 
the nature of damage to advanced high-strength 
steels is very rapid and there is no localised neck 
before fracture. This makes it much more diffi-
cult to eliminate the hazards that limit the correct 
course of sheet metal forming based on the form-
ing limit diagrams [6] used in computer simula-
tions of manufacturing technologies. Questions 
have therefore been raised about the applicability 
of conventional forming limit diagrams for these 
new steels because they can lead to incorrect and 
misleading interpretations [7].

Third, it should be noted that in industrial 
sheet metal forming technology, surface defects, 
such as cracking, rippling or local rubbing, are 
very common [8]. This is often the result of small 
changes in the process execution conditions (lu-
brication, temperature or variation in the material 
strength parameters) due to different suppliers or 
storage methods. This variability in the material 
and process properties during metal forming in 
mass production has a major impact on production 

accuracy. In the case of mass production, from 
simple bending operations to the stamping of 
auto body parts, significant variability has been 
observed between products. Therefore, numerous 
statistical analyses have been proposed for the 
measurement of product geometry and process 
force measurements. This is because it has been 
shown that they can be used to directly estimate 
the variability in product properties using data 
correlation methods [9].

Fourth, high consumer expectations for qual-
ity and safety are making die designs increasingly 
complex, with sharp edges and rapid curvature 
changes [10]. Materials, in turn, being more ro-
bust, require new alloying solutions. Therefore, 
today’s challenges for sheet metal forming pro-
cesses are primarily the tight tolerances imposed 
by contractors, resulting from the assumed geom-
etry of the product.

Thus, manufacturing defects are often en-
countered, despite advanced computer modelling 
work on manufacturing processes, carried out as 
early as the design stage, aimed at determining 
optimal process execution conditions. Indeed, the 
quality of the parts formed from sheet metal is 
strongly dependent on the sheet material used, the 
coating and tooling material, lubrication and the 
process conditions. Although friction plays a key 
role, it is currently not considered in detail in the 
computer modelling of sheet metal forming [11]. 
In addition, most approaches to sheet metal form-
ing control focus only on controlling the form-
ing process and optimising the press parameter 
settings, rather than controlling the quality of the 
final product [12]. The lack of precise modelling 
of such complex process conditions is due to the 
factors mentioned earlier––varying production 
conditions, the condition of the material, com-
plex product shapes and high tolerance require-
ments – which leads to increased costs and pro-
duction downtime [13]. The solution is the idea of 
Industry 4.0 and 5.0, which enables connectivity 
through embedded electronics, software, sensors 
and network communications. This allows data 
on specific product or process attributes to be ex-
changed via the Internet to improve overall pro-
duction efficiency [14].

As a result, real-time monitoring of the condi-
tion of shaped products is crucial for the quality 
and efficiency of industrial processes. Develop-
ing an effective solution for eliminating defective 
products during the plastic forming process seems 
crucial not only for optimising the tool geometry 
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at the initial stage of the process, but also for ef-
ficient production. This leads to a reduction in the 
number of non-conforming products. Interest in 
the development and exploration of state-of-the-
art metal forming control systems has increased 
in the last decade, partly as a result of the Fourth 
Industrial Revolution, which promotes the use 
of information systems in modern factories [15]. 
This makes it possible to create fully automated 
production lines equipped with devices for the 
continuous monitoring of manufactured products. 

Here, we propose a sheet metal quality-control 
technique using an automated vision system for use 
during the industrial inline stamping of auto body 
panels. For industrial mass production, shaped 
parts, such as body panels, can be produced at high 
speed and low cost. Each part is made by placing 
the sheet metal between the upper punch (stamp) 
and the lower punch, which are each other’s geo-
metric negatives. The punch presses the initial 
sheet, forming the desired shape, while the blank 
holders control the delivery of the sheet to the die 
area. One of the main quality factors in the sheet 
forming process is deformability, the exceeding of 
which leads to fracture. The opportunity brought 
by the proposed measurement technique makes it 
possible to eliminate potential defects by signal-
ling the phase that precedes cracking. 

BACKGROUND

Due to the great importance of the stamping 
process in the automotive sector, research has 
mainly been aimed at developing industrial ap-
plications for studying the surface condition of 
shaped sheet metal [16, 17], with cracks that form 
on the surface during forming being of continuing 
interest to the industrial sector. Among the old-
est known crack identification techniques is the 
acoustic signal analysis method. An increase in 
acoustic emission activity is observed throughout 
the metal forming process [18] and analysis of 
this can be used to monitor the forming process 
in real time. This allows the process to be starred 
with feedback to take advantage of optimal strain 
values [19, 20].

Another method involves the use of a mag-
netic sensor to measure the magnetic fields gener-
ated during stamping. Using neural networks in 
magnetic-field imaging, as part of this approach, 
can lead to automation of the crack signal acqui-
sition process [21, 22]. The detection of surface 

defects using neural networks is an increasingly 
common computational activity in the identifica-
tion of abnormal runs in product manufacturing 
technology. Neural networks can extend the pos-
sibilities of the results obtained by this method 
by determining the potential causes of the defects. 
This process involves assigning a detected defect 
to a similar image stored in the system’s memory 
(crack library). Then the system makes an infer-
ence about the defect category based on the ap-
pearance of the defect. Hence, the system for 
detecting defects on the surfaces of shaped sheet 
metal becomes a combined process of detection, 
localisation and classification [23, 24].

Industrial applications for the early predic-
tion of the phases preceding material fracture 
are another method for detecting surface defects, 
including the early detection of the location of 
large plastic deformations [25]. In [25], during 
the sheet metal forming process, the spectrum of 
radiation in the infrared band was tracked to ob-
tain an image of the distribution of deformations 
caused by the temperature change on the surface 
of the deformed sheet, which ultimately led to the 
early nucleation of cracks.

Industrial conditions mean that any proposed 
solutions must accommodate the unusual nature 
of the measurement environment, such as diffi-
culties in accessing the measurement space due 
to the limited working range of the testing equip-
ment, the need to present results online, and the 
dynamically changing lighting conditions re-
sulting from interference due to microcracks in 
small particles on the surface between the sheet 
and the matrix (emitting a wave of similar fre-
quency to the material) and image interference 
due to emerging light reflections on the surface 
of the sheet [26]. This means it is important to 
search for better solutions, with vision methods 
being the most widespread [27]. Machine vision 
methods are commonly used in industry for au-
tomatic image processing to extract information 
critical to the task at hand, a primary task being 
the process of industrial inspection with particu-
lar emphasis on product quality analysis [28]. 
The primary source of information is, of course, 
the image obtained from the light reflected from 
the object, with various sources (e.g. LED, fluo-
rescent, coherent) and types (e.g. direct, angled, 
reflected) of illumination employed. Vision meth-
ods for measuring surface defects in sheet metal 
forming processes mainly involve the analysis of 
material test results and the industrial application 
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of the findings in quality control. The results from 
laboratory tests aimed at developing methods for 
predicting cracks in materials are mainly used 
in the development of limit deformation curves. 
These are based on the correlation of images re-
corded during the course of the shaping process 
and use the dynamic effect of changes in reflected 
light. Although the recording process itself takes 
place during deformation (inline), its analysis 
is carried out after a long delay (offline), which 
is not crucial for the description of the process. 
In industrial measurements, however, testing is 
mainly aimed at determining the condition of the 
surface after the moulding process (hence, qual-
ity control). In industry, due to the measurement 
conditions (closed moulding space due to the die 
stamping technology), the surface is available for 
only a short time, and only after the process has 
been completed (offline). By contrast, an analy-
sis of the results is required immediately (online), 
due to the belt production process, contrary to 
what happens in the laboratory situation. 

Thus, laboratory measurements evolved to 
include methods that use the dynamic speckle ef-
fect to analyse the laser spots recorded in images 
captured by a camera to locate cracks in stamped 
sheet metal [29]. Dynamic laser speckle (also 
known as laser speckle imaging) refers to the 
digital image processing of a scattering pattern 
applied to a rough surface, usually under deforma-
tion. After numerical analysis using autocorrela-
tion, full characteristic scatter points can be plot-
ted on a laser speckle activity graph. From this, 
it is possible to determine the moment of fracture 
and ultimately locate this in the principal deforma-
tion space of the limit deformation diagram [30]. 

Another method for detecting cracks in the 
industrial moulding/stamping of auto body parts 
[31] involves collecting a dynamically changing 
pattern of spots (due to the rigid movement of 
the sheet, rather than deformation, as in the other 
type of method) and analysing this for cumula-
tive images of surface defects. This analysis takes 
advantage of the fact that geometric irregularities 
in the defect area are reflected as changes in laser 
specular intensity. However, due to the ever-in-
creasing expectations of increasing the final qual-
ity of the product, methods that allow not only the 
detection of cracks, but also the determination of 
the state of the material in the earlier stages of de-
formation (localisation of deformation, local rub-
bing) are being sought. Therefore, we propose a 
geometric analysis of the laser specks themselves, 

which is commonly used in surface quality con-
trol to measure roughness, for example. 

Surface roughness is commonly used to 
characterise the microstructure of a material, 
especially during machining [32]. In measur-
ing this, the most popular method is the laser 
speckle method, where selected specular statis-
tical parameters that are sensitive to the type of 
machining process can be used to classify the 
machined surface. Increasingly, however, laser 
speckle analysis is being used in machining pro-
cesses, where examples of tool condition and 
material control can be indicated. In the area of 
tool remanufacturing, the measurement of roll 
surfaces in the rolling process can be checked 
and, if necessary, treated during the remanufac-
turing process [33]. Thanks to laser spot imag-
ing, this non-contact, non-destructive method 
can also measure surface deformation. One ex-
ample involved the Ra being determined during 
the tensile testing of surface quality, the results 
indicating that the surface roughness increased 
with increasing plastic deformation [34]. During 
this test, the homogeneous surface roughness 
was found to have been caused by plastic defor-
mation, which then formed a concave surface, 
leading to cracking. This indicates that surface 
roughness is one of the key factors affecting 
fracture during plastic forming [35, 36].

As already mentioned, a better understanding 
of the magnitude of material deformation leads 
to the prediction of individual process phases 
based on the assumptions of the limit deforma-
tion curve. This is crucial in industrial quality 
control (in the detection of defective products) 
during deep drawing. An attempt was therefore 
made here to determine the magnitude of defor-
mation indirectly based on changes in rough-
ness in a deformed sheet, and a search was con-
ducted to identify correlations between surface 
parameters, such as the average roughness and 
the characteristics of laser specks. For this pur-
pose, the average height of the surface devia-
tions in a specific area (parameter Sa, which is 
equivalent to Ra) was evaluated. The measure-
ment of Sa provides an analysis of a selected 
area of the tested sheet surface. It was assessed 
that, in order to better understand the influence 
of plastic deformation on surface roughness be-
fore material fracture, tensile tests be performed 
and different deformation areas analysed under a 
three-dimensional (3D) confocal microscope. It 
was determined that surface roughness increases 
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proportionally with increasing plastic deforma-
tion, which allowed us to conclude that the mea-
surement of sheet metal areas at risk of crack-
ing could be performed using the laser speckle 
technique. The aim of this work was therefore to 
initiate deformation measurements in differenti-
ated deformation areas and to determine the pos-
sibility of tracking the deformation front based 
on roughness measurements.

SPECKLE CONTRAST – FIRST-ORDER 
STATISTICS

Speckle interference––a phenomenon origi-
nally studied by Newton––is known from as-
tronomy, where images recording distant stars 
are disturbed by the different layers of the atmo-
sphere. In the mechanics of materials testing, this 
phenomenon is used to study defects and surface 
quality due to the inhomogeneous fracture rate of 
light incident on a metallic surface [25]. In the 
method, laser spot patterns are obtained by il-
luminating a rough surface through a coherent 
laser light source. This causes both interference 
phenomena and significant scattering of the la-
ser light, resulting in fields consisting of bright 
and dark areas. Unfortunately, these phenomena 
reduce the legibility of the surface compared to 
traditional illumination.

In general, it can be assumed that, in surface-
quality measurements, speckle pattern magni-
tudes, including first-order statistical properties, 
are related to surface roughness [37, 38]. How-
ever, they are only able to describe brightness 
fluctuations. Within the framework of the most 
commonly used speckle method (laser speckle 
imaging), numerous methods have been used [39, 
40] to extract information on the first-order statis-
tical properties, the most popular being contrast 
analysis, which is usually defined as the quotient 
of the standard deviation divided by the average 
intensity of the speckle image [40]. The mean in-
tensity of a polarised speckle pattern is equal to 
the standard deviation:

	
 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
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sity calculated for all pixels in the image 
frame. Hence, the standard deviation of 
the total intensity will be [38]:
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𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (2)

In the speckle contrast method [41], the re-
corded speckle images represent the intensity re-
lated to the intensity of the incident light. These 
images are then discretised, and their numerical 
record is subjected to statistical analysis based on 
Equations 1 and 2. The speckle contrast coeffi-
cient is determined from the calculations,, which 
makes it possible to find the roughness parame-
ters of the tested surface. The calculation proce-
dure involves the determination of the first-order 
statistics, which depend only on individual pixels 
and are independent of neighbouring pixels. The 
attributes derived from these statistics are the 
average brightness of the image and its standard 
deviation, entropy. A slightly different approach 
applies to the analysis of pixel intensity image 
texture attributes, in which the combined distri-
bution of grey levels of pairs of pixels is studied. 
This allows the extraction of a set of entropy, 
contrast, energy and homogeneity features, de-
noted by the relative frequency of two pixels. 
An alternative to the earlier complex statistical 
calculations is to analyse a binary image to de-
termine its fractal parameters [42]. Processing 
binary images greatly reduces the computation-
al complexity by placing a greater emphasis on 
image analysis. In this method, the speckle im-
age textures are segmented after conversion to a 
black and white image. Counting of the fractal 
fields shows a linear dependence on the degree 
of surface roughness. The accuracy is determined 
by the choice of an appropriate threshold value in 
the binarisation process. 

However, methods based on the statistics 
of the first-order properties of light intensity (to 
which the image-processing method for chang-
es in speckle intensity belongs) are insufficient. 
This is because they lack the ability to obtain 
complete information about the surface rough-
ness by not allowing the determination of anoth-
er basic property of the speckle––the roughness 
of its spatial structure. Therefore, in order to 
estimate the average speckle size, a normalised 
autocovariance function is calculated for the pat-
tern of speckle intensity obtained from the ob-
servation plane [43, 44]. Hence, we proposes a 
method for studying the second-order statistical 
properties, which are described by the scatter in-
tensity correlation function. In this approach, the 
speckle size parameters are used to determine the 
quality of the surface. 
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METHODOLOGY – SECOND-ORDER 
STATISTICS

In this method, the speckle images are discre-
tised where a transition is made from the time do-
main to the spatial domain. The speckle contrast 
feature associated with the light intensity is then 
calculated and the surface roughness parameters 
determined. The proposed method of scatter-
ing intensity autocorrelation and autocovariance 
(these terms used interchangeably) involves cal-
culation of the second-order statistical properties 
[45]. For autocorrelation, the notation takes the 
following form:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (3)

This is because, as defined, autocorrelation 
and covariance functions describe how one seg-
ment of data is correlated with its neighbouring 
segments on average. Thus, the autocovariance 
function can be regarded as a measure of the 
self-similarity of a signal’s deviation relative to its 
average level. Thus, it can be written that the co-
variance function (responsible for the value of the 
average pixel size) for the recorded image of laser 
specks, obtained from the reflection of light from a 
sheet surface, will have the following form:

 

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

(4)

Where the average contrast of the image, ob-
tained as a bitmap, is, respectively:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (5)

The covariance and correlation functions are 
the same, except that for covariance, the averag-
es were subtracted from the input signals. Due to 
the nature of the speckle patterns obtained (from 
coherent light measurements), the size of the 
speckle becomes an important parameter of the 
speckle. The random distribution of laser spots 
on an illuminated surface leads to the conclusion 
that the spots do not have well-defined sizes, so 
we can only give a measure of the average spot 
size. It can also be assumed that the dependence 
in the form of the value of the average spot size is 
negligible on random scattering. Instead, it is in-
fluenced by the coherence of the incident light––
that is, the type of laser. It is also influenced by 
the property of the random surface – that is, the 
roughness. Both properties assume perfectly co-
herent light and a surface roughness on the order 

of, or greater than, the wavelength of the illumi-
nation source. It is common under such experi-
mental conditions to study the speckle intensity 
on a given observation plane by means of the 
autocorrelation coefficient. This is the relation-
ship (1) obtained from the normalisation process, 
where the mean for each sample is subtracted and 
the result divided by the standard deviation. Be-
cause of the two-dimensional domain, the values 
were increased in quadrature:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (6)

After expanding the expression to the full no-
tation based on the substitution, we get:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (7)

where:	 the value refers to the measure of the ‘av-
erage width’ of the spot and provides a 
description of the set of rough surfaces. In 
this way, it can be noted that the equation 
has its own different interpretation related 
to Pearson’s correlation coefficient. 

Starting from the matrix notation of correla-
tion, it can be written that:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	(8)

and

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	(9)

which is ultimately represented by the covariance 
notation in Equation (1). Through this transfor-
mation, the relationship between autocorrelation 
and autocovariance can be defined as:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	 (10)

which represents the aforementioned Pearson co-
efficient. Thus, another form of the notation for 
determining the average value of the width of the 
speculum is [35]:

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

(11)
A much more convenient way of analysing 

image data is to use the Fourier transform in the 
calculations. Based on the Wiener–Khintchin 
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theorem, autocorrelation is simply given by the 
Fourier transform of the absolute square. For a 
continuous stochastic process, the autocorrela-
tion function can be reconstructed from its power 
spectrum using the inverse Fourier transform.

Another interpretation of this notation refers 
to the convolution theorem of two functions [46]:

	

 
𝐶𝐶 =  𝜎𝜎𝐼𝐼

〈𝐼𝐼〉        (1) 
 
𝜎𝜎𝐼𝐼 = √〈𝐼𝐼2〉 − 〈𝐼𝐼〉2       (2) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 

 
 
 

 (3) 
 

𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝑚𝑚, ∆𝑛𝑛) ≡ 
≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉)(𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 

 
(4) 
 
〈𝐼𝐼〉 = 𝐼𝐼1+⋯+𝐼𝐼𝑁𝑁∙𝑀𝑀

𝑁𝑁∙𝑀𝑀       (5) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)−𝜇𝜇2

𝜎𝜎𝐼𝐼2       (6) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)∙𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚,𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉−〈𝐼𝐼〉2

〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2       (7) 
 

〈𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙ 𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)〉 − 〈𝐼𝐼〉2 ≡ 

≡ 1
𝑀𝑀 ∙ 𝑁𝑁 ∑ ∑[𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) ∙  𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛)] − 𝐼𝐼2̅

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
  

 
 
(8) 
 

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]
𝑀𝑀 ∙ 𝑁𝑁 ≡

𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

≡ 〈(𝐼𝐼(𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 〈𝐼𝐼〉) ∙ (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 〈𝐼𝐼〉)〉 
 
(9) 
 
 
 
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚, ∆𝑛𝑛) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑚𝑚,∆𝑛𝑛)

𝜎𝜎𝐼𝐼2  (10) 
 

𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) = 

=
∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅ ∙  (𝐼𝐼(𝑥𝑥𝑚𝑚+∆𝑚𝑚, 𝑦𝑦𝑛𝑛+∆𝑛𝑛) − 𝐼𝐼)̅]𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

∑ ∑ [𝐼𝐼((𝑥𝑥𝑚𝑚, 𝑦𝑦𝑛𝑛) − 𝐼𝐼)̅]2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

 

 
(11) 
 
𝑓𝑓 × 𝑔𝑔 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑓𝑓} ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝑔𝑔}]     (12) 
 
 

	(12)

where:	DTFT is the fast Fourier transform for the 
image of specular I, DTFT-1 is the inverse 
transform and <I> is the average value of 
the speckle image intensity.

The only difference between cross-correla-
tion and convolution is the inversion of the sam-
pling at the input [47, 48]. Discrete convolution 
and cross-correlation are, respectively, defined as 
follows (for real signals):  

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 
= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

(13)

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

	(14)

The cross-correlation of a signal with itself 
gives its autocorrelation:

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

	 (15)

which, ultimately, gives a modified notation of 
Equation 1, using the Fourier transform:

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =
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    (21) 
 

	 (16)

As mentioned earlier, an inhomogeneous in-
tensity distribution does not affect the average 
spot size, as confirmed by numerous previous 
works, with experimental evidence presented in 
[49]. More specifically, it has been shown that the 
spot produced by structured light has the same 
average size as that produced by plane waves of 
uniform intensity and constant phase. Proof of 
this has been provided by comparing the aver-
age spot size generated by structured light modes 
with that generated by wavefronts of constant 
phase and amplitude. In both cases, the average 
spot size is almost identical. This demonstrated 
speckle property allows for speckle applications 
in surface quality measurements and is of great 

importance in several speckle-based applications 
for developing new methods.

SHEET METAL DEFORMATION

In this study, we examined the commonly 
used industrial steel DC04. The chemical compo-
sition of the steel is shown in Table 1. In a sheet-
punching operation, standardised specimens with 
a thickness of 1 mm were prepared and subjected 
to uniaxial tension. One side of the specimen was 
spray-painted with a stochastic mesh. 

A schematic showing the dimensional charac-
teristics of the specimen appears in Figure 1a. The 
direction of the tensile load was oriented parallel 
to the rolling direction. The tensile test was car-
ried out on a standard tensile testing machine at a 
crosshead speed of 20 mm/min (Figure 1b). In the 
designed uniaxial tensile test, the process force 
was recorded by a strain gauge sensor attached 
to the specimen holder. The strain was then mea-
sured using digital image correlation (DIC) for 
the deformed stochastic mesh image. The vision 
system used allowed the digital processing of 
this image and the measurement of deformation 
through the use of correlation. The essence of this 
method was to maximise the normalised correla-
tion coefficient based on the following:

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =
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 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =
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    (21) 
 

	 (17)

where: f(xi,yi) and g(x’i,yj’) are the greyscale 
images for the points (xi,yi) and (x’i,y’j), 
respectively, representing the image be-
fore and after deformation, while  𝑓𝑓 ̅ 𝑔̅𝑔  

 
 and 

 𝑓𝑓 ̅ 𝑔̅𝑔  
 

 define the average greyscale based on 
the following respective notations:

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =
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Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
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    (21) 
 

	 (18)

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1
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(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2
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Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

	 (19)

Calculations were performed for greyscale 
images with defined subareas with designated fo-
cal points. The degree of material displacement 
was evaluated by comparing the next two frames 
of the recorded image during deformation. High-
resolution images were acquired for the calcula-
tions, which made it possible to differentiate the 
analytical features of the image for the stochas-
tic grid. The resolution of the patterns on the 
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stochastic grid was consistent with the resolution 
of the camera recording the image. The magni-
tude of the displacement, in the form of vectors 
u and v for each point of the stochastic grid, was 
then determined as the difference in pixel coordi-
nates of the centre points of the defined subareas 
before and after deformation. A high calculation 
accuracy was obtained, due to the subarea analy-
sis. To implement the described DIC procedure, 
a program especially designed in the MATLAB 
environment [50] was used to generate deforma-
tion meshes. Finally, the deformations [51] were 
calculated for a given stochastic pattern (Figure 
1c) using the point sieves generated from the 
DIC procedure. In calculating the kinematics of 
the uniaxial tensile process, the mesh analysis 
method was used, taking into account the influ-
ence of the nearby environment. In mathematical 
terms, this means the directional derivative of the 
displacement gradient was used. The successive 
surroundings of the considered point are under-
stood as the nearest surroundings of the measur-
ing node. The directional derivative of the dis-
placement vector was calculated for the selected 
point––measurement node xi

(n) from the neigh-
bourhood of point xi: 

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
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(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =
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〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

	 (20)

where:	D ui
(n) is the first order increment of the 

displacement vector, Ds(n) is the distance 
between points xi

(n) and xi in the direction 
–n, v(n) expresses the vector cosines of the 
direction –n and superscript (n) indicates 
the selected direction. 

The displacement increments Dui.j are un-
known in this equation. The equation is solved 
when at least two directions are studied and the 
method of least squares is used.

CHARACTERISATION OF THREE-
DIMENSIONAL TOPOGRAPHY FROM 
OPTICAL MEASUREMENTS

The surface roughness from optical measure-
ments allowed a complete description of the geom-
etry of the 3D functional parameters of the studied 
material, such a Sa (Figure 2), as an important in-
dicator in the measurement of quality for which 
there are numerous solutions based on the mea-
suring apparatus, and especially when it comes to 

Table 1. Chemical composition of the material
Material Carbon [%] Manganese [%] Phosphorus [%] Sulfur [%] Fluorine [%]

DC04 0.055 0.25 0.01 0.008 99.5

Figure 1. Results of uniaxial tensile test and strain measurement: (a) schematic of the test specimen; (b) tensile 
system; and (c) strain measurement results
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optical measurements [52]. This example is from 
a confocal optical microscope that scans surface 
depth using three different techniques – variable 
focus, laser light and white light interferometers at 
a resolution of up to 0.1 nm. Therefore, the nature 
of the specific machining technology associated 
with its parameters is crucial in developing a so-
lution and quantifying the textural characteristics 
of the studied surface. For example, we conducted 
roughness measurements on four areas using a 
confocal laser microscope (404 nm wavelength, 
violet laser) of the VK3000 Keyence series. Im-
ages were taken in micro mode at magnification 
(20x/50x) and in laser and optical modes (differ-
ential interference contrast). A highly deformed 
surface (neck area) and a surface without defor-
mation (after sheet rolling) were measured. 

From these 3D surface profiles, it was found 
that the roughness values increased in the area of 
intense deformation (the neck area). The initial 
roughness values (Sa = 1.2 mm) (Figure 2a) for the 
undeformed surface resulted from the rolling pro-
cess. The basins and hills, visible in Figure 2b,c, 
take on the character of sharp edges and slopes as 
they deform, reaching values of about Sa = 4 mm 
(Figure 2d). Figure 3 shows the behaviour of the 
surface roughness and the strain changes at the 
measurement sites. As can be seen, the relation-
ship between these quantities is linear, confirming 
previous research results [33]. 

LASER SPECKLE MEASUREMENTS

In the next stage of the study, an experimen-
tal measurement of the specimen was carried out 
in three deformation areas for the inverse surface 
of the specimen, with no stochastic grid applied. 
For this, an optical system was used with speckle 
backscatter imaging (Figure 4a). In this system, a 
beam of coherent light, with a wavelength of 632 
nm and a laser power of 5 mW, created a speckle 
effect when falling on the rough surface, undergo-
ing random scattering. In order to better visualise 
the morphology of the studied surface, the optical 
system included beam splitting through the lens 
and laser beam scattering (Figure 4b). The laser 
beam scattering was to minimise the reflections 
produced by the reflection of the laser light from 
the surface. In this way, the laser beam scattering 
from the sample surface selectively suppressed 
only the specular reflections, resulting in a similar 
method to the one using orthogonal polarisation 
between the incident and reflected light [53]. 

Laser speckle patterns (Figure 4) were ob-
tained by illuminating the rough surface through 
a coherent source of laser light at a high image 
magnification (6.5x, ξ = 580 pixels/500 μm) using 
a RGB–CCD array (640 × 480 pixels) and a pixel 
size of 5.6 × 5.6 μm2. Colour image registration al-
lowed for better recording of the pixel images due 
to the highest sensitivity of the matrix for a length 

Figure 2. Roughness measurement results––3D view and surface of four regions in the deformed surface area: 
(a and e) region 1; (b and f) region 2; (c and g) region 3; (d and h) region 4; and (i) regions as shown
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of 650 µm.  To pick up the laser speckle pat-
terns, the waves reflected from the surface passed 
through a prism system and an adjustable aperture. 
The optical path of the laser beam was directed to 
the prism array to make the system more compact 
for practical applications and independent of the 
angle of incidence for angular imaging. 

DATA ANALYSIS

Moving on to surface quality measurements, 
we developed a method for optimal laser illumi-
nation in relation to exposure time. This meth-
od consists of the speckle analysis of a series of 
measurements from the same point at different 
illuminations. We determined a certain optimal 
illumination (local minimum). These measure-
ments on different regions indicated that the size 
of the speckle clusters varied widely (Figure 5a). 
The results shown in Figure 5 are based on the 
average speckle sizes – undeformed surface = 14 
pixels, (uniformly) deformed surface = 6 pixels 
and neck area surface = 3 pixels. Both the inter-
ference and significant scattering of the laser light 

contributed to the observed patterns, leading to 
the formation of fields consisting of bright and 
dark areas. The varying magnitudes of these pat-
terns were subjected to statistical analysis, which 
showed they were directly related to the varying 
spatial structure (surface geometry). As men-
tioned earlier, the size of the resulting clusters of 
speckles became a key parameter. The random 
distribution of these speckles on the illuminated 
surface suggested there was no well-defined size, 
only a measure of the average size of the illumi-
nated areas. Therefore, the average size of these 
speckles is a measure that characterises the signal 
sampling requirements.

Figure 5b shows a comparison between the 
strain and speckle measurements for three se-
lected regions of the test surface. The results 
are strongly linear. This demonstrates the basis 
of the method for the resulting minimums and 
the measurement accuracy. This is because, by 
scanning a fixed image of the surface using var-
ying exposure times, the minimum speckle size 
emerges. The emerging minimum may be relat-
ed to the phenomenon of speckle front growth. 
In the initial phase of increasing exposure time, 

Figure 3. Influence of strain on surface roughness

Figure 4. Laser speckle measurement stand: (a) view of the stand; and (b) diagram of the optical measurement 
system. BS, beam splitting; L1, lens; DF
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new speckles formed, associated with little vis-
ible surface structure, which translates into a 
decrease in the average value. In the final phase 
of exposure, the formation of new speckles end-
ed, leading to an increase the size of the already 
existing speckles. The observed optimal course 
of the impact of the irradiation provides a posi-
tive dimension because it indicates two benefits. 
First, it shows that the main influence on the size 
of the average speckle is the speckle build-up 
front associated with the change in illumination, 
which minimises the influence of noise. Second, 
measurements in areas with a large surface qual-
ity gradient (change in roughness) require differ-
ent exposure times, which is not a limitation of 
the optimal illumination method. 

Figure 5c shows images taken on the ten-
sile specimen of the three measurement regions 
of the speckle. The measurements were locat-
ed in an undeformed area, an area of low strain 
with uniform deformation and in the region of 
intense deformation. The measurements in the 
region of intense deformation are characterised 
by the occurrence of a phase of loss of materi-
al stability, which is characteristic of the neck. 
The visible formation of a wrinkle there is a sig-
nal of the beginning of material separation. It is 
therefore the point preceding fracture. However, 
despite the significant differences in strain in the 

Figure 5. Summary of the autocorrelation results: (a) distribution of speckle size in the specimen cross-section; 
(b) influence of strain on speckle; and (c) images and locations of speckle measurements

three selected regions, the characteristics of the 
dependence of strain on speckle size are linear. 
Figure 6, shows the results of measuring the var-
iations in optimal illumination for the three test 
areas. The results were approximated by a sec-
ond-degree polynomial. The measurements were 
repeated three times for each area, obtaining devi-
ations in the speckle-averaged values. The largest 
deviation values (1.5 pixels) were obtained for 
the undeformed area (region 1). This may be due 
to the intensity of the reflection of the light from 
the smooth metallic surface (after sheet rolling)––
we did not observe such significant differences 
for the rough matte surfaces (0.1 and 0.5 pixels).

However, in order to maximise the ratio of 
the tested signal to the size of the noise, meas-
urements were made at different apertures. This 
allowed the selection of speckle sizes at which 
the magnitude of differences between the test-
ed regions of measurements was the largest. In 
Figure 7, the magnitude of the differences of the 
measured speckles are shown for two regions (1 
and 3). The largest aperture (more light let into 
the camera, f = 19 mm) produced the largest 
differences, these decreasing as the aperture de-
creased (f = 1 mm). In addition, three images of 
speckles at different apertures (which resulted 
in different magnitudes of average speckles) are 
shown for region 3. Estimation of the average 

Figure 6. Results of measuring variations in optimal illumination for the three studied regions
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Figure 7. (a) Magnitude of the differences between the measured speckles in two regions (1 and 3); 
and (b) images of region 3 from the three different apertures

size of the speckle clusters was calculated using 
the normalised autocorrelation function for the 
observed patterns on the studied plane (Eq. 15). 
The braiding theorem of two functions (Eq. 16) 
used in this approach allowed a significant sim-
plification of the autocorrelation calculation 
procedure, written as:

	

 
(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] = 

= ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(∆𝑛𝑛 − 𝑛𝑛, ∆𝑚𝑚 −𝑚𝑚)𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0  

 
(13) 
 

(𝑓𝑓 × 𝑔𝑔)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝑓𝑓(𝑚𝑚, 𝑛𝑛) ∙ 𝑔𝑔(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
 (14) 
 

(𝐼𝐼 × 𝐼𝐼)[∆𝑛𝑛, ∆𝑚𝑚] ≜ 

≜ ∑ ∑ 𝐼𝐼(𝑚𝑚, 𝑛𝑛) ∙ 𝐼𝐼(𝑛𝑛 + ∆𝑛𝑛,𝑚𝑚 + ∆𝑚𝑚)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0
 

 
(15) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐹𝐹𝐹𝐹−1[𝐹𝐹𝐹𝐹{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

 (16) 
 

Cxy = ∑ ∑ [f(xi,yj)g(xi
′,yj′)

f̅g̅ ]M
j=−M

M
i=−M     (17) 

 

𝑓𝑓̅ = √∑ ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀      (18) 

 

𝑔̅𝑔 = √∑ ∑ [𝑔𝑔(𝑥𝑥𝑖𝑖′, 𝑦𝑦𝑗𝑗′)]
2𝑀𝑀

𝑗𝑗=−𝑀𝑀
𝑀𝑀
𝑖𝑖=−𝑀𝑀     (19) 

 

𝜈𝜈𝑗𝑗
(𝑛𝑛)Δ𝑢𝑢𝑖𝑖,𝑗𝑗 =

Δ𝑢𝑢𝑖𝑖
(𝑛𝑛)

Δ𝑠𝑠(𝑛𝑛)        (20) 
 
𝑐𝑐𝐼𝐼(∆𝑚𝑚,∆𝑛𝑛) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−1[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)}2]−〈𝐼𝐼〉2
〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)2〉−〈𝐼𝐼(𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)〉2

    (21) 
 

	 (21)

where:	DTFT is the fast Fourier transform for 
speckle image I, DTFT-1 is the means fast 
inverse transform and <I> is the mean 
value of the speckle image intensity.

The averaged laser speckle size for the area of 
greatest deformation (low roughness) was char-
acterised by a speckle size of about 4 pixels. This 
appears to be in line with the recommendation on 
optimal speckle sizes in [42]. Further adjustment 
of the aperture increased the speckle size in the 
undeformed area (from 10 to 5 pixels), resulting 
in a decrease in measurement resolution at larger 
apertures. Finally, the results of the speckle and 
roughness measurements were compared with 
the strain values in the area of the test specimen 
(Figure 8). A high linear agreement between the 
strain and roughness measurements was obtained, 

confirming previous studies in this area. Similar-
ly, a linear correspondence between the speckle 
measurements and the strain was obtained, con-
firming our thesis that the deformation state can 
be tracked. At the same time, the slight fluctua-
tion in the speckle measurements below +/–1 pix-
el confirmed the high measurement accuracy of 
the proposed technique.

CONCLUSIONS 

An optical system based on the use of laser 
back reflection transmission was presented. In 
this system, two types of laser light scattering 
were studied––one using a spherical diffuser, the 
other cross-polarisation. This allowed the capture 
of changes in the quality of the studied shaped 
surface based on the phenomenon of speckle for-
mation. During testing, the influence of factors 
such as sensitivity and resolution of the method 
was investigated. To study the resolution of the 
method, the surface quality was measured in a 
uniform area through a series of trials. The scat-
ter of the results obtained for different magni-
fications was used to evaluate the ability of the 
system to accurately assess the surface quality. To 
examine its sensitivity, a series of measurements 

Figure 8. Summary of the speckle and roughness measurements
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were carried out for a single location at different 
exposure times. 

Summarizing the conducted research in eval-
uating the quality of shaped metal sheets, the fol-
lowing conclusions can be made:
1.	The designed optical system made it pos-

sible to record changes in the dispersion of 
the speckle image under coherent light for the 
stretched sample. 

2.	The proposed autocorrelation method makes 
it possible to indicate changes in the analyzed 
surface topology quantities accompanying 
uniaxial plastic deformation.

3.	Experimental studies are planned on the ap-
plicability of the proposed method in quality 
control of products obtained by deep draw-
ing of sheet metal. Therefore, it is necessary 
to check the relationship between the laser 
speckli method and the strain limit states pre-
ceding the cracking of the material. 
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