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INTRODUCTION

Vibroarthrography

The knee joint is one of the most heavily 
loaded joints in the human body [1, 2]. It is, there-
fore, highly susceptible to various kinds of inju-
ries [3, 1]. And, since hyaline cartilage is in most 
part devoid of nerves [4], micro-injuries gener-
ally do not cause pain and remain unnoticed [5, 
6]. During movement, however, they do generate 

micro-vibrations that can be registered by an ac-
celerometer attached to the knee-joint. Analysis 
of those vibrations is called vibroarthrography 
(VAG), and vibroarthrogram is referring to the 
registered vibration signal. Unlike standard di-
agnostic methods, such as the X-ray or magnetic 
resonance imaging, vibroarthrography examines 
articular connections in a dynamic way, i.e. dur-
ing movement, providing information about the 
function of the joint rather than its structure. 
Nonetheless, it is generally agreed that artifacts 
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(like spikes or low-amplitude high-frequency os-
cillations) in signals correspond to, or are made 
by, abnormalities in joint’s structure [7–9].

Background

There is a vast literature about VAG analysis 
in the context of classification, mostly devoted to 
binary class differentiation - between symptom-
atic and asymptomatic groups [10]. For example, 
Befrui et al. [11] utilized frequency analysis with 
support vector machines to classify signals into 
asymptomatic and osteoarthritis classes, achieving 
0.8 specificity and 0.75 sensitivity. More recently, 
Karpiński et al. [8, 9] analyzed signals from pa-
tients referred for surgical treatment due to intraar-
ticular lesions to differentiate them from a control 
group. In another recent work, Machrowska et al. 
[12] analyzed VAG signals for detecting osteoar-
thritis, using ensemble empirical mode decomposi-
tion and detrended fluctuation analysis to de-noise 
the signals. They extracted and selected informa-
tive features using ANOVA and performed neural 
network classification, achieving specificity and 
sensitivity of up to 0.93 for both classes.

Beyond binary classification, there are mul-
tiple studies analyzing VAG signals in multi-class 
classification problems. For instance, Kręcisz et 
al. [13] created a VAG analysis system capable of 
differentiating five condition classes: three stages 
of chondromalacia patellae, osteoarthritis, and 
a healthy group. VAG signals can also be used 
to describe joint changes within the same joints. 
Falkowski et al. [14] successfully used vibroar-
thrography to evaluate the effects of intra-articu-
lar injection of hyaluronic acid.

Recent work by Ołowiana et al. [15] is partic-
ularly relevant to the current research. They stud-
ied VAG signals in asymptomatic participants 
during squat exercises with varying external loads 
(0, 10, and 20 kg), calculating four VAG features: 
variance mean square (VMS), Amplitude, P1, and 
P2 (Power Spectral Density for 50–250 Hz and 
250–450 Hz frequency ranges, respectively). The 
study indicated that all four features are positively 
correlated with external load. Here, the aim is to 
extend this methodology by establishing specific 
regression lines rather than general trends.

Another relevant study is by Gharehbaghi et 
al. [16], who analyzed VAG signals in two groups 
of patients: those with Juvenile Idiopathic Arthri-
tis (JIA) and a control group of healthy individu-
als. Signals were recorded during unloaded (free 

extension) and loaded (body weight squat) move-
ments and evaluated using a custom knee health 
score based on signal features. The score ranged 
from 0 (healthy knee) to 1 (arthritis). They found 
that higher scores were observed during loaded 
movements for all groups, but the difference was 
not significant in healthy knees.

Andersen et al. [17] used linear mixed mod-
els to investigate how the positioning of sen-
sors around the knee joint affected VAG signals. 
Asymptomatic participants performed flexion 
and extension movements with varying external 
loads (0–5 kg). The authors used six VAG fea-
tures: average rectified value (ARV), variance 
of the mean square (VoMS), form factor (FF), 
mean power frequency (MPF), recurrence quan-
tification analysis recurrence (REC), and deter-
minism (DET). They found positive correlations 
between external load and the ARV, VoMS, FF, 
REC, and DET features, and a negative correla-
tion between external load and the MPF feature. 
In the current research, the aim is to establish a con-
tinuous rather than discrete dependence of VAG 
signals on the friction between articular surfaces of 
the knee joint. To determine the specific nature of 
this dependence, VAG signals were measured dur-
ing back squats with varying external loads. Figure 
1 presents exemplary VAG signals measured dur-
ing the squat movement without (plot a) and with 
70 kg additional external load (plot b).

Research rationale and benefits

The current study builds on existing VAG re-
search by performing regression analysis of VAG 
signals in relation to external loads. This approach 
offers a new perspective compared to previous stud-
ies, which mainly used classification methods to 
distinguish between different knee joint classes. By 
using regression, one can capture the continuous re-
lationship between VAG signals and articular fric-
tion, enabling detection of subtle changes that clas-
sification methods might miss. This can enhance 
comprehensive biomechanical analysis. Clinically, 
this research could enable early intervention and 
personalized treatment strategies by offering a pre-
cise method to measure changes in VAG signals. 
Early detection of degenerative changes and mi-
cro-injuries can lead to more effective and timely 
interventions, improving patient outcomes. Also, 
continuous analysis could provide finer-grained 
insights into joint health, which could improve in-
formed treatment planning and rehabilitation.
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Methodology

In order to test which VAG signal features 
were dependent on the external load, the follow-
ing methodology was applied:
1.	VAG signals were recorded for a sample of 

asymptomatic participants, during 8 trials of 
squat exercisewith varying external loads.

2.	For every signal in the base, a feature to be 
tested was extracted.

3.	Using obtained values of the feature, four lin-
ear models were developed:

	• simple linear model, which models just the 
slope of the feature’s values in terms of the 
external load,

	• simple linear model with the free term, in 
which value of the intercept with the y-axis 
can be fitted to the data,

	• random intercept model, in which for every 
participant, the regression line can have dif-
ferent intercept,

	• random slope model, in which for every par-
ticipant, both the intercept and the slope of the 
regression line can be fitted.

4.	To choose the best model, Bayesian informa-
tion criterion (BIC) was used [18].

5.	From the best model, a goodness of fit mea-
sure was derived (R2), as well as the parameters 
(intercept and slope) themselves. This allowed 
to measure both the variance explained by the 
model and rate of change of a specific feature 
in terms of the external load.

6.	Points 1–4 were repeated for every tested feature, 
including time- and frequency-domain ones, as 
well as the Frequency Range Maps, visualizing 
informativeness of the whole spectrum [19].

Linear mixed effects regression models

Four linear regression models of increasing 
complexity were used to model changes in spe-
cific features of the vibroarthrogram in the con-
text of increasing external load. All models were 
fitted to the data using Restricted Maximum Like-
lihood. The first, simple linear model, represents 
the relation between the feature and the load, as-
suming the intercept point at 0. This relation can 
be expressed by the equation:

	 𝑋𝑋𝑠𝑠𝑠𝑠 = β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 

 

𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 

 

𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + 𝑆𝑆0𝑠𝑠 + β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 

 

𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + 𝑆𝑆0𝑠𝑠 + 

+ (β1 + 𝑆𝑆1𝑠𝑠) ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 
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𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘 ln(𝑛𝑛′) − 2 ln(𝐿𝐿)̂, 

 

 

	 (1)

where:	Xsl is the value of the feature for s-th par-
ticipant, for the l-th load, β1 is the slope 
of the model, Ll is the l-th load, and esl 
is the remaining error of the model. It is 
assumed, that across population, the er-
ror values are normally distributed: esl 
N(0,σe

2), where σe
2 is the standard devia-

tion of error across all participants. In the 
second model, a free term is added, allow-
ing values of the intercept other than 0, 
giving the expression:

	

𝑋𝑋𝑠𝑠𝑠𝑠 = β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 
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	 (2)
where:	β0 is the intercept value.

The third model includes additional random 
intercept term. This addition allows to model 
changes in the feature’s values with the separate 
intercept for every participant. The model is ex-
pressed as follows:
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where:	 the S0s is the specific intercept deviation 
of the s-th participant from the aver-
age (β0) value. It is assumed that across 

Figure 1. Exemplary VAG signals measured during the squats with: a) 0 kg and b) 70 kg external load.
The loaded signal (b) exhibits increased variability and overall power compared to the unloaded condition (a), 

reflecting the biomechanical changes associated with higher external load. While the visual difference is subtle, 
these patterns align with the statistical trends in signal power and frequency distribution
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participants, values of the intercept are 
distributed normally, i.e.: S0l N(0,σS

2
0), 

where σS
2
0 is the standard deviation of the 

intercept for the whole population.

The forth model additionally allows slope to 
vary across participants. It is expressed by:

	

𝑋𝑋𝑠𝑠𝑠𝑠 = β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 
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where:	 the S1s is the deviation of the s-th partici-
pant form the average slope value, i.e. 
β1. Again, distribution of the slope val-
ues across the population is assumed to 
be normal: S1l N(0,σS

2
1), where σS

2
1 is the 

standard deviation of slope values across 
the population.

Inclusion of the random terms in models, i.e. 
S0s and S1s, allows to draw conclusions not only 
about the general trends across population, but also 
about the dispersion of those terms across popula-
tion. One can say, for example, not only that the 
general trend of some specific feature is positively 
correlated with the external load (given that the β1 
coefficient is positive), but also that the correla-
tions across the population are consistently posi-
tive or not, given low or high standard deviation 
of S1s term, respectively. The standard deviation, 
therefore, provides additional information about 
the variability of correlations within the population.

Goodness of fit measures

To evaluate how well the models represented 
changes in the features’ values, a conditional R2 

goodness of fit measure was acquired for each 
model. It can be interpreted as a variance ex-
plained by the model, using both fixed and ran-
dom effects [20, 21] (precise definition will be 
provided later).

Inclusion of more terms in models guarantees 
better fit to the data. In order to avoid overfitting, 
the BIC [18] was used. Essentially, BIC penalizes 
the number of terms, promoting simpler models, 
and rewards lower error, promoting more accu-
rate models [22].

Signal’s features

Time-domain features

Features defined in the time-domain include 
measures of the signal’s values distribution, such 

as: their Amplitude, i.e. the difference between 
the highest and the lowest value; Variance, mea-
suring dispersion around the mean value; Skew-
ness, indicating asymmetry of the distribution; 
and Kurtosis, showing tail extremity [23]. The 
VAG signal is symmetric around zero because 
micro-vibrations from cartilage motion are re-
corded in both positive and negative directions, 
canceling each other [19]. As a result, central ten-
dency measures were not calculated. One entropy 
feature was also calculated, i.e. the log energy en-
tropy [24], being a sum of a logarithm values of 
the squared signal. It was chosen, because of its 
parameter-free definition.

In order to calculate characteristics related 
to the power of the signal, two features were 
calculated: the root mean square (RMS) val-
ue and the rectified average (RAV). Although 
these features are similar, the RMS tends to be 
greater, since squared values of the signal are 
used in its definition.

Ratio of the RMS value to the RAV value is 
called the Form Factor [25] (sometimes called 
Shape Factor [26, 27]), and it is one of the shape 
features used in the current research. Other ones, 
often used in vibration analysis [26, 27], are the 
crest factor (CF), which is the ratio of maximum 
absolute value to the RMS value; impulse fac-
tor (IF), which is the ratio of maximum absolute 
value to the RAV value; and Margin Factor (MF, 
sometimes called Clearance Factor), which is the 
ratio of absolute maximum value to the absolute 
generalized mean of the signal.

Additionally, three features describing dy-
namics of a signal were used. Their definitions 
include differentiation of a signal. Those features 
are the mean of absolute differences (MoAD), in-
dicating variability of the signal, and two Hjorth’s 
paramters [28], i.e. Mobility and Complexity. 
Mobility is a ratio of standard deviation (std) of 
the differentiated signal to the std of the original 
signal. It measures “relative average slope” [28] 
and can be interpreted as representing the mean 
frequency. Complexity is a ratio of mobility of 
the differentiated signal to the mobility of the 
original signal and can represent the change in the 
frequency: in a pure sine wave, the complexity is 
equal to one [28].

Another feature defined in the time domain 
that is related to the frequency is the zero crossings 
(ZC) feature, i.e. number of times, where consecu-
tive values of the signal are of different sign, nor-
malized by the number of samples in the signal.



242

Advances in Science and Technology Research Journal 2025, 19(10), 238–251

Frequency domain features

Informativeness of time- and frequency-
domain features can vary significantly for VAG 
signals [29, 10]. Therefore, additional frequen-
cy-domain features were extracted in this study. 
Four frequency features describing whole spec-
trum were used [27, 30]: the median frequency 
(MF), frequency center (FC), root mean square 
frequency (RMSF) and the root variance frequen-
cy (RVF). The MF is the frequency “dividing” 
the spectrum into two equal parts, i.e. above and 
below which the spectral power is equal. The FC 
and the RMSF features indicate changes in the 
main frequencies, while RVF shows spread of the 
power across the spectrum.

Additionally, two frequency features widely 
used in VAG research were calculated: spectral 
power in the ranges 50–250 Hz (P1) and 250–450 
Hz (P2) [13] (used extensively in VAG research, 
even in different joints [31], and contexts [32], as 
well as in knee joint diagnosis [33, 34]).

In order to visualize whole spectrum of the 
VAG signals, frequency range maps (FRM) [19] 
were generated. Those maps consist of three axes, 
where x and y-axes indicate low and high frequency 
range, while the z-axis show informativeness of a 
feature defined in the x-y range. Informativeness, 
however, can be defined in a number of ways [10]. 
In [19], authors used z-axis to visualize the ability 
of a feature to differentiate groups in a classification 
problem. In this research, R2 value of the best model 
was used. Feature, which informativeness was plot-
ted on the z-axis was the relative spectral power. It 
indicates contribution of specific range to the whole 
power spectrum, or, in another words, it is a power 
of specific range divided by total spectral power. 
Additionally, five more maps were generated, con-
taining the information about the best model select-
ed for specific range: its number and parameters.

MATERIALS AND METHODS

Study participants

A convenience sample of asymptomatic par-
ticipants was recruited from team sports players, 
students of the Opole University of Technology, 
Poland. Only individuals with no history of knee 
disorder or other diagnosed injury or pathology 
within the lower extremity were enrolled in the 
study group. All of the players described their 
health condition as very good. Finally, 38 male 

volunteers (aged 22.0 ± 1.1 years, body mass 
82.8 ± 10.1 kg, height 186.7 ± 7.9 cm) were in-
cluded in the study. These values represent the 
mean ± standard deviation of the participants’ 
demographic characteristics. Before testing, all 
subjects provided formal consent to participate 
in the study and to have their results analyzed. 
The project was approved by the Opole Voivod-
ship Ethics Committee (ethical approval code No. 
202/06.06.2013), in accordance with the latest re-
vision and standards of the Helsinki Declaration.

Study protocol

Performed analyses were based on standard-
ized VAG methodology described previously 
[10]. Briefly, assessment of the patellofemoral 
joint (PFJ) arthrokinematic motion quality was 
performed with an accelerometer sensor placed 1 
cm above the apex of the patella. This measure-
ment was performed during both unloaded and 
loaded back squat movements. In total, partici-
pants were asked to perform 8 trials: (1) 4 rep-
etitions of bodyweight squats (L0); (2–8) 4 rep-
etitions of 10–70 kg barbell back loaded squats 
respectively (L10–L70), with one-minute rest 
between each test. In all these conditions, sub-
jects were instructed to execute the squat from a 
neutral position (approximately 0° of knee flex-
ion) to the depth of approximately 90° of knee 
flexion while maintaining heel contact with the 
floor. The constant velocities of flexion/extension 
movements were kept at 48 beats per minute with 
a metronome and the angle of the knee joint was 
measured using an electrogoniometer. Each squat 
test lasted 10 seconds, during which four cycles 
of squats were performed.

Before data collection, each subject per-
formed the squat maneuver within the protocol 
guidelines. The VAG signals were collected us-
ing an acceleration sensor, Brüel and Kjær model 
4513B-002 (frequency range 1 Hz to 10 kHz), 
with a multi-channel Nexus conditioning amplifi-
er (Brüel and Kjær Sound and Vibration Measure-
ment A/S, Denmark). Data were recorded using 
12-bit analog-to-digital converter at a sampling 
frequency of 10 kHz.

Regression models and goodness 		
of fit measures

Four models of increasing complexity have 
been implemented in this research. Note that the 
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more complex models include the simpler ones. 
Table 1 summarizes all models.

Conditional R2 [20] was used in this research 
as a goodness of fit measure, with modification 
from [21]:

	

𝑋𝑋𝑠𝑠𝑠𝑠 = β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 

 

𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠 
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	 (5)

where:	σf
2 is a variance of the fixed effects (can be 

estimated as variance of values predict-
ed using only fixed terms of the model), 
σ𝑙𝑙2 = (∑∑σ𝑙𝑙𝑙𝑙𝑙𝑙2

𝑖𝑖𝑗𝑗
) /𝑛𝑛 

 
§ 𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 

 [21] is the mean random 
effects variance, in which i and j stand 
for the observation and the individual, re-
spectively, and σe

2 is a residual variance. 
Such definition of R2 measures the vari-
ance explained by the model, using both 
fixed and random effects [20, 21].

Bayesian Information Criterion is defined as 
follows [18]:
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where:	k is the number of model’s parameters, n′ 

is the effective sample size (because of 
using Restricted Maximum Likelihood, n′ 

= n − p, where n is the sample size and p 
is the number of fixed terms), and Lˆ is the 
Restricted Maximum Likelihood value.

Signal’s features

Fifteen features defined in the time domain 
were computed, providing information about the 
statistical characteristics, power, shape and vari-
ability of the signal. Additionally, eight features 
describing specific characteristics of the spectrum 
were used. Finally, five frequency range maps 
[19] were generated, visualizing informativeness 
of the whole spectrum of the signal. Time-domain 
based features, along with the detailed definitions, 
were summarized in the Table 2.

Frequency domain features were calculated 
on power spectral density (PSD), using periodo-
gram as the estimator [10]. All frequency-domain 
based features, along with the detailed defini-
tions, were summarized in the Table 3.

RESULTS

Table 4 includes results of the research: mod-
els constructed for all features, with correspond-
ing model number, parameters and R2 measures.

Visualization of an exemplary feature - the log 
energy entropy - was showed in Figure 2. Here, 
subplot a) includes visualization of the whole 
model, with bold black line indicating fixed terms 
of the model, i.e. the model for new, unknown par-
ticipant, blue and red area indicating 95% simulta-
neous and non-simultaneous confidence intervals 
(CIs), respectively. Simultaneous CIs contain 95% 
of the whole lines of the responses (features), while 
non-simultaneous CIs contain 95% of the singular 
response (feature) observations. Note, that load in 
this context is normalized by the weight of a par-
ticipant. Subplots b) and c) show distribution of 
intercepts and slopes across participants.

Figure 3 show frequency range maps cre-
ated for the relative spectral power. The Figure 
includes six subplots: a) showing the informative-
ness of the feature (Informativeness was defined 
as the R2 of the best model describing value of the 
feature in the varying external load. For each fre-
quency range, four models were constructed and 
compared using Bayesian Information Criterion, 
exactly like for the rest of the features), with addi-
tional contours roughly indicating areas of simi-
lar informativeness. The same contour maps were 
also plotted on the rest of the subplots. The b) 
subplot shows number of the best model number, 
c) and d) show intercept mean and std values, re-
spectively. Subplots e) and f) show, respectively, 
slope mean and std values. Note, that if the best 

Table 1. Models used in this research. β0 and β1 are the coefficients of the fixed terms: intercept and slope, 
respectively. Values of S0s and S1s are deviation values from the β0 and β1 terms, for specific participants: intercept 
and slope term, respectively

No. Name Equation 

1 Simple linear 𝑋𝑋𝑠𝑠𝑠𝑠 = β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠  
2 Free term 𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠  
3 Random intercept 𝑋𝑋𝑠𝑠𝑠𝑠 = β0 + 𝑆𝑆0𝑠𝑠 + β1 ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠  
4 Random slope 𝑋𝑋𝑠𝑠𝑠𝑠 = 𝛽𝛽0 + 𝑆𝑆0𝑠𝑠 + (𝛽𝛽1 + 𝑆𝑆1𝑠𝑠) ⋅ 𝐿𝐿𝑙𝑙 + 𝑒𝑒𝑠𝑠𝑠𝑠  
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model for specific range did not assume some pa-
rameters, their values were not plotted (see, for 
example, range 3500–4000 Hz in Figure 3f)).

DISCUSSION

Interpretation of constructed models

Time domain features

Range of the vibroarthrogram, i.e. the Ampli-
tude feature, did not prove to be much informa-
tive in the external load context. With the R2 score 

of less than 0.4, it actually proved to be one of the 
least informative features. Low informativeness 
of the amplitude could be explained by the possi-
ble existence of outliers, for which the amplitude 
feature is extremely vulnerable.

The Variance feature, indicating dispersion 
of the values and power of the signal, achieved 
the R2 value of more than 0.9, proving to be one 
of the most informative features. Mean slope of 
the model, so the β1 parameter, indicated positive 
correlation with the external load in most par-
ticipants. The positive β1 for Variance suggests 
increased signal energy dissipation under load, 

Table 2. Summary of the time-domain features
No. Feature Definition 

1 Amplitude 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)† 

2 Variance ∑ (𝑥𝑥𝑖𝑖−μ)2𝑁𝑁
𝑖𝑖=1
(𝑁𝑁−1)⋅σ2    ‡ 

3 Skewness 
∑ (𝑥𝑥𝑖𝑖 − μ)3𝑁𝑁

𝑖𝑖=1
(𝑁𝑁 − 1) ⋅ σ3  

4 Kurtosis 
∑ (𝑥𝑥𝑖𝑖 − μ)4𝑁𝑁

𝑖𝑖=1
(𝑁𝑁 − 1) ⋅ σ4  

5 Log energy entropy ∑ 𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1
 

6 Root mean square √1
𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖

2
𝑁𝑁

𝑖𝑖=1
 

7 Rectified average 
1
𝑁𝑁 ∑|𝑥𝑥𝑖𝑖|

𝑁𝑁

𝑖𝑖=1
 

8 Form factor 
√1

𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖
2𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁 ∑ |𝑥𝑥𝑖𝑖|𝑁𝑁

𝑖𝑖=1

 

9 Crest factor 
𝑚𝑚𝑚𝑚𝑚𝑚|𝑥𝑥𝑖𝑖|

√1
𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖

2𝑁𝑁
𝑖𝑖=1

 

10 Impulse factor 
𝑚𝑚𝑚𝑚𝑚𝑚|𝑥𝑥𝑖𝑖|

1
𝑁𝑁 ∑ |𝑥𝑥𝑖𝑖|𝑁𝑁

𝑖𝑖=1

 

11 Margin factor 
𝑚𝑚𝑚𝑚𝑚𝑚|𝑥𝑥𝑖𝑖|

(1
𝑁𝑁 ∑ √|𝑥𝑥𝑖𝑖|𝑁𝑁

𝑖𝑖=1 )
2 

12 Mean of absolute differences 1
𝑁𝑁 ∑ |𝑥𝑥𝑖𝑖

′|𝑁𝑁−1
𝑖𝑖=1  § 

13 Mobility 
σ𝑥𝑥′

σ𝑥𝑥
 

14 Complexity 
σ𝑥𝑥′′

σ𝑥𝑥′
/ σ𝑥𝑥′

σ𝑥𝑥
 

15 Zero crossings 
1
𝑁𝑁 ∑ 𝕀𝕀(𝑥𝑥𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖+1 < 0)

𝑁𝑁−1

𝑖𝑖=1
 

 Note: † x is the signal. 
‡ N, µ, and σ indicate the sample count, mean, and standard deviation of the signal x, 

respectively. 

σ𝑙𝑙2 = (∑∑σ𝑙𝑙𝑙𝑙𝑙𝑙2
𝑖𝑖𝑗𝑗

) /𝑛𝑛 

 
§ 𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 § 
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likely reflecting heightened mechanical stress in 
the joint. Note, however, that the S1 value turn out 
to be greater than the β1. It means that for some 
participants, Variance of the VAG signal is nega-
tively correlated with the load.

Asymmetry of the distribution, measured by 
the Skewness feature, turn out to be not informa-
tive at all, with the R2 lower than 0.2. It shows 
that symmetry of the signal does not change with 
varying external load.

Kurtosis feature, indicating tail extrem-
ity, obtained R2 of 0.64. It is not high, especially 
compared to other features. However, to model 
the feature, the third model was used, i.e. model 
without random slope parameter. Negative value 
of the β1 shows that for most signals, Kurtosis is 
negatively correlated with external load, i.e. with 
the increasing load, the Kurtosis decreases (distri-
bution’s tails become smaller).

Log Energy Entropy turn out to be positively 
correlated with the external load, with positive 
value of the β1 parameter. It aligns with increased 
signal unpredictability due to frictional changes 
during higher loading. Note, that the LEE was cal-
culated for a raw signal, with a plethora of values 
lower than one. Therefore, for this kind of signals, 
values of the LEE feature tend to be negative. It 
is clearly indicated by the β0 and S0 parameters of 
the model, proving consistent negative intercept. 
Note, however, that the S1 parameter is greater 

than the β1, indicating that for some participants, 
the LEE feature is correlated with external load 
negatively. Note also, that the informativeness of 
the LEE feature turn out to be one of the highest, 
with R2 of more than 0.9. 

Two power features, so the Root Mean Square 
and the Rectified Average proved to be highly in-
formative (with R2 > 0.9 for both) and positively 
correlated with the external load, with positive β1. 
They indicate greater overall signal magnitude, 
consistent with higher contact forces and friction-
al energy under external load, confirming conclu-
sions derived from the Variance feature. Note, 
however, that for both features S1 is greater than 
β1, proving that for some vibroarthrograms RMS 
and ARV are negatively correlated with the load.

Form Factor, as the only one of all the shape 
features, proved to be positively correlated with 
the load. However, with R2 < 0.7, it cannot be con-
sidered highly informative. This outcome is con-
sistent with prior research by Andersen et al. [17].

Even lower R2 value was achieved by the 
Crest Factor. However, for both features, the third 
model (without the random slope parameter), was 
chosen. This could indicate consistency of the 
slope between study participants. The Impulse 
Factor proved to be negatively correlated with 
the load for most participants, and its R2 value 
of about 0.85 indicate relatively high informa-
tiveness. The last feature describing the shape of 

Table 3. Summary of the frequency-domain features
No. Feature Definition Remarks 

16 Median frequency Frequency that divides the spectrum into two equal parts; i.e. above and below which, 
spectral power is equal. 

17 Frequency center 
∑𝑓𝑓 ⋅ 𝑃𝑃(𝑓𝑓)
∑𝑃𝑃(𝑓𝑓)  

Both sums are over the whole spectrum. 𝑃𝑃(𝑓𝑓) is 
spectral power of the specific, 𝑓𝑓 − 𝑡𝑡ℎ frequency 

component. 

18 Root mean square frequency √∑𝑓𝑓
2 ⋅ 𝑃𝑃(𝑓𝑓)
∑𝑃𝑃(𝑓𝑓)   

19 Root variance frequency √∑(𝑓𝑓 − 𝐹𝐹𝐹𝐹)2 ⋅ 𝑃𝑃(𝑓𝑓)
∑𝑃𝑃(𝑓𝑓)  𝐹𝐹𝐹𝐹 is the frequency center. 

20 P1 ∑ 𝑃𝑃(𝑓𝑓)
250 𝐻𝐻𝐻𝐻

𝑓𝑓=50 𝐻𝐻𝐻𝐻
  

21 P2 ∑ 𝑃𝑃(𝑓𝑓)
450 𝐻𝐻𝐻𝐻

𝑓𝑓=250 𝐻𝐻𝐻𝐻
  

22 Relative spectral power† ∑𝑃𝑃(𝑓𝑓)
𝑓𝑓𝑈𝑈

𝑓𝑓𝐿𝐿

/ ∑ 𝑃𝑃(𝑓𝑓)
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and the 
maximum frequency values of the power 

spectrum, respectively. 

 Note: † Feature used to generate the frequency range map.
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the vibroarthrogram, so the Margin Factor, also 
achieved R2 value of about 0.85. Also, similarly to 
the Impulse Factor, it turned out to be negatively 
correlated with the external load, however, not 
really consistently across the participants – note 

higher absolute value of the S1 parameters than 
the β1 for both features. Note, that the Crest, the 
Impulse and the Margin factors have very similar 
definitions, differing only in the type of the aver-
age in the denominator (see Table 2). Negative 

Table 4. Results table for the scalar features. Note, that frequency range maps were not included in the table
Feature R2 Model number β0 S0 β1 S1 e

Amplitude 0.38 3 7.3e+0 7.1e-1 5.1e-1 - 9.2e-1

Variance 0.91 4 2.1e-2 1.8e-2 1.4e-2 2.8e-2 1.2e-2

Skewness 0.16 3 -4.2e-1 6.5e-1 5.0e-1 - 1.5e+0

Kurtosis 0.64 3 2.9e+2 2.0e+2 -6.1e+1 - 1.5e+2

Log energy entropy 0.93 4 -7.3e+0 5.3e-1 2.5e-1 4.0e-1 2.0e-1

Root mean square 0.91 4 1.3e-1 5.5e-2 3.9e-2 6.5e-2 3.0e-2

Rectified average 0.92 4 5.3e-2 2.2e-2 1.3e-2 2.1e-2 9.4e-3

Form factor 0.68 3 2.6e+0 4.9e-1 9.4e-2 - 3.4e-1

Crest factor 0.62 3 3.0e+1 8.2e+0 -4.7e+0 - 6.5e+0

Impulse factor 0.85 4 8.1e+1 2.9e+1 -1.2e+1 1.8e+1 1.5e+1

Margin factor 0.85 4 1.2e+2 4.4e+1 -1.4e+1 2.4e+1 2.2e+1

Mean of absolute differences 0.94 4 3.8e-2 1.9e-2 7.5e-3 1.8e-2 7.3e-3

Mobility 0.80 4 7.9e-1 9.5e-2 -4.6e-2 8.8e-2 6.9e-2

Complexity 0.72 4 1.8e+0 1.3e-1 1.1e-1 1.9e-1 1.6e-1

Zero crossings 0.84 4 2.3e-1 2.2e-2 -2.8e-3 2.2e-2 1.5e-2

Median frequency 0.73 4 7.8e+2 1.3e+2 -9.1e+1 1.5e+2 1.3e+2

Frequency center 0.81 4 1.1e+3 1.7e+2 -9.0e+1 1.7e+2 1.2e+2

Root mean square frequency 0.80 4 1.5e+3 2.0e+2 -8.5e+1 1.7e+2 1.4e+2

Root variance frequency 0.67 3 9.6e+2 1.2e+2 -2.7e+1 - 8.8e+1

P1 0.84 4 2.0e-2 1.8e-2 1.9e-2 2.0e-2 1.3e-2

P2 0.87 4 2.7e-2 2.3e-2 2.4e-2 3.5e-2 1.8e-2

Figure 2. Visualization of the log energy entropy feature’s model
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correlations with the load can be then explained 
through the models developed for the RMS and 
the RAV features: both proved to be positively 
correlated with the load.

Variability of the VAG, measured using the 
MoAD feature, proved to be extremely informa-
tive, with the R2 of about 0.94, and positively corre-
lated with the load. That further confirms that pow-
er of the signal increases with the external load.

Hjorth’s parameters turn out to be moderately 
informative, with the R2 of 0.80 and 0.72 for the 
Mobility and the Complexity feature, respec-
tively. Mobility feature proved to be negatively 
correlated with the load, indicating that with the 
increase of the load, spectrum of the signal tends 
to lower values. Complexity, on the other hand, 
turn out to be positively correlated, meaning that 
with greater load, spectrum changes more.

The last time-domain feature, also referring to 
the instantaneous frequency, is the Zero Crossings 

feature. With a R2 value of about 0.84 it can be 
considered moderately informative. With nega-
tive β1 value, this feature confirms conclusions 
of the Hjorth’s mobility feature - frequency com-
ponents of the vibroarthrogram tend to decrease 
with the increase of the external load, reflecting 
potentially lowered joint mobility under heavier 
loads. Note, however, that the value of the S1 pa-
rameter is much greater, indicating that the slope 
is not consistent across participants.

Frequency domain features 			 
and frequency range maps

Features defined in the frequency domain, 
which describe the whole spectrum, so the Me-
dian Frequency (R2 = 0.73), Frequency Center (R2 

= 0.81) and the Root Mean Square Frequency (R2 

= 0.81) further confirm that with the increase of 
the load, power of the signal tends to concentrate 

Figure 3. Frequency range maps for the relative spectral power feature
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in lower frequencies. For all those features, β1 pa-
rameter was negative. This seem to be consistent 
with previous findings by Andersen et al. [17], 
in which Mean Power Frequency decreased sta-
tistically significantly with external load. Note, 
however, that the S1 was greater than the absolute 
value of the β1, indicating that there were some 
participants with positive correlations. As an ad-
ditional confirmation, on Figure 4, the mean val-
ues of periodograms were plotted, in the func-
tion of the external load. A tendency of the lower 
frequencies (below the 1 kHZ) to grow in power 
is clearly visible. Also, the Root Mean Variance 
Frequency feature is negatively correlated to the 
load, which means that with the heavier weight, 
the power tends to be less spread across the spec-
trum, or in another words, more concentrated 
around the Frequency Center. Since the third 
model was used with the RMVF feature, it can be 
assumed, that the negative correlation is consis-
tent across the participants.

Both P1 and P2 features, representing pow-
er in 50–250 Hz and 250–450 Hz, respectively, 
seem to be positively correlated with external 
load. Also, both features are quite informative, 
with R2 above 0.8. This result is consistent with 
previous work by Ołowiana et al. [15].

Maps generated for the Relative Spectral 
Power feature (Figure 3) show a diversity of in-
formativeness across the spectrum. Subplot a 
shows R2 values of the constructed models, while 
subplot b presents model number. As one could 
expect, the most informative models were the 
most complex ones - compare dark red areas on 
subplot a with subplot b. Subplots c and d show 

intercept mean and standard deviation values 
across participants, respectively. Lower and nar-
row frequency ranges have generally lower in-
tercept values. Since Relative Spectral Power is 
normalized to the whole spectrum, narrow ranges 
result in relatively low values. However, those 
patterns are not as clearly visible in the subplot d. 
In the lower frequencies of the spectrum (lower 
left corner of the map), there is a clear increase in 
standard deviation values. It could be explained 
by different model used in those frequency ranges 
– see subplot a. Subplots e and f confirm earlier 
observations, that lower frequency ranges (below 
1000 Hz) tend to be positively correlated with the 
external load, contributing more to the power of 
the VAG’s spectrum. In contrast, higher frequen-
cy ranges show lower or even negative slope val-
ues, indicating that their contribution to the power 
spectrum decreases with greater external load.

Clinical significance

Synovial joints are optimized to function un-
der physiological loading conditions. They then 
provide an extremely low coefficient of kinetic 
friction, which translates into low vibration levels 
observed in recorded VAG signals. From tribo-
logical point of view the ability of the articular 
surfaces to move smoothly against each other 
with low frictional noise indicates optimal arthro-
kinematic motion and as a result contributes to 
slow wear of articular cartilage [35].

As expected, the presented results indicate 
that with an increase in the applied external load 
there is a progressive rise in the power of the 

Figure 4. Mean values of the periodogram as the function of the external load. Note, that for increasing load, 
power (red area) in the low frequencies also increases.
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signal, most likely related to a growth of contact 
stress and kinetic friction. This confirms conclu-
sions from previous works by Ołowiana et al. 
[15] and Andersen et al. [17]. Nevertheless, this 
increase is lower than expected, especially since 
Lizhang et al. [36] showed that a squat performed 
under a 35% of body weight external load yielded 
a more than 40% increase in PFJ stress across 
all knee flexion angles. Thus, our results seem to 
show that healthy synovial joints have efficient 
mechanisms to adapt to the load acting on them, 
most likely, by altering the lubrication mecha-
nism [37]. This is in line with research by Ghare-
hbaghi et al. [16], which showed no significant 
differences in healthy subjects’ knee health scores 
between loaded and unloaded knee joint move-
ments. Direct comparison between this score and 
specific features extracted in the current study is 
difficult, since the score is a composite of mul-
tiple features. Still, one could argue, that the char-
acter of changes in VAG signals differ between 
progressing knee joint degeneration and increas-
ing external load.

Nonetheless, the conducted analyses con-
firmed that VAG method possess not only high 
accuracy and specificity when differentiating sy-
novial joints’ deteriorations, but also is sensitive 
for identifying the changes in arthrokinematics 
related to the level of the joint load [38]. Since 
knee joint vibroarthrography is known to be a re-
peatable examination [39], conducted study im-
plies that VAG signals constitute a helpful tool for 
clinicians for evaluating joint function of specific 
person, for example, over time.

Further research directions

While this study focused on normalized load, 
future research could examine the impact of par-
ticipant’s absolute body mass and height on VAG 
signal responses, as these factors could poten-
tially influence joint mechanics and frictional 
dynamics. Additionally, investigations into other 
demographics (e.g., gender, age groups, physical 
activity) would enhance generalizability. Testing 
VAG in different movement types, such as lunges 
or step-ups, could help validate the methodology 
beyond squats. Furthermore, longitudinal studies 
tracking VAG signals of specific participants over 
time would provide insights into the progres-
sion of joint degeneration, offering potential for 
early detection and monitoring of biomechanical 
changes in clinical settings.

CONCLUSIONS

In this research, selected features of the vi-
broarthrogram were modeled in the context of 
external load. Results of this study can be used 
in the future research considering joint friction 
measured by the vibroarthrogram. The most im-
portant conclusions that can be drawn from the 
research include correlations between specific 
features of the VAG signal and the external load:
	• positive correlation for the power of the sig-

nal, measured by the time-domain Variance 
(β1 = 1.4e−2; R2 = 0.91), RMS (β1 = 3.9e−2; 
R2 = 0.91), RAV (β1 = 1.3e−2; R2 = 0.92) and 
MoAD (β1 = 7.5e−3; R2 = 0.94) features and 
the frequency-domain P1 (β1 = 1.9e−2; R2 = 
0.84) and P2 (β1 = 2.4e−2; R2 = 0.87) features. 
Also, Absolute Power of the spectrum proved 
to be positively correlated for practically all 
frequency ranges.

	• negative correlation between three shape fea-
tures: the Crest Factor (β1 = −4.7e0; R2 = 0.62), 
the Impulse Factor (β1 = −1.2e+1; R2 = 0.85) and 
the Margin Factor (β1 = −1.4e+1; R2 = 0.85).

	• negative correlation between central tenden-
cies of the spectrum, measured by the Me-
dian Frequency (β1 = −9.1e+1; R2 = 0.73), 
Frequency Center (β1 = −9.0e+1; R2 = 0.73) 
and the RMS Frequency (β1 = −8.5e+1; R2 

= 0.80) features. It can also be seen on Fre-
quency Range Maps measured for the Rela-
tive Spectral Power.
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