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INTRODUCTION

With increasing demands for durability, 
strength and sustainability in the construction in-
dustry, alternative materials are increasingly be-
ing sought that can partially replace traditional 
Portland cement. One such material is natural 
zeolites, which, due to their crystalline structure, 
high specific surface area and pozzolanic activity, 
have found use as additives to concrete mixtures. 
Their properties make it possible to improve the 

microstructure of the cement slurry, increase the 
strength of concrete and reduce its shrinkage 
and permeability, resulting in increased durabil-
ity of the material [1–3]. Ensuring the availabil-
ity and reliability of machinery is a key factor in 
achieving high efficiency and timely completion 
of construction projects. Modern approaches to 
maintenance increasingly rely on data-driven 
techniques and advanced analytics, with machine 
learning methods enabling not only better predic-
tion of equipment failures but also supporting the 

Comparison of machine learning models for predicting 		
the compressive strength of cement mixtures with zeolite 

Justyna Michaluk1* , Monika Kulisz1, Justyna Kujawska2, 
Edyta Wojtaś2, Aliya Aldungarova3

1	 Management Faculty, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
2	 Faculty of Environmental Engineering and Energy, Lublin University of Technology, Nadbystrzycka 40B, 

20-618 Lublin, Poland
3	 International Educational Corporation LLP, Ryskulbekov Street 28, 050043 Almaty, Republic of Kazakhstan
* Corresponding author’s e-mail: j.michaluk@pollub.pl

ABSTRACT
This study investigates the applicability of machine learning algorithms for predicting the compressive strength 
of cement mixtures with zeolite. The research compares the performance of four predictive models – Elastic Net 
regression, support vector machines (SVM), multilayer perceptron (MLP) neural networks, and Decision Trees 
– trained on experimentally obtained data describing mix composition and curing conditions. The input features
included zeolite percentage, water-to-cementitious-material ratio, curing time, cement mass, and zeolite content.
The output variable was compressive strength. Among the evaluated models, the SVM algorithm exhibited the
optimal generalization capability, attaining the minimal prediction error on the validation set while sustaining
elevated correlation between actual and predicted values. The MLP neural network demonstrated the optimal fit
to the training data, however, this was achieved at the expense of heightened sensitivity to overfitting. Decision
trees demonstrated robust training efficacy but exhibited diminished generalization capabilities, while the linear
elastic net model encountered challenges in replicating the nonlinear characteristics of the material system. The
study corroborates the viability of nonlinear machine learning models in facilitating the design and optimization of
zeolite-enhanced cementitious mixtures. These findings signify a significant stride towards data-driven modeling
in the field of construction materials engineering, thereby facilitating enhanced prediction of mechanical perfor-
mance with minimized experimental effort. The study also underscores avenues for future exploration, encompass-
ing model hybridization, multi-output prediction frameworks, and integration with optimization algorithms for
automated mix design.

Keywords: machine learning, cement mixtures with zeolite, compressive strength, neural network, SVM, predic-
tive modeling, mix design, sustainable materials.

Received: 2025.06.05
Accepted: 2025.08.15
Published: 2025.09.01

Advances in Science and Technology Research Journal, 2025, 19(10), 123–135
https://doi.org/10.12913/22998624/207915
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal

https://orcid.org/0009-0006-5969-9989


124

Advances in Science and Technology Research Journal 2025, 19(10), 123–135

optimization of material compositions and tech-
nological parameters. The integration of machine 
learning models into the design and maintenance 
offers the potential to reduce experimental costs, 
improve resource efficiency, and enhance the du-
rability of construction materials [4].

Zeolites, especially their clinoptilolite variety, 
show the ability to react with calcium hydroxide 
during the hydration process of cement, leading 
to the secondary formation of C-S-H gels, result-
ing in improved mechanical and durability prop-
erties of concrete [5, 6].

Studies have also shown that a properly se-
lected proportion of zeolite in a cement mix can 
lead to an increase in compressive strength, while 
reducing autogenous shrinkage and improving re-
sistance to environmental factors [7].

One of the most promising materials used as 
additives to concrete mixtures are natural zeolites, 
which, due to their ordered crystalline structure, 
high specific surface area and content of reactive 
silicon and aluminum oxides, exhibit significant 
pozzolanic activity. Their structure allows them 
to absorb and gradually release water, which pro-
motes hydration processes and acts as an inter-
nal conditioning agent. As a result of the reaction 
of zeolites with calcium hydroxide (Ca(OH)₂), 
formed during the hydration of cement, second-
ary C-S-H gels are formed, which seal the mi-
crostructure of the cement slurry, increase the 
density of the matrix and improve the mechanical 
properties of concrete, especially over a longer 
maturation period [8].

Compared to traditional mineral additives 
such as fly ash or blast furnace slag, zeolites have 
several significant advantages. First, they are natu-
ral materials and readily available in many regions 
of the world, making them a more predictable and 
sustainable raw material, independent of indus-
trial changes such as the shift away from energy 
[9]. Zeolites also help improve concrete resistance 
to aggressive environments such as chlorides and 
sulfates and reduce autogenous shrinkage and im-
prove resistance to freeze-thaw cycles [10].

However, the use of zeolites comes with 
some challenges. Their porous structure results 
in an increased water content of the mix, which 
can lead to reduced workability and requires the 
use of chemical admixtures to maintain adequate 
rheological properties [11]. In addition, the poz-
zolanic activity of zeolites is relatively slower 
than that of some synthetic additives, which can 
result in lower early strength and require a longer 

maturation period. Differences in mineralogical 
composition due to local geological conditions 
also make it difficult to standardize their use in 
concrete mixtures [12].

Given the complexity of the hydration mech-
anisms of cement with zeolite and the variability 
in material properties depending on local geologi-
cal sources, classical empirical approaches are in-
creasingly being supplemented – or even replaced 
– by predictive modeling techniques. These meth-
ods allow for a reliable evaluation of concrete per-
formance without the need for time-consuming 
experimental procedures, especially in the case of 
novel additives such as natural zeolites.

One such algorithm is Elastic Net, a regular-
ized regression algorithm that combines the fea-
tures of Lasso and Ridge regression, effectively 
addressing the problem of variable collinearity. 
In the context of concrete strength prediction, 
it allows for simultaneous feature selection and 
model stabilization, offering good prediction 
accuracy even with limited data. This model is 
highly resistant to overfitting and works well for 
modeling nonlinear relationships in engineering 
data [13]. In studies on concrete with rubber ad-
ditives, Elastic Net has been shown to offer bal-
anced predictive performance while maintaining 
model stability even in the case of strongly cor-
related parameters such as rubber, aggregate, and 
cement content. Analyses have shown that Elastic 
Net effectively reduces the problem of overfit-
ting, achieving lower prediction errors (RMSE 
and MAE) than classical multiple regression. 
Thanks to its flexibility and generalization ability, 
Elastic Net is an attractive tool for modeling the 
mechanical properties of concrete mixtures con-
taining rubber waste [14].

Another group of popular methods are sup-
port vector machines (SVM), which allow for 
the mapping of complex nonlinear relationships 
in data. A special variant of these is support vec-
tor regression (SVR), which has been used in 
concrete analysis using non-destructive testing. 
Li and Zhang (2024) presented an alternative 
approach to predicting concrete compressive 
strength, focusing on SVR and non-destructive 
testing (NDT) techniques instead of artificial neu-
ral networks (ANN). The authors used SVR as an 
analytical tool to model the relationship between 
non-destructive test results and actual concrete 
strength. Two well-known NDT methods were 
used: the Schmidt hammer test, which assesses 
mechanical rebound, and ultrasonic pulse velocity 
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(UPV) measurement, which assesses the homo-
geneity and quality of the material by analyzing 
the time it takes for the wave to travel through 
the concrete. The results suggest that integrating 
SVR with NDT test data allows for effective and 
non-destructive prediction of concrete strength, 
making this method particularly useful in assess-
ing the technical condition of existing structures 
[15]. The goal of SVR is to find a function that 
best fits the data, allowing for a small deviation 
(ε) from the actual values. The algorithm maxi-
mizes the distance (the so-called margin) between 
the data points and the predicted line, ignoring 
minor errors. To obtain the best results, the au-
thors tuned the model parameters (gamma = 0.6 
and C = 33), which enabled effective prediction 
of concrete strength, even for non-linear data, 
precisely through the use of kernel functions. [16]

In the field of civil engineering, methods 
such as SVM can support the classification of 
the technical condition of building components 
(e.g., concrete cracks, installation defects) based 
on limited sensory data, enabling faster and 
more efficient diagnosis with a minimum of field 
measurements [17]. 

It is worth noting that the use of models such 
as linear regression, SVM, decision trees, and 
random forests allows for the capture of nonlinear 
relationships between material variables and con-
crete strength [18]. The SVM formula reflects the 
principle of structural risk minimization (SRM), 
which has proven to be superior to the more tra-
ditional principle of empirical risk minimization 
(ERM) used in many other modeling techniques. 
SRM imposes an upper bound on the expected 
risk, unlike ERM, which minimizes error only in 
the training data. It is this difference that gives 
SVM greater generalization ability compared to 
traditional neural network methods [19]. 

Among the machine learning techniques used 
to predict the properties of building materials, the 
decision tree (DT) algorithm plays an important 
role. It is an intuitive and effective classification 
method that generates decision rules by analyzing 
input data and systematically dividing the feature 
space based on attribute values. This process in-
volves building a tree based on training data and 
pruning it to prevent overfitting the model to the 
data. Due to their simplicity, high accuracy, and 
resistance to noise in the data, decision trees are 
very popular in concrete analysis, allowing for a 
quick and transparent determination of the influ-
ence of individual components of the mixture on 

its final compressive strength [20]. Decision trees 
can effectively support the classification of high-
performance concrete mix design methods. They 
allow design techniques to be distinguished based 
on key parameters such as water-cement ratio 
or type of additives. Thanks to their transparent 
structure, they are easy to interpret and useful in 
engineering practice. This approach promotes au-
tomation and increases the efficiency of the mix 
selection process [21]. In agricultural machin-
ery, decision trees outperformed ANN and SVM 
in predicting PTO shaft power demand, achiev-
ing nearly 99% accuracy [22]. Machine learning 
is increasingly being applied to the analysis and 
forecasting of complex engineering processes, in-
cluding areas beyond construction materials. For 
instance, in the prediction of wastewater inflow to 
the treatment plant in Rzeszów, over 1,000 mod-
els were evaluated, including neural networks, 
k-nearest neighbors, and advanced statistical ap-
proaches such as ARIMA and SARIMAX. The re-
sults of these studies confirm that the careful selec-
tion of machine learning models and parameters 
enables high prediction accuracy, even in complex 
environmental processes influenced by multiple 
variables, such as weather conditions [23]. These 
examples underline the universality of machine 
learning methods in solving complex diagnostic 
and predictive tasks, further supporting their ap-
plication in modeling cementitious materials.

It is in the face of these difficulties that pre-
dictive methods, especially artificial neural net-
works (ANNs), which make it possible to create 
advanced predictive models from experimental 
data, are becoming particularly important. Neural 
networks, due to their ability to model complex 
and nonlinear relationships, are particularly use-
ful in data analysis where the connections between 
variables are intricate; however, a significant lim-
itation of this approach is the risk of overfitting, 
especially when working with a small number of 
observations, which necessitates careful selec-
tion of parameters and model architecture. [24] 
Networks such as CNN (convolutional neural 
network) or LSTM (deep recurrent network with 
short-term memory) can contribute tothe detec-
tion of errors in construction [25]. The main pur-
pose of their use is to create reliable predictive 
models that allow the prediction of parameters 
such as compressive strength, tensile strength, 
flexural strength, thermal conductivity, shrinkage 
or durability, without the need for expensive and 
time-consuming experimental tests.
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Artificial neural networks are widely used in 
the construction industry, especially in the areas 
of energy management, cost prediction and user 
comfort assessment. They make it possible to pro-
cess complex environmental and technological 
data to support decision-making on projects and 
operations. The article highlights the growing role 
of ANNs in the automation of construction pro-
cesses and the need for further research into their 
integration with other smart technologies [26].

The application of ANNs is based on the abil-
ity of these models to map complex, nonlinear re-
lationships between multiple input variables (e.g., 
concrete mix composition, curing time, mineral 
additive content, care conditions) and output vari-
ables (e.g., strength or thermal conductivity). This 
makes it possible not only to quickly predict the 
properties of cementitious composites, but also to 
optimize their composition and technological pa-
rameters. Models of this type learn from experi-
mental data and, when properly trained, are able 
to generate accurate predictions even for data 
that were not used in the learning process. Com-
pared to classical testing methods, ANNs offer a 
number of advantages. First of all, they allow a 
significant reduction in the time needed to evalu-
ate material properties, which is particularly im-
portant for analyses that require a long period of 
sample maturation (e.g., 28-day strength). Elimi-
nating the need for numerous laboratory tests also 
reduces costs and material consumption. In ad-
dition, predictive models enable what-if simula-
tions to support the process of designing concrete 
mixtures with specific target properties, as well as 
to quickly assess the impact of changing a single 
parameter (such as the amount of zeolite) on the 
final characteristics of the material.

In recent years, ANNs have received particular 
attention, showing high performance in modeling 
nonlinear relationships between input variables 
and output properties of construction materials 
[27]. Siddique et al. (2011) developed ANN mod-
els for predicting the compressive strength of self-
compacting concrete containing bottom ash as a 
partial replacement for sand, using both literature 
and experimental data, which made it possible to 
evaluate the effectiveness of the models in predict-
ing the compressive strength of concrete at differ-
ent stages of maturation All the obtained models 
had correlation coefficient values above 0.9 [28].

Lin and Wu (2021) used seven input param-
eters: weight of water, cement, fine aggregate, 
coarse aggregate, blast furnace slag, fly ash, and 

superplasticizer, normalizing the data and using an 
ANN network with one hidden layer, the resulting 
R² determination coefficient exceeded 0.98 [29].

Amar et al. (2022) used the ANN model to 
predict the strength of concretes with waste addi-
tives. They used 18 input variables to create mod-
els, including the type of cement, water content, 
water/soil ratio, degree of cement replacement by 
mineral additives (such as metakaolin, fly ash, 
slag, marble dust, ceramic waste), amount of 
superplasticizer and others, obtaining very high 
agreement between predicted and experimental 
values (R² = 0.9888, MAPE = 2.87%) [30].

The potential of ANN was also confirmed by 
Başyiğit et al. who used four inputs in predicting 
the strength of heavy concrete with barite addi-
tion: the amount of cement, the amount of water, 
the curing time (7, 28, 90 days) and the percentage 
of barite, achieving high prediction agreement us-
ing both ANN and fuzzy logic (FL). This confirms 
the effectiveness of creating models even for spe-
cialized types of cement mixtures [31].

In the context of trends related to the digi-
tization of construction and the development of 
the concept of so-called “smart concrete,” tools 
such as ANN are becoming not just an alterna-
tive, but often a necessity in the modern design of 
construction materials. This becomes especially 
important in the case of materials with new-gen-
eration additives, such as zeolite, for which full, 
standardized empirical data is still lacking. ANN 
makes it possible to analyze them quickly and 
implement them in engineering practice.

Recent research also confirms the effective-
ness of deep and recurrent neural networks in 
other engineering applications, such as defect 
detection in aluminum casting using process data 
[32] or moisture imaging in historical brick walls 
using LSTM networks and electrical impedance 
tomography [33].

In view of the growing impact of the cement 
industry on global CO₂ emissions, there is a need 
to develop methods to reduce cement consump-
tion while maintaining structural requirements. 
One innovative approach is to predict the cement 
content needed to achieve the nominal compres-
sive strength of concrete after 90 days, instead of 
the traditional 28 days. A longer curing period may 
better reflect the actual load conditions in multi-
story structures and also allows for the optimiza-
tion of concrete composition in terms of emission 
reduction. To this end, a number of machine learn-
ing algorithms were used, such as decision tree 
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regression, extra trees, random forest, and elastic 
net. Although the authors also mention the use 
of methods such as ANN and SVM in the litera-
ture, particularly when modeling the properties of 
concrete with additives such as fly ash, slag, or 
recycled aggregates – due to the moderate com-
plexity of the data used in the study and the lack 
of alternative additives, the focus was on simpler 
regression models. SVM, as an algorithm capable 
of modeling nonlinear relationships, can be an ef-
fective tool in predicting concrete strength, espe-
cially when data characterized by high variability 
and complex structure are available. However, in 
the context of a limited data set and a focus on 
optimizing a single component – cement – the au-
thors of the study opted for linear regression with 
regularization (Elastic Net), achieving high pre-
diction accuracy (R² ≈ 0.94) without the risk of 
overfitting the model [34].

The novelty of this research lies in its targeted 
application of machine learning algorithms to ce-
ment mixtures with zeolite, which represent a new 
generation of eco-efficient construction materials. 
Unlike prior studies that often investigate multi-
ple secondary additives or rich composite formu-
lations, this work isolates zeolite as the sole addi-
tive, enabling a focused assessment of its impact 
on compressive strength prediction. Considering 
the above, the objective of this study is to conduct 
a comparative analysis of the effectiveness of se-
lected machine learning algorithms in predicting 
the compressive strength of cement mixtures with 
zeolite. The study focuses on evaluating the ac-
curacy and applicability of four models: Elastic 
Net, SVM, neural networks, and Decision Trees, 
using experimental data related to the composi-
tion of cement mixtures and the curing conditions 
of the samples.

MATERIALS AND METHODS

Cement-zeolite mixtures

Portland cement (class 42.5 N) and zeolite, 
clinopliolite were used to prepare the cement mix-
tures. The chemical properties of the cement and 
zeolite are shown in Table 1, the physicochemical 
properties are shown in Table 2. The water used 
to make the mixtures met the quality standards of 
PN-EN 1008:2004. 

The mixtures created were labeled according 
to the MIX-X-Y scheme, where X corresponds to 

the percentage of zeolite additive to the weight 
of the cement (in the range of 0% to 20%), while 
Y denotes the value of the water/cement ratio 
(W/CM) ranging from 0.45 to 0.70.

Testing of cementitious mixtures 		
for compressive strength

The specimens for compressive strength test-
ing were in the form of cubes with dimensions of 
70.7 × 70.7 × 70.7 mm. They were made from a 
cement slurry containing different proportions of 
cement and zeolite. Nine specimens were pre-
pared for each mix, to be tested after 7, 28 and 70 
days of maturation, three specimens for each term.

The sample preparation process involved 
several steps. First, fresh slurry was poured into 
cubic molds, which were then placed on a vibrat-
ing table to compact the material and remove air 
bubbles. After the top surface of the molds were 
leveled, they were covered with plastic film to 
reduce water evaporation. The samples remained 
in the molds for the first 24 hours at 24 ± 2 °C. 
This was followed by unmolding and transferring 
the samples to a chamber with controlled ripening 
conditions (20 ± 2 °C, relative humidity above 
95%), where they were stored until tested.

The strength was measured in accordance 
with EN 12390-3:2011, by compressing the 
specimens in a laboratory press. The specimens 
were loaded until failure, and the maximum fail-
ure force obtained was divided by the cross-sec-
tional area of the specimen to calculate the com-
pressive strength in MPa. The specimens were 
subjected to compressive strength testing after 
7, 28 and 70 days of maturation. The result for 
each mix and maturation period was the average 
value of the three samples.

Machine learning methods methodology

In this study, four predictive models were de-
veloped to estimate the compressive strength of 
cement mixtures with zeolite. The selection of 
these methods was deliberate, with each repre-
senting a distinct class of machine learning algo-
rithms and offering different computational and 
statistical perspectives for analyzing the prob-
lem. The models that were implemented included 
Elastic Net, SVM, MLP, neural networks, and 
Decision Trees.

The Elastic Net regression was selected as 
a regularized linear model that combines the 
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strengths of Ridge (L2) and Lasso (L1) regres-
sion, thereby allowing for simultaneous variable 
selection and complexity control. It functions 
as a robust baseline model with high interpret-
ability, which is especially useful when mul-
ticollinearity among predictors is anticipated. 
SVMs were selected for their effectiveness in 
modeling nonlinear relationships, particularly 
in high-dimensional spaces and with small to 
medium-sized datasets. The utilization of kernel 
functions enables SVMs to effectively capture 
intricate boundaries and facilitate robust general-
ization. MLP neural networks were incorporated 
due to their capacity to learn nonlinear mappings 
between inputs and outputs through hidden lay-
ers of interconnected neurons. In the domain of 
composite materials, where the interactions be-
tween mix parameters may be intricate and mul-
tidimensional, MLPs are particularly well-suited 
for implementation. Decision trees were imple-
mented to generate interpretable models capable 
of unveiling hierarchical relationships between 
predictors and the target variable. The tree-based 
structure of these models enables the extraction 
of clear rules, thereby facilitating insight into 
the influence of individual input features. This 
set of models enables not only the comparison 
of predictive accuracy but also an exploration of 
trade-offs between complexity, interpretability, 
training time, and generalization ability in the 
context of data-driven modeling of cementitious 
materials enhanced with natural zeolite.

The implementation and training of all mod-
els was conducted within the MATLAB R2024b 
environment, leveraging the built-in functions 
of the Statistics and Machine Learning Toolbox 
and the Deep Learning Toolbox. The modeling 
process was based on an experimental dataset, 
where the input variables (predictors) included 

the percentage of zeolite (%), the water-to-ce-
mentitious-material ratio (W/CM), curing pe-
riod (days), cement mass (g), and the amount of 
superfine zeolite (SFZ, g). The output variable 
(response) was the compressive strength of ce-
ment mixtures with zeolite. (MPa), which was 
labeled in the dataset as “Strength (MPa).” A 
total of 90 different experimental observations 
were used, covering diverse combinations of in-
put variable values. 

All four models were trained using a system-
atic hyperparameter tuning procedure based on 
grid search combined with 5-fold cross-valida-
tion. For each algorithm, a predefined range of 
key hyperparameters was explored in order to 
identify the combination that minimized the mean 
squared error (MSE) during validation. Various 
configurations were assessed to ensure both ro-
bustness and generalization of the models. The 
list of parameters and ranges considered for each 
model is summarized in Table 3.

In order to assess generalization performance 
and ensure fairness in comparison, all models 
were evaluated using consistent 5-fold cross-
validation. For each fold, models were trained on 
the training set and tested on the validation fold 
to produce out-of-fold predictions. These were 
then compared with actual values to estimate un-
biased performance.

The following performance metrics were 
calculated:
	• Mean squared error (MSE) – overall predic-

tion error magnitude,
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	• Mean absolute error (MAE) – average predic-
tion deviation,

Table 1. Chemical properties of the additives used in the study
Parameter SiO2 [%] Al2O3 [%] Fe2O3 [%] CaO [%] K2O [%]

Cement 20.65 6.54 3.46 64.6 0.99

Clinopliolit 72.40 12.09 0.85 2.2 2.56

Table 2. Physicochemical properties
Properties Cement Properties Clinopliolite

Specific surface (cm2/g) 3650 Surface density, kg/m3 1735

Bulk density, kg/m3 1145 Porosity, % 27

Particle density, kg/m3 3150 Relative weight, kg/m3 1632
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Pearson correlation coefficient (R) – 
strength of correlation between predicted and 
actual values.
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where:	n – number of observations in the data-
set, yi* – actual (measured) value of the 
response variable for the ii-th observa-
tion, yi' – predicted value of the response 
variable for the ii-th observation, cov(y', 
y*) – covariance between predicted and 
actual values, σy', σy*– standard devia-
tions of the predicted and actual values, 
respectively.

The metrics were computed separately for the 
entire dataset, the training folds, and the valida-
tion folds. In order to support visual analysis, re-
gression plots were generated to illustrate model 
fit across these sets.

To mitigate the issue of overfitting, all mod-
els underwent a process of hyperparameter tun-
ing. This process involved the implementation 
of grid search combined with cross-validation. 
The implementation of cross-validation ensured 
that optimal configurations were selected based 
on their performance on unseen data rather than 
on the training set. Furthermore, regularization 
techniques were employed in applicable cases, 

including Elastic Net regression and SVM box 
constraints. Additionally, model complexity was 
explicitly controlled through architectural con-
straints, such as the number of hidden neurons in 
MLP models or the maximum tree depth and leaf 
size in Decision Trees. The implementation of 
these strategies resulted in a collective enhance-
ment of the models’ capacity to generalize to nov-
el, previously unobserved input combinations.

RESULT AND DISCUSSION

Figure 1 shows the compressive strength val-
ues of cement-zeolite mixtures. Mixtures contain-
ing 5% and 10% zeolite, at low W/CM ratios of 
0.45 and 0.5, achieved higher strength values than 
mixtures without the mineral additive. For higher 
zeolite additions, above 10%, lower compressive 
strength values were observed for both 7-day and 
70-day strength tests. Mixtures with 15% and 
20% zeolite had significantly lower strength than 
those with 5% and 10% additive.

The water/cement ratio shows a strong in-
fluence on the strength of mixtures. For all ana-
lyzed mixes, a relationship is evident: the lower 
the W/CM ratio, the higher the compressive 
strength. Mixtures with W/CM = 0.45 showed 
the highest strength, regardless of the content of 
added zeolite, while mixtures with W/CM = 0.7 
showed the lowest strength parameters.

The increase in strength between days 28 and 
70 is more pronounced in mixtures containing 
zeolite than in those without it, confirming the ac-
tivation of zeolite’s pozzolanic properties during 
the later maturation period. The best mechanical 
properties were shown by Mix-5-0.45 and Mix-
10-0.45, whose strength after 70 days exceeded 
70 MPa. In contrast, the lowest values were ob-
tained for Mix-0-0.7 and Mix-20-0.7, confirm-
ing the adverse effects of both high water/cement 

Table 3. Hyperparameters and parameter ranges analyzed for each model
Parameter Hyperparameters considered Parameter range explored

Elastic Net Alpha (L1/L2 mixing)
Lambda (regularization)

α ∈ {0.1, 0.5, 0.9}
λ ∈ {0.01, 0.1, 1}

SVM Kernel type
BoxConstraint

Kernels: linear, RBF, polynomial
C ∈ {0.1, 1, 10}

Neural network Hidden layer size
Training algorithm

Neurons 10÷20
Algorithms: Levenberg–Marquardt (trainlm),
Scaled Conjugate Gradient (trainscg)

Decision tree MaxNumSplits
MinLeafSize

MaxNumSplits ∈ {5, 10, 20}
MinLeafSize ∈ {1, 5, 10}
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ratio and excessive zeolite. These results suggest 
that optimal concrete strength parameters can be 
obtained with low W/CM and moderate zeolite 
addition, preferably in the range of 5–10%, Va-
iciukyniene et al. (2012) noted that zeolite has a 
beneficial effect on the compressive strength of 
hardened cement paste, which is due to its poz-
zolanic activity and the formation of hydroalu-
minate phases in the structure of the hardened 
material [35].

In terms of predictive performance, the Elas-
tic Net model yielded the most favorable results 
with alpha set to 0.9 and lambda to 0.1.The high 
alpha value (approximately 1) guided the regular-
ization strategy toward Lasso regression, promot-
ing sparsity by selecting only the most pertinent 
input variables. The moderate lambda value ap-
plied a mild penalty on the coefficients, achieving 
a balance between feature selection and model 
flexibility. This configuration reflects a trade-off 
between generalization and model simplicity.

The optimal SVM configuration was achieved 
using a polynomial kernel and a BoxConstraint of 
10. The polynomial kernel facilitated the model’s 
ability to capture nonlinear relationships in the 
data, while the relatively stringent regularization 
imposed by a high box constraint prevented over-
fitting of the model. This combination has proven 
to be highly effective for structured datasets with 
complex variable interactions.

The neural network that demonstrated the 
highest level of performance incorporated 10 
neurons within the hidden layer, in conjunction 
with the Levenberg–Marquardt training algorithm 
(trainlm). The modest network size guaranteed 
effective learning without over-parameterization. 
Concurrently, the training algorithm facilitated 

expeditious convergence and superior precision, 
rendering it particularly well-suited for medium-
sized regression tasks. This configuration enabled 
the model to capture nonlinear patterns while pre-
serving numerical stability.

The construction of the optimal regression 
tree was achieved through the implementation of 
MaxNumSplits = 20 and MinLeafSize = 1. This 
configuration enabled the tree to develop in a 
profound and highly granular manner, ensuring 
a close fit with the training data by facilitating 
numerous branch divisions and minimal prun-
ing. While this increased the risk of overfitting, it 
also enabled precise modeling of local variations 
within the dataset.

The subsequent Table 4 provides a succinct 
synopsis of the primary evaluation metrics for 
each model, meticulously delineated for the train-
ing and validation sets.

Comparing the four predictive models—Elas-
tic Net, SVM, MLP neural networks, and Deci-
sion Trees – based on MSE, MAE, RMSE, and 
correlation coefficient R, clear differences emerge 
in their effectiveness for predicting the compres-
sive strength of cement mixtures with zeolite. The 
Elastic Net model demonstrated the least effec-
tive performance, exhibiting high MSE values of 
33.46 in the training set and 38.47 in the valida-
tion set, as well as the lowest correlation coeffi-
cient R value of 0.91 in the training set and 0.89 
in the validation set. These findings suggest that 
a linear model is incapable of effectively captur-
ing the nonlinear relationships present in the data. 
The SVM model consistently yielded commend-
able outcomes, evidenced by its MSE of 2.59 on 
the training set and 4.24 on the validation set. 
This is further substantiated by the high R values 

Figure 1. Compressive strength values of cement-zeolite mixtures



131

Advances in Science and Technology Research Journal 2025, 19(10) 123–135

of 0.99 for both the training and validation sets, 
which underscores the model’s capacity for ef-
fective balancing of accuracy and generalization. 
The MLP neural network exhibited excellent per-
formance during training, with an MSE of 1.69 
and a correlation coefficient of 0.996, demon-
strating its strong modeling capacity. However, 
slightly reduced performance on the validation set 
(MSE of 6.33, R of 0.98) indicates slightly dimin-
ished generalization ability, although the model 
still maintains a high level of predictive accuracy. 
The Decision Tree model performed well on the 
training set (MSE = 2.60, R = 0.99) and demon-
strated acceptable performance on the validation 
set (MSE = 10.15, R = 0.97). While the difference 
between training and validation metrics is more 
pronounced than in the case of other models, this 
outcome is consistent with the known character-
istics of decision tree algorithms, which tend to 
closely fit training data. Despite the application 
of pruning and hyperparameter tuning to control 
model complexity, the tree-based structure may 
exhibit limited flexibility in capturing broader 
patterns across the entire input space. Neverthe-
less, the validation results confirm that the model 
retains a good level of predictive capability.

To further illustrate the predictive perfor-
mance of each model, regression plots were gen-
erated for both the training and validation datas-
ets. These correlation plots display the relation-
ship between actual and predicted compressive 
strength values, providing a visual assessment of 
model fit and generalization capacity across the 
entire dataset (Figure 2).

The comparative analysis presented in this 
study clearly demonstrates the potential of 

machine learning models in predicting the com-
pressive strength of cement mixtures with zeo-
lite. Among the four tested algorithms, the SVM 
emerged as the most balanced model, combining 
high prediction accuracy with strong generaliza-
tion. The MLP neural network also performed 
very well, showing excellent fit to the training 
data and maintaining high accuracy on valida-
tion. Decision Trees, while interpretable and 
well-aligned with training data, showed slightly 
reduced performance on validation. The Elastic 
Net model, though transparent and computation-
ally efficient, was not well-suited to capturing the 
nonlinear relationships present in the dataset.

Regression plots for both training and valida-
tion sets confirmed the superior predictive per-
formance of the SVM and MLP models. These 
findings highlight the effectiveness of nonlinear 
approaches in modeling the behavior of cement 
mixtures with zeolite, which are influenced by 
complex physical and chemical interactions.

The encouraging outcomes observed in this 
investigation align with those documented by 
Covatariu et al. (2024), who employed an ANN 
to forecast the thermal conductivity of cement-
based mortars incorporating natural zeolites. The 
model was configured with a single hidden layer 
containing 12 neurons and trained using the Lev-
enberg–Marquardt algorithm. This configuration 
achieved a correlation coefficient of approxi-
mately 0.95 between experimental and predicted 
values. This substantial degree of agreement con-
firmed the capacity of MLP networks to model 
the complex physical properties of cementitious 
materials, particularly those influenced by poros-
ity, moisture, and compositional heterogeneity. 

Table 4. Comparative summary of model performance
Quality indicators/model Elastic Net SVM Neural network Decision tree

MSE

Train 33.4591 2.5865 1.6864 2.6021

Validation 38.4747 4.2411 6.3288 10.1458

All dataset 34.5213 2.6752 2.7835 4.7321

MAE

Train 4.9142 1.3703 0.9497 1.2827

Validation 5.2226 1.6576 2.0163 2.6153

All dataset 5.0251 1.4231 1.4357 1.7432

RMSE

Train 5.7843 1.6082 1.2986 1.6131

Validation 6.2027 2.0593 2.5157 3.1852

All dataset 5.8935 1.7873 1.7835 1.9982

R

Train 0.9055 0.9932 0.9955 0.9929

Validation 0.8903 0.9888 0.9839 0.9723

All dataset 0.8987 0.9899 0.9899 0.9899
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Figure 2. Regression plots showing the correlation between predicted and actual compressive strength
of cement mixtures with zeolite values for all four models (Elastic Net, SVM, Neural Network, Decision Tree) 

for the training and validation datasets
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These characteristics are also present in cement 
mixtures with zeolite. Covatariu et al. also em-
phasized that the most influential input in their 
model was bulk density, while moisture content 
and temperature had comparatively lower predic-
tive importance. This finding highlights the value 
of feature selection and domain-specific knowl-
edge in neural network modeling [36].

A parallel trend is observed in the study by On-
yari and Ikotun (2018), who developed an artificial 
neural network to forecast both compressive and 
flexural strengths of mortars containing a modified 
zeolite additive (MZA). The input parameters en-
compassed conventional mix design variables, in-
cluding cement, water, silica sand, and MZA con-
tent, as well as curing duration and loading level. 
The resulting ANN exhibited a three-layer struc-
ture and was trained for multiple load scenarios. 
The model demonstrated remarkable precision, 
attaining R² values more than 0.99 for flexural 
strength and ranging between 0.99 and 0.67 for 
compressive strength, contingent upon the applied 
loading level. These results demonstrate the pre-
dictive power of ANN models and their adaptabil-
ity to different mechanical test conditions [37].

Considering these studies, the present work 
further reinforces the usefulness of artificial neu-
ral networks for property prediction in zeolite-
based cementitious systems. However, the current 
results also highlight those alternative nonlinear 
methods, such as SVMs, may offer comparable 
– if not superior – performance when properly 
tuned. This suggests that hybrid or ensemble ap-
proaches could be considered in future research 
to leverage the complementary strengths of dif-
ferent algorithms.

From an application standpoint, the success-
ful use of machine learning techniques in this 
study opens the way toward data-driven optimi-
zation of cement mix design. Especially in cases 
involving supplementary cementitious materials 
like natural zeolites, such tools can reduce reli-
ance on time-consuming and costly experimental 
campaigns by offering reliable, simulation-based 
estimates of key mechanical properties.

CONCLUSIONS

The main objective of this study was to de-
velop and assess predictive models capable of 
estimating the compressive strength of cement 
mixtures with zeolite. The motivation for this 

approach stems from the recognition that tradi-
tional empirical formulas are often insufficient 
to reflect the nonlinear and multidimensional 
relationships between mixed composition, cur-
ing time, and mechanical performance. Machine 
learning techniques were therefore applied to 
model these complex dependencies and support 
data-driven decision-making in mixed design.

The predictive models were developed using 
an experimental dataset incorporating a variety of 
cement mixtures with zeolite. The models were 
constructed based on five input variables: zeo-
lite content expressed as a percentage of cement 
replacement, the water-to-cementitious-material 
ratio (W/CM), the curing time in days, the mass 
of cement in grams, and the amount of superfine 
zeolite added to the mix. These input parameters 
were chosen due to their known influence on hy-
dration kinetics, microstructural development, and 
the strength evolution of cementitious composites. 
The output variable in all models was the compres-
sive strength of the cement mixtures with zeolite, 
expressed in megapascals (MPa), which serves as 
the primary indicator of structural performance.

This study has demonstrated the applicability 
and effectiveness of selected machine learning al-
gorithms in predicting the compressive strength 
of cement mixtures with zeolite. By comparing 
four distinct models – Elastic Net, SVM, MLP 
neural networks, and Decision Trees – rained on 
real experimental data, it was possible to evaluate 
their predictive accuracy and ability to generalize 
to unseen input combinations.

The results show that the SVM model of-
fered the most balanced performance, with a 
training MSE of 2.59, validation MSE of 4.24, 
and high correlation coefficients (R = 0.99 for 
both training and validation sets). The MLP neu-
ral network achieved the best fit on the training 
set (MSE = 1.69, R = 0.996), and maintained 
good validation performance (MSE = 6.33, R = 
0.98), confirming its strong predictive capacity. 
The Decision Tree model also performed well 
on the training data (MSE = 2.60, R = 0.99), but 
showed reduced accuracy in validation (MSE = 
10.15, R = 0.97), consistent with the typical be-
havior of tree-based models. The Elastic Net re-
gression, as a linear model, exhibited the weak-
est performance overall, with training MSE = 
33.46, validation MSE = 38.47, and R values of 
0.91 and 0.89, respectively, confirming its lim-
ited ability to represent the nonlinear relation-
ships present in the dataset.
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Nevertheless, the study is subject to certain 
limitations. The dataset was limited in both size 
and diversity, focusing on a specific type of natu-
ral zeolite and a relatively narrow range of com-
position and curing variables. Additionally, the 
modeling targeted compressive strength alone, 
without incorporating other relevant properties 
such as flexural strength, durability, or work-
ability. While 5-fold cross-validation was used to 
address overfitting, external validation on inde-
pendent datasets would be needed to assess the 
models’ transferability to broader contexts.
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