
333

INTRODUCTION

Human activity recognition (HAR) has be-
come a significant field of study, with precise
identification of human actions generating con-
siderable interest among researchers [1, 2]. This
field seeks to determine a subject’s behaviors
using video recordings obtained by surveillance
and/or smartphones cameras. Recordings are
made as the individual engages in a set of spe-
cific actions, such as walking, laughing, nodding,
driving, running, and punching. The information
about people’s behaviors is used by the research-
ers to meet demands from such domains like
health care, fitness, or home automation [3], and
to detect suspicious and non-suspicious activities
in various environments.

Suspicious or abnormal behavior can vary
depending on the context. In places like offices,
airports, and banks, such behavior often includes
actions like running, falling, jumping, fighting,
or slipping. Recognizing these actions can help
in identifying potential risks and ensuring safety
in these settings [4]. In addition, examples may
include illegal access to personal property, failure
to pay a ticket at a subway station, and child ab-
duction. If the place is an indoor facility such as
a store, the unusual behavior becomes “shoplift-
ing,” “theft,” or “burglary” [5]. Kicking, shoving,
and punching can be reported as suspicious action
to be noticed and identified in the video surveil-
lance system.

Moreover, recent research [6] shows that
the integration of AI with technologies such as

AI-driven cognitive surveillance framework for suspicious activity
detection in academia

Asad Hameed Soomro1,2* , Rafaqat Hussain Arain1 , Riaz Ahmed Shaikh1

1 Institute of Computer Sciences, Shah Abdul Latif University, Khairpur Mirs, Sindh, Pakistan
2 The Benazir Bhutto Shaheed University of Technology and Skill Development, Khairpur Mirs, Sindh, Pakistan
* Corresponding author’s e-mail: asad.soomro31@yahoo.com

ABSTRACT
Early identification of human suspicious activities, especially in academia, is very crucial for enhancing security
and safety, while existing surveillance systems remain ineffective at contextual behavior analysis. This study pro-
poses the HYDPL Algorithm that incorporates a novel pseudo-labeling approach and innovative image analysis
to perform human suspicious activity detection. The HYDPL algorithm includes several stages of data processing
and feature extraction that aim to enhance the detection of activities by increasing the model’s accuracy. To evalu-
ate the effectiveness of the algorithm, two datasets were utilized: CampusWatch (Dataset-I), which consists of
real-world scenarios specifically collected for this study from academia, targeting nine specific behaviors: kicking,
punching, running, pushing, smoking, throwing, jumping, falling, and talking, providing realistic representation
of human activities, and HMDB51, named as Dataset-II, which is a collection of movies or scripted videos. The
evaluation results of the model were outstanding for both datasets, as the model was successful in delivering 98%
accuracy for Dataset-I and 97% for Dataset-II, highlighting the model’s ability to accurately detect real-world
conditions. However, the study is limited to academia and only nine categories out of ten, with the tenth category
being normal behavior. Future work will expand the dataset, explore advanced deep learning architectures, and
implement real-time processing to enhance the model’s applicability across various environments.

Keywords: computer vision, deep learning, human activity detection, academia, HYDPL, campuswatch, multi-
modal large models.

Received: 2025.05.19
Accepted: 2025.07.15
Published: 2025.08.01

Advances in Science and Technology Research Journal, 2025, 19(9), 333–352
https://doi.org/10.12913/22998624/207850
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0009-0004-4064-8343
https://orcid.org/0009-0008-7303-4849
https://orcid.org/0009-0004-6766-4992

334

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

computer vision, IoT, and edge computing sig-
nificantly advances the capabilities of video sur-
veillance across various environments. Consid-
ering this context, deep learning-based research
is being conducted on the SAD in academic en-
vironment. In this study, an AI-based cognitive
surveillance system, designed specifically for
academic environments, is introduced. The sys-
tem can analyze video input derived from sever-
al smartphone cameras, which is processed into
individual frames to form the basis of analyz-
ing anomalies. A fundamental component of our
methodology is the Hybrid YOLO-DenseNet
Pseudo Labeling (HYDPL) algorithm, which
integrates state-of-art image processing tech-
niques, interactive feature extraction with pre-
trained C3D encoders, and real-time object de-
tection with YOLOv4-tiny model. To enhance
the ability of analyzing the behaviors like run-
ning, falling and punching as suspicious the
system employs the two-phase self-training
scheme, resulting in more robust and accurate
surveillance in academic environments.

Two datasets were utilized to assess the algo-
rithm’s performance: CampusWatch (Dataset-I),
a collection of real-world scenarios, specifically
collected for this study and the Human Motion
Database 51 (HMDB51) [7], also referred to as
Dataset-II, which is a collection of scripted vid-
eos or movie clips.

This article summarizes a research study on
suspicious activity detection (SAD) in academia,
focusing on: (1) gathering a new real-time HAR
dataset from academia; and (2) implementation
of a new multi-stage algorithm for HAR.

Related works

Recent progress in artificial intelligence
and deep learning has resulted in the creation
of multiple methods for the immediate obser-
vation and identification of potentially suspi-
cious behaviors. Some of the existing research
focuses on activity prediction in intelligent
homes[8], detection of health emergencies[9],
and abnormal actions in crowds [10]. Detection
is also carried out in a variety of settings, such
as shopping environments [11] and war field
conditions [12]. As the area of activity detection
evolves, new approaches have emerged to meet
issues in a variety of settings and scenarios. The
techniques discussed in this section are catego-
rized into three main areas: AI-driven methods

for HAR, YOLO-based applications for object
detection, and the utilization of the HMDB51
dataset for action recognition in videos. Each
category demonstrates unique approaches that
contribute to the effectiveness of automated sur-
veillance systems.

AI-driven techniques

Deep learning architecture has demonstrat-
ed remarkable versatility in both healthcare
and surveillance applications. For instance,
DenseNet121 has been successfully repurposed
for pneumonia detection in chest X-rays [13]
and COVID-19 diagnosis [14] underscoring its
efficacy in medical imaging. Beyond health-
care, HAR systems increasingly leverage hy-
brid models to improve accuracy. [15] proposed
a parallel CNN-transformer architecture to
classify activities such as walking, sitting, and
falling using wearable sensor data, while [16]
employed raw accelerometer and gyroscope in-
puts with a 1D CNN model for real-time mo-
tion analysis. Multi-modal approaches are also
gaining traction: [17] integrated CNN and Con-
vLSTM networks for smart healthcare applica-
tions, achieving robust performance through
multi-level feature fusion. In surveillance
contexts, [18] developed an optimized LSTM
model using a Hybrid Spider Monkey-Chicken
Swarm Optimization (HSM-CSO) technique
to distinguish normal and abnormal behaviors
at ATMs, highlighting the role of hybrid algo-
rithms in edge-case scenarios.

YOLO applications for detection

In [19], an AI-based monitoring system using
YOLOv8 was proposed for real-time crowd den-
sity evaluations and abnormal activity detection.
The system excelled in detecting weapons or fires
in crowded areas, thereby enhancing public safe-
ty through instant alerts and preventing crowd-
smashing accidents. Building on the features of
YOLO, [20] proposed YOLO-NL as a new object
detector that enhances the identification of ob-
jects of various scales in intricate environments.
The model utilized a global dynamic label assign-
ment approach to balance precision detection and
localization while improving CSPNET and PA-
NET for detection. Further, FFCA-YOLO was
developed as a lightweight detector specifically
aimed at identifying small objects within remote

335

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

sensing images [21]. This innovative approach
incorporates lightweight elements designed to
enhance features, facilitate fusion, and provide
spatial context, making it effective for this spe-
cialized application.

HMDB51

A multi-stream architecture for HAR from
video clips was proposed in [7], leveraging the
Optical Flow Rhythm integration stream for tem-
poral action recognition. The method was based
on convolutional neural networks and weighted
voting. The model was assessed against UCF101
and HMDB51 datasets and can pinpoint odd be-
havior. The HMDB51 dataset is one of the most
valuable and practical resources for HAR model
evaluation [22]. It contains about 7000 manually
tagged video clips of human actions clustered
into 51 classes.

DATASETS

Dataset-I

The CampusWatch dataset, referred to as
Dataset-I and specifically collected for this
research, aims to identify human suspicious
behavior by analyzing video clips from vari-
ous indoor and outdoor situations acquired by

smartphone cameras in academic environments.
This dataset provides approximately 23,041
frames categorized into ten classes: “kicking”,
“punching”, “running”, “normal”, “pushing”,
“smoking”, “throwing”, “jumping”, “falling”,
and “talking”. (Figure 1) displays various activ-
ity frames from the collected dataset. The Cam-
pusWatch dataset used in this study is available
at (https://rb.gy/bbdjlj).

The videos are recorded in SD and HD stan-
dards wherein the minimum frame rate is 30 fps
which enables detailed behavior analysis. Each
video clip ranges from 3 to 4 seconds, provid-
ing brief scenarios for recognizing suspicious
activities. Dataset-I includes recordings from
different educational institutions, presenting a
variety of scenarios. The classes are balanced to
ensure robust training and evaluation of mod-
els. Additionally, the dataset introduces chal-
lenges such as diverse camera angles, lighting
variations, occlusions, and background clutter,
which test the effectiveness of activity recogni-
tion algorithms.

Dataset-II

In addition, Dataset-II was also utilized
for analysis. Derived from the HMDB51 data-
set available on the Kaggle website [23], the
HMDB51 dataset originally contains 51 class-
es. However, for this study, only 10 classes

Figure 1. Example images for each activity in CampusWatch (Dataset - I)

336

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

relevant to suspicious activities were selected.
Nine of these activities were classified as sus-
picious, while all other activities, except these
nine, were categorized as normal. Furthermore,
Information on the dataset, including the over-
all count of images (number of frames) corre-
sponding to each of the ten activity types, is
provided in (Table 1).

Data pre-processing

To ensure consistency and reproducibility,
both datasets underwent the following prepro-
cessing steps:

Frame downsampling

Videos in Dataset-I (CampusWatch) were
recorded at 30 fps. To balance computational ef-
ficiency and temporal resolution, we extracted 5
frames per second (fps) using motion-based key-
frame selection [see Section Frame extraction].
This reduced redundancy while retaining critical
action phases.

Frame resizing and standardization

All frames are resized to 224 × 224 pixels us-
ing bilinear interpolation (Figure 4).

Ethical constraints

CampusWatch data was anonymized, and
participants provided written informed consent
via a dedicated consent form, adhering to ethical
guidelines for surveillance research.

METHODS

A multi-stage approach-based algorithm,
Hybrid YOLO-DenseNet Pseudo Labeling (HY-
DPL), is designed and implemented in this study
for robust detection of suspicious activities. To
conduct the experiments, the academic environ-
ment is considered. The developed algorithm
integrates state-of-the-art methods for analyzing
images, extracting important features, and detect-
ing objects. The research plan commenced with
the acquisition of videos through multiple smart-
phone cameras, followed by the transformation
of video streams into discrete frames using visual
consistency measure and reconstruction quality
measure, as adopted by [24]. These frames under-
go preprocessing to standardize image sizes and
enhance visual features, which are critical for the
subsequent analysis, as discussed in [25]. Hence-
forth, the YOLOv4-tiny algorithm, selected for its
real-time performance and precision, is employed
for object detection as described in [26], while
DenseNet121 [27] with Global Average Pooling
[28] is used to extract and refine features. The
architecture of this integrated approach is illus-
trated in (Figure 2), providing a comprehensive
overview of the model’s workflow. Henceforth,
the refined data feeds into a two-stage self-train-
ing scheme, enabling the iterative improvement
of pseudo-labels and anomaly detection accuracy.
Finally, the classification layer [29] employs the
enhanced feature vector along with the video-lev-
el label Y to assess whether the activities being
observed are considered suspicious or not. The
research process is illustrated in (Figure 3) and
the detailed steps of the HYDPL are described in
Algorithm 1.

Table 1. Overview of activity categories and frame counts
S. No Category Dataset-I Dataset-II Sub Total

1 Kicking 2.744 81,862 84606

2 Punching 2.150 130,162 132312

3 Running 2.110 78,930 81040

4 Normal 2.700 82,811 85511

5 Pushing 1587 157,312 158899

6 Smoking 2.090 63,589 65679

7 Throwing 1.950 92,300 94250

8 Jumping 2.700 162,930 165630

9 Colliding 2.300 95,162 97462

10 Talking 2.710 155,282 157992

Total = 23,041 1,100,340 1,123,381

337

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

Frame extraction

Frame extraction is a critical component
of the HYDPL data preparation process. Vid-
eos were split into individual frames using

OpenCV function [30]. To ensure represen-
tative and non-redundant keyframes, we em-
ployed continuity, priority, and repetition
avoidance criteria [see Section Image resizing
and standardization].

Figure 2. Framework for activity recognition model

Algorithm 1. Hybrid YOLO-DenseNet Pseudo Labelling (HYDPL)
Initialize
Define video set 𝑉𝑉 from the input where each video Vj ∈ V1, V2, ……., VN
For each video 𝑉𝑉𝑗𝑗:
 Convert video 𝑉𝑉𝑗𝑗 into a series of frames 𝐹𝐹𝑗𝑗 = 𝑓𝑓1𝑗𝑗, 𝑓𝑓2𝑗𝑗, … … , 𝑓𝑓𝑛𝑛𝑗𝑗
 Apply preprocessing 𝐶𝐶 on frames 𝐹𝐹𝑗𝑗 :
 Standardize image sizes using OpenCV resizing.
For each frame 𝑓𝑓𝑖𝑖𝑗𝑗 ∈ 𝑓𝑓𝑗𝑗 :
 Detect objects using YOLOv4-tiny.
For each frame 𝑓𝑓𝑖𝑖𝑗𝑗 with detected objects:
 Extract features 𝐷𝐷𝑖𝑖𝑗𝑗 using DenseNet121
 Apply Global Average Pooling (GAP) on extracted features.
Generate pseudo-labels 𝐿𝐿𝑖𝑖𝑗𝑗 for each frame based on initial detection results.
Employ a two-stage self-training process:
 Stage 1: Train the model with initial pseudo-labels.
 Stage 2: Refine labels and retrain the model iteratively.
Identify suspicious activities A in each frame based on the refined pseudo-labels and features.
Estimate anomaly scores for each video clip based on refined pseudo-labels.
Classify videos into suspicious activities based on detected behaviours.
Validate the performance on datasets:
 Dataset-I: Real-world academic environment scenarios.
 Dataset-II: HMDB51, staged video clips.
Generate final detection report 𝑅𝑅𝑗𝑗 for each video 𝑉𝑉𝑗𝑗.
If validation performance is unsatisfactory, revisit steps 3-11.
 End

338

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

The visual consistency measure (VCM) and
reconstruction quality measure (RQM) were
used to validate frame quality. VCM evaluates
preservation of significant actions, while RQM
assesses reconstruction fidelity of the original
video sequence [see Section Image resizing
and standardization].

Pre-processing (image resizing)

As detailed in [see Section Data Pre-process-
ing], all frames are resized to 224 × 224 pixels
(Figure 4) using bilinear the OpenCV library [30]
facilitated this standardization, ensuring consis-
tent input dimensions for the model.

YOLOv4-tiny for object detection

YOLOv4-tiny is applied to enhance
object recognition from real-time video
frames. This lightweight model is based on

CSPDarknet53-tiny, which improves model
learning by splitting and combining feature
maps using CSPBlock modules, demonstrating
high efficiency with low computational cost.
Parallelly, the LeakyReLU activation func-
tion helps in faster and more effective feature
extraction, and the Feature Pyramid Network
helps in faster multi-scale feature extraction.
Henceforth, the prediction process is based on
grid-based image analysis accompanied by the
bounding boxes, whereby the Jaccard Overlap
score, loss function aims at fitting the vital de-
tection and classification.

DenseNet121

In our study, DenseNet121 is employed as
the backbone for feature extraction, utilizing its
dense connectivity and efficient parameter usage
to enhance the model’s ability to capture robust
features, crucial for accurate anomaly detection.

Figure 3. Activity detection methodology

339

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

The architecture comprises multiple dense blocks,
with each layer receiving input from all preceding
layers, maximizing information flow and mitigat-
ing the vanishing gradient problem. To improve
performance, transition layers are added between
these dense blocks, minimizing the size of feature
maps and increasing computing efficiency. These
layers include batch normalization for stable
training, 1 × 1 convolution to reduce the num-
ber of feature maps, and 2 × 2 average pooling to
downsample spatial dimensions, allowing for ef-
ficient processing of high-dimensional data while
preserving key features for accurate classification
and anomaly detection.

Backbone selection rationale

DenseNet-121 was selected as the backbone
due to its superior feature reuse, gradient flow,
and parameter efficiency [31]. Comparative stud-
ies in activity recognition and video anomaly de-
tection confirm its higher accuracy and stability
over other CNN architectures like ResNet50 and
VGG architectures [32, 33], making it ideal for
surveillance tasks.

Global average pooling for feature extraction

After frames extraction and evaluation of the
visual consistency and the quality of the recon-
structed image, the features are obtained with the
help of global average pooling (GAP). This pro-
cedure is used to further reduce the dimensional-
ity of the spatial domain of the extracted frames
while maintaining attributes that would be benefi-
cial in detecting suspicious activity.

Feature extraction and labeling

Identifying and classifying suspicious ac-
tivities in video footage relies heavily on feature
extraction and labeling. Each frame taken from a
video is treated as an individual instance within a
framework known as the bag-of-instances (BoI)
model. These instances are combined to create a
refined feature vector that encapsulates the key
characteristics of the video content. In this con-
text, the label Y ∈ {1,0} indicates whether suspi-
cious activity is present or absent in the video.
The extracted feature vector is then optimized or
further adjusted to suit the classification layer.
Such labeling of critical features at this stage
affects the model in a precise manner, enabling
it to distinguish between normal and suspicious
activities, thereby boosting the chances of a last-
ing classification.

Classification layer

The final step towards activity detection is
to identify the observed activity as suspicious
or non-suspicious. After condensing the feature
maps by GAP, the fine-tuned feature vector is ar-
ranged along with the pseudo-labels obtained in
the Feature Extraction and Labeling step, which
assist the classification process. These inputs, in-
cluding the video-level label, are passed into the
classification layer, which helps the final classifi-
cation decision. This layer uses a fully connected
layer and applies a SoftMax activation function
to the logits obtained and provides probability
scores in the two classes namely either suspicious
or non-suspicious.

Figure 4. Image A (on the left) displays the original frame, while Image B (on the right)
illustrates the same frame resized to 224 × 224 pixels using OpenCV

340

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

EXPERIMENTS

Frame extraction

The process of frame extraction begins with
maintaining a steady frame rate, denoted as f, This
frame rate can be determined using the formula:

 𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (1)

where: T represents the total duration of the video
in seconds, while Ntotal refers to the over-
all number of frames present in the video.
Priority is managed by assigning higher
weights to frames depicting significant
actions, defined by the priority function
P(t) as shown in Equation 2.

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (2)

where: α represent a constant greater than 1,
which serves to enhance the likelihood of
detecting frames that exhibit suspicious
activities.

Repetition avoidance ensures non-redundant
frame extraction to reduce the computational
cost and more accurate detection. The relation-
ship between frames i and j is expressed through
a similarity measure, denoted as S (i, j), which is
defined in Equation 3.

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (3)

Frames are considered redundant if S (i, j) ex-
ceeds a threshold θ. This combination of continu-
ity, priority, and repetition avoidance ensures that
the selected frames are informative and non-re-
dundant, optimizing the data for further analysis.

Visual consistency measure

The video comparison metric (VCM) is deter-
mined by employing the semi-Hausdorff distance,
which serves as a method to evaluate and contrast
the original video sequence V. This approach is
outlined in Equation 4:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (4)

with the extracted key frames K, expressed in
Equation 5:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (5)

To quantify the distance between a frame Fv
(t + n) in the video sequence V and the set of key
frames K, we compute as written in Equation 6:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (6)

where: Diff(.) is a suitable frame difference mea-
sure, such as pixel-wise difference or
structural similarity index.

The maximum frame distance Δ(V, K) be-
tween the video sequence V and the set of key
frames K is expressed in Equation 7:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (7)

Finally, Visual Consistency Measure F(V, K)
can then be computed using Equation 8:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (8)

Higher values of F(V, K) indicate that the ex-
tracted frames effectively represent the video, en-
suring that the model receives frames with crucial
information for accurate classification.

Reconstruction quality measure (RQM)

RQM uses frame interpolation FIA(.) to gen-
erate interpolated frames

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 from the key
frames K, defined in Equation 9:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (9)

The RQM is calculated by comparing the
original frames Fv (t + n) with the interpolated
frames

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 using a Frame Similarity Mea-
sure (FSM) as expressed in Equation 10:

𝑓𝑓 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇

P(t) = {α if frame at time t contains A
1 otherwise

𝑆𝑆 (𝑖𝑖, 𝑗𝑗) = 1
𝑛𝑛 ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] − 𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1

𝑉𝑉 = {𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1

𝐾𝐾 = {𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘 }

δ = (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹}

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

{δ(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1}

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 − ∆(𝑉𝑉,𝐾𝐾)

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹

(𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘 (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1)

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

 (10)

The FSM is modeled after a PSNR-like mea-
sure, expressed in Equation 11:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (11)

341

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

where: C is a constant, and Diff(.) is the frame
difference distance. The motion-based
down sampling (30 fps → 5 fps) ensured
non-redundant keyframes while main-
taining an RQM score of 89.7%, confirm-
ing reconstruction fidelity. This measure
ensures that the key frames allow for ac-
curate reconstruction, preserving the se-
quence integrity necessary for detecting
suspicious activities.

Image resizing and standardization

The resizing and normalization procedures
retrieved key frames based on continuity, prior-
ity, and non-redundancy approaches. Therefore,
maintaining the integrity of video content relies
on these key frames, which contain the most in-
formative and non-redundant data. For consisten-
cy, each extracted frame was processed using the
“resize_and_save_image” function.The function
steps are defined in Algorithm 2.

To achieve consistent and accurate model in-
put, the extracted frames were uniformly scaled,
as depicted in (Figure 4) Further, the implementa-
tion details are discussed in [25].

YOLOv4-tiny for object detection

The standardized 224 × 224 pixel images
provide a consistent input format, ensuring that
the YOLOv4-tiny model can effectively detect
objects within each frame while maintaining
high accuracy.

Network structure

The base network, CSPDarknet53-tiny [26],
utilizes a CSPBlock module, enhancing gradient
flow and learning capabilities compared to ear-
lier YOLO versions, although it increases com-
putation by 10–20%. To improve efficiency, we
employed the LeakyReLU activation function,
defined as shown in Equation 12:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (12)

where: xi ∈ (1, ∞) and ai is a constant parameter.

Feature fusion is achieved through a feature
pyramid network (FPN) that processes feature
maps of sizes 13 × 13 and 26 × 26 optimizing
speed while maintaining detection accuracy.

YOLOv4-tiny prediction process

The prediction process begins by resizing the
input images and segmenting them into a grid of

S × S cells.YOLOv4-tiny is designed to redict
several bounding boxes within each cell. To eval-
uate the accuracy of these predictions, a metric
known as the “Jaccard Overlap” score Jacc(i,j) is
computed using Equation 13:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (13)

where: P(i,j) indicates whether an object is present
in the cell, and Jaccard(pred ∩ truth) measures
the overlap between the predicted bound-
ing box and the actual ground truth box,
serving as an indicator of how well the
prediction aligns with the true location

Algorithm 2: Image resizing
Initialize

Receive two arguments:
path_to_input: This is the location of the input image file.
path_to_output: This is the location where you want to save the resized image.
Utilize the cv.imread function to read the image from the input_path. Store the result in a variable
named image.
Use the cv.resize function to adjust the image size to 224 × 224 pixels. The resized image should
be saved in a variable called resized_image.
Store the resized image at the given output location using cv.imwrite.
Display a message indicating that the image resizing and saving process was successful
End

342

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

of the object.This approach helps assess
both the overlap and the accuracy of lo-
calization of objects within the predicted
bounding boxes.

A threshold is applied based on the Jaccard
Overlap score to streamline predictions and re-
duce redundancy. Here only bounding boxes with
Jaccard Overlap scores greater than threshold val-
ue are preserved for further processing. Further,
(Figure 5) shows the overall prediction schema in
YOLOv4-tiny.

YOLOv4-tiny loss function

To enhance the model’s effectiveness during
training, YOLOv4-tiny utilizes a detailed loss
function that consists of three primary components:
 • Detection Loss (lossdetect): This aspect of the

loss function penalizes both incorrect object
detections and errors in localization, relying
on the Jaccard Overlap scores as outlined in
Equation. 14.

lossdetect = −

= − ∑ ∑ Wij
objB

j=0
[Ĉi

jlog (Ĉi
j) + (1 − Ĉi

j) log (1 − Ĉi
j)]

S2

i=0
 (14)

 • Category Loss (losscat): This component as-
sesses the inaccuracies in predicting object
categories.

Bounding box regression loss (lossbbox): This
part of the loss function evaluates how accurate-
ly the predicted bounding box coordinates align
with the actual ground truth, optimizing the spa-
tial localization.

DenseNet121

The input frames denoted as 𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

include the regions identified by YOLOv4-tiny.

DenseNet121 processes these frames to gener-
ate comprehensive feature maps denoted as

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 .
The architecture’s dense connectivity, expressed
mathematically in Equation 15, ensures robust
feature propagation:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (15)

where:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 is the output of the

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

-th layer,

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

(.) is a function that comprises of batch
normalization, ReLU and convolution
operations and

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 is the
vector that combines feature maps of all
preceding layers.

Transition layers

To manage the dimensionality and com-
plexity of these feature maps, transition layers
were integrated between the dense blocks within
DenseNet121. These transition layers were es-
sential for optimizing the model’s efficiency in
processing input frames. After each dense block,
a transition layer was applied to down-sample
the feature maps.

The transition process started with Batch
Normalization to stabilize the training by nor-
malizing the activations inside each mini batch.
Then, a 1 × 1 convolution was performed to
minimize the number of feature maps. The out-
put of this convolution, xconv , was calculated us-
ing Equation 16:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (16)

where: Xbn refers to the input that has undergone
batch normalization, while wconv denotes
the weights associated with the convolu-
tional layer, and bconv represents the bias
term. This process effectively compress-
es the feature maps, striking a balance

Figure 5. YOLOv4-tiny prediction process

343

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

between preserving essential information
and minimizing the computational load.

Finally, a 2 × 2 average pooling layer was
utilized to down-sample the feature maps and
reduce the spatial dimension of the feature maps
to half. This pooling operation is mathematically
described in Equation 17:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (17)

These feature maps were then transferred to
the Global Average Pooling (GAP) layer. The
GAP layer transformed these spatially reduced
maps into a feature vector that retained essential
spatial information, making it highly effective
for the classification and anomaly detection tasks
in our study.

Global average pooling operation

The key video frames are represented as as

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 where (C) is the number of chan-
nels, (H) is the height, and (W) is the width of the
frames. The pooling function fAP calculates the out-
put feature map (Y) by averaging the pixel values
within a specified window. This average pooling
function is mathematically defined in Equation 18:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (18)

where: c' represents the channel index of the out-
put feature map Y, the term (c') refers to the
index of the channel in the output feature
map Y. The variables i' and j' indicate the
spatial locations within this output feature
map (Y). The expression Xc,sxi' u,sxj' + v repre-
sents the pixel value located at the position
s × i' + u, s × j' + v in the input frame
X. The output feature map Y has spatial di-
mensions 𝐻′ and W′, which are determined
as outlined in Equation 19 and 20:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (19)

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐)

 (20)

The down-sampled feature maps are obtained
by down-sampling the original feature maps,
which retain only the spatial information for ac-
curate human activity identification. It also mini-
mizes the model’s complexity, allowing it to fo-
cus on relevant data, for processing large volumes
of real-time information.

Feature extraction and labeling

This phase is pivotal for effectively identify-
ing and classifying suspicious activities within
the video sequences.

Frame representation and video-level labeling

Consider a series of extracted frames
𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1

𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 from a video, where each frame fi
represents an instance. The video-level label Y
indicates the presence or absence of anomalies,
following the BoI representation.

Feature extraction with pretrained encoders

The frames, denoted as F, underwent process-
ing through a pretrained feature encoder like C3D.
This method was utilized to extract features from
each frame, resulting in collections of features rep-
resented as

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

. Given a pair of bags (e.g., a positive
bag Ba with anomalous frames and a negative bag
Bn with normal frames), we employ a self-training
approach to estimate anomaly scores for each
frame. Let

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 and {𝑠𝑠𝑖𝑖𝑛𝑛}𝑖𝑖=1𝑁𝑁 denote the anom-
aly scores for frames in Ba and Bn, respectively.

Pseudo label generation and feature encoder
fine-tuning

The clip-level pseudo labels

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

are generated from estimated anomaly scores
through a smoothing function

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

= smoothing_
fumction

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

. which normalizes and smooths
these scores. A pseudo label generator G is trained
with a deep Multiple Instance Learning (MIL)
ranking loss, aiming to optimize G parameters to
produce accurate clip-level pseudo labels, as de-
picted in (Figure 6, Pseudocode).

Feature encoder architecture

Figure 7 illustrates the architecture of our
proposed feature encoder ESGA, derived from a
vanilla feature encoder (e.g., C3D) enhanced with
a self-guided attention mechanism. The encoder
is optimized using the estimated pseudo labels,

344

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

minimizing the loss function

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 as described in
Equation 21:

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) =

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

)

𝑦𝑦𝑖𝑖 = {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

Jacc(𝑖𝑖,𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗) × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ)

lossdetect = − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) +

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0

𝑥𝑥ℓ = 𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1])

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 × 𝑥𝑥𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 + 𝑚𝑚, 2𝑗𝑗 + 𝑛𝑛)

1

𝑐𝑐=0

1

𝑚𝑚=0

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =

= 1
𝑘𝑘2 ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0

𝐻𝐻′ = ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝑊𝑊′ = ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐) (21)

where:

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 could be a cross-entropy loss or an-
other suitable loss function tailored for
self-training and anomaly detection.

To further improve the discriminative ability
of the feature encoder ESGA for anomalous frame
detection, a self-guided attention module is in-
corporated to attend to salient regions of frames.
As illustrated in Figure 8, the C3D encoder, en-
hanced by a self-guided attention mechanism, re-
fines the extracted features before passing them to
the classification layer.

Pseudocode. Pseudo label generation and encoder fine-tuning
Initialize
Input: Anomalous frames bag 𝐵𝐵𝑎𝑎 = {𝑓𝑓1, . . . , 𝑓𝑓𝑁𝑁}
 Pretrained feature encoder E (e.g., C3D)
 Initial anomaly scores s = {𝑠𝑠1, . . . , 𝑠𝑠𝑁𝑁}
Step 1: Feature Extraction
 F̅ = E(𝐵𝐵𝑎𝑎)
Step 2: Estimate Anomaly Scores (already computed)
 𝑠𝑠𝑖𝑖𝑎𝑎 = anomaly score for frame i
Step 3: Generate Pseudo Labels
 for i in range(N):
 �̂�𝑌[i] = sigmoid(𝑠𝑠[𝑖𝑖])
Step 4: Fine-tune Encoder ESGA using pseudo labels
 loss = MIL_Ranking_Loss(ESGA(F̅), �̂�𝑌)
 Backpropagate(loss) and update θ_ESGA
 End

Figure 6. Pseudo labeling generator

345

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

This ensures a smooth transition to the final
classification step, where the model determines
whether the observed activities are suspicious or
non-suspicious.

Classification layer

The classification process begins with the
combination of several significant inputs ex-
tracted from the Feature Extraction and Labeling
process. First, the refined feature vector frefined,

which contains significant information from the
input frames, is obtained from the GAP layer and
feature extraction process. This vector is repre-
sented in Equation 22:

 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹)

𝑧𝑧 = 𝑊𝑊. 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏

𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧) = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐿𝐿 = − ∑ 𝑦𝑦𝑗𝑗

𝐾𝐾

𝑗𝑗=1
 log(𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧))

 (22)

where: F denotes the feature maps extracted from
the video frames.

Henceforth, anomaly scores {si} or each frame
are generated throughout the pseudo labeling

Figure 7. Feature encoder architecture

Figure 8. C3D encoder based self-guided attention mechanism

346

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

Table 3. Test data distribution of Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 823 645 633 810 476 627 585 810 690 813

Dataset-II 24559 39049 23679 24843 47194 19077 27690 48879 28549 46585

process and play a significant role in generating
pseudo labels. The pseudo labels,

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 of-
fer an initial classification of the frames as either
anomalous or normal. Subsequently, the self-
guided attention mechanism improves the feature
representations to become more discriminative
and optimal for the classification process.

The refined feature vector frefined and the
generated pseudo labels

𝐹𝐹 = {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁

�̅�𝐹

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑎𝑎 = {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁

�̂�𝑌𝑖𝑖
𝑎𝑎

(𝑠𝑠𝑖𝑖
𝑎𝑎)

ℒ

�̂�𝑌 = {�̂�𝑌𝑖𝑖}

 are then passed into
the classification layer. The classification process
involves a fully connected layer, which performs
a linear transformation of the features. This opera-
tion is mathematically represented in Equation 23:

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹)

𝑧𝑧 = 𝑊𝑊. 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏

𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧) = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐿𝐿 = − ∑ 𝑦𝑦𝑗𝑗

𝐾𝐾

𝑗𝑗=1
 log(𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧))

 (23)

where: z represents the logits, W is the weight
matrix, and b is the bias term. The logits
z contain raw prediction values for each
class – suspicious and non-suspicious
activities.

Next, these logits are fed into the softmax ac-
tivation function, which normalizes them into a
probability distribution across the classes as de-
fine in Equation 24:

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹)

𝑧𝑧 = 𝑊𝑊. 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏

𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧) = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐿𝐿 = − ∑ 𝑦𝑦𝑗𝑗

𝐾𝐾

𝑗𝑗=1
 log(𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧))

 (24)

where: P(y = j | z) denotes the probability of the
input being classified as class j, with K
representing the total number of classes.
This probabilistic output enables the
model to assign a confidence score to
each classification, allowing for the de-
tection of suspicious activities with a de-
gree of certainty.

To fine-tune the model, cross-entropy loss is
calculated as shown in Equation 25:

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹)

𝑧𝑧 = 𝑊𝑊. 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏

𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧) = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐿𝐿 = − ∑ 𝑦𝑦𝑗𝑗

𝐾𝐾

𝑗𝑗=1
 log(𝐺𝐺(𝑦𝑦 = 𝑗𝑗 | 𝑧𝑧))

 (25)

where: yj is the ground truth label. This loss
function penalizes incorrect classifica-
tions and guides the optimization process
during training. The backpropagation al-
gorithm then updates the weights W and
bias b based on the computed gradients,
minimizing the loss and improving the
model’s classification accuracy over time.

RESULTS

The results section evaluates the perfor-
mance of the developed algorithm using Data-
set-I and Dataset-II. During the training phase,
a collective strategy was employed, involv-
ing a comprehensive training set of 786,367
images distributed across ten classes. Train-
ing utilized a Google Colab T4 GPU with the
Adam optimizer (learning rate = 1e−4, batch
size = 32, 50 epochs) This includes 16,129 im-
ages from Dataset-I and 770,238 images from
Dataset-II, representing 70% of the total image
count for each dataset, as detailed in (Table2).
For testing, Dataset-I comprised 6.912 images,
and Dataset-II included 330,102 images, mak-
ing up 30% of the total image count for each
dataset, as shown in (Table 3). These distribu-
tions were crucial for ensuring a balanced and
comprehensive assessment of the model’s ac-
curacy and robustness across varied scenarios.
To ensure statistical reliability and minimize
variance due to data splits, a 5-fold cross-vali-
dation was additionally conducted. The results
reported align consistently across folds, vali-
dating the model’s generalizability.

Table 2. Train data distribution of Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 1921 1505 1477 1890 1111 1463 1365 1890 1610 1897

Dataset-II 57303 91113 55251 57968 110118 44512 64610 114051 66613 108697

347

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

ROC curve analysis across datasets

The ROC curve analysis assesses the model’s
performance in distinguishing between different
classes. Each class is represented by a distinct
color on the ROC curve, as depicted in (Figure 9)
for dataset-I. AUCs are computed to measure the
discriminative ability of the model with respect
to each class. The ROC curves for each class are
depicted with distinct colors. The AUC values for
these classes are summarized in (Table 4). Among
the suspicious activity classes, “Jumping”, “Fall-
ing” and “Normal” demonstrated the strongest
performance, each with an AUC value of 0.98 or
higher in Dataset-I and 0.94 or higher in Dataset-
II. The “Talking” class recorded the lowest AUC
values, indicating relatively lower discriminative
power for this activity, with AUCs of 0.93 in Da-
taset-I and 0.89 in Dataset-II.

Confusion matrix analysis across datasets

The confusion matrix provides a de-
tailed breakdown of the model’s classification

performance across the 10 activity classes.
(Figure 10) present the confusion matrices for
Dataset-I and Dataset-II, offering insights into
where the model performs well and where it
faces challenges.

Punching: Across both datasets, the Punching
class exhibits highest accuracy, with the majority
of predictions being correctly identified. However,
there is considerable misunderstanding between
the Kicking and Running classes, indicating a
moderate overlap in how the model perceives these
activities. Throwing: Throwing is significantly
misclassified with Kicking and Running in both
the datasets. This implies that the model struggles
to distinguish between these physically compa-
rable activities, indicating a need for additional
refining. Talking: The Talking class consistently
demonstrates significant misclassifications across
multiple other classes, leading to its lower AUC
values, particularly in Dataset II. This highlights
the model’s difficulty in effectively recognizing
Talking and indicates areas for improvement.

Overall, the confusion matrix analysis dem-
onstrates the model’s strengths in the “Punching”

Figure 9. ROC curve analysis of CampusWatch (Dataset-I)

Table 4. ROC curve analysis results for Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 0.96 0.97 0.94 0.99 0.97 0.96 0.94 0.98 0.99 0.93

Dataset-II 0.91 0.94 0.90 0.96 0.93 0.94 0.92 0.95 0.94 0.89

348

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

and the “Normal” classes; however, some areas,
like “Throwing” and “Talking”, still require im-
provement to enhance classification performance
across both datasets.

Performance metrics across datasets

To validate the reliability of HYDPL, 5-fold
cross-validation was performed on the training
set, achieving an average accuracy of 97.86%
across folds (Table 5), confirming consistent per-
formance. Furthermore, as shown in (Table 6),
Dataset-I achieved 98% accuracy, 0.97 precision,
1 recall, and 0.98 F1-score, with an FPR of 0.28
and no false negatives (FNR = 0). Dataset-II re-
ported 97% accuracy, 0.97 precision, 0.99 recall,
and 0.98 F1-score, with higher FPR (0.39) and
FNR (0.005). These results show strong detection
performance, with improvement needed in mini-
mizing false positives and negatives for Dataset-II.

DISCUSSION

The results obtained from ROC and confusion
matrix analyses offer significant insights into the
efficiency and accuracy of the HYDPL algorithm
in recognizing suspicious activity when applied
to both Dataset-I and Dataset-II.

Performance across datasets

The HYDPL algorithm provides promising
results with overall accuracy rates of 98% for Da-
taset-I and 97% for Dataset-II, showcasing its effi-
ciency in recognizing various activities, including
suspicious ones, across diverse environments. The

slightly higher accuracy in Dataset-I may be due to
a more balanced representation of activity types.
This result is comparable to modern practices, es-
pecially if traditional machine learning methods or
less complex neural networks are used, which of-
ten have a low accuracy when working with differ-
ent datasets [34, 35]. Additionally, the consistency
of results across cross-validation folds further
supports the robustness of the proposed HYDPL
algorithm. Moreover, strengths and limitations of
the HYDPL algorithm are demonstrated through
class class-wise study. The values of AUC ≥ 0.93
were found for “Jumping”, “Smoking”, and “Fall-
ing”, demonstrating a strong discriminative capac-
ity. However, the model performs relatively poorly
in classifying the “Talking” activity, achieving an
AUC of 0.93 on Dataset-I and 0.89 on Dataset-II.
This difficulty might be attributed to the less robust
visual cues inherent in talking, which are less dis-
tinctive than those of more dynamic activities. Ear-
lier studies in similar contexts have also reported
challenges in classifying less visually distinctive
activities [36, 37].

Misclassification issues

The confusion matrices show the patterns
of misclassification, especially in the “Throw-
ing” and “Talking” classes. Misclassification of
“Throwing” as “Kicking” and “Running” im-
plies difficulty in distinguishing between similar
physical movements. Significant misclassifica-
tions in the “Talking” class reflect the classifier’s
difficulty in distinguishing subtle movements.
Such issues are consistent with other studies that
highlight misclassification problems in HAR

Table 5. Cross-validation of Dataset-I and Dataset-II
Fold Accuracy (%) Precision (%) Recall (%) F1 Score (%)

1 97.8 96.9 99.1 97.9

2 97.5 96.7 99.0 97.8

3 98.1 97.2 99.3 98.2

4 97.9 97.0 99.2 98.0

5 98.0 97.1 99.1 98.1

Avg ± SD 97.86 ± 0.21 97.0 ± 0.18 99.14 ± 0.11 98.0 ± 0.15

Table 6. Performance metrics
Metric Accuracy (%) Precision (%) Recall (%) F1 Score (%) FPR (%) FNR (%)

Dataset-I 98 97 100 98 0.28 0

Dataset-II 97 97 99 98 0.39 0.5

349

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

systems, where activity characteristics are often
similar, emphasizing the need for model refine-
ment to enhance accuracy [38, 39].

Comparison with other methods

In comparison to other methods, the HYDPL
algorithm’s overall performance is commend-
able, especially in handling complex activities
and maintaining high accuracy. For instance,
traditional machine learning approaches, such as
SVM or random forests, typically show lower ac-
curacy when applied to similarly complex tasks
[40, 41]. Furthermore, the two-stage self-training
scheme implemented in HYDPL significantly en-
hances the quality of pseudo-labels and anomaly
detection, marking an improvement over single-
stage training methods commonly used in earlier
studies [42–45]. Additionally, (Table 7) com-
pares accuracy rates for the HMDB51 dataset,

demonstrating the competitive performance of
the HYDPL algorithm against various contempo-
rary methods and highlighting its superior han-
dling of complex activity recognition tasks.

Limitations and future work

The HYDPL algorithm performs well; how-
ever, it has certain limitations. For instance, the
misclassification of the “Talking” activity shows
the model’s struggle during classification, indi-
cating the model’s need to be further refined with
additional features or sophisticated techniques
such as attention mechanism or ensemble learn-
ing [46–48]. Furthermore, the scope of the study
is limited to academia, and only nine suspicious
activities are considered. Future research should
also explore the impact of incorporating more
varied datasets during training to improve the
model’s adaptability to different environments.

Figure 10. Confusion matrix analysis for each class for Dataset-I

Table 7. Comparison of accuracy rates (%) for HMDB51
Method Results Improvement

DNN and VGG19 [49] 0.93 +0.04

CNN with CAMs and AEs [50] 0.77 +0.20

OmniCLIP with PTA and SPG [51] 0.74 +0.23

Dynamic time warping and hierarchical model with K-Class [52] 0.61 +0.36

CNN, ConvLSTM, and LRCN [53] 0.92 +0.05

Two-Stream ConvNet and BiLSTM [54] 0.90 +0.07

350

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

In conclusion, the HYDPL algorithm dem-
onstrates strong potential for detecting suspi-
cious activities in academic environments, out-
performing several existing approaches in terms
of accuracy and robustness. Nonetheless, certain
limitations, such as misclassification in cases like
“Talking” and the narrow scope of suspicious
activity categories, highlight areas for improve-
ment. Future work will aim to integrate advanced
techniques, such as attention mechanisms or en-
semble models and extend the dataset to enhance
generalizability across both academic and non-
academic settings.

REFERENCES

1. Kumar P, Chauhan S, Awasthi LK. Human activity rec-
ognition (HAR) using deep learning: review, method-
ologies, progress and future research directions. Arch
Comput Methods Eng 2024;31:179–219. https://doi.
org/10.1007/S11831-023-09986-X/METRICS

2. Qin Z, Liu Y, Ji P, Kim D, Wang L, McKay RI, et
al. Fusing higher-order features in graph neural net-
works for skeleton-based action recognition. IEEE
Trans Neural Networks Learn Syst 2024;35:4783–
97. https://doi.org/10.1109/TNNLS.2022.3201518

3. Zhu N, Diethe T, Camplani M, Tao L, Burrows
A, Twomey N, et al. Bridging e-health and the in-
ternet of things: The SPHERE Project. IEEE In-
tell Syst 2015;30:39–46. https://doi.org/10.1109/
MIS.2015.57

4. Cheoi KJ. Temporal saliency-based suspicious be-
havior pattern detection. Appl Sci 2020;10:1020.
https://doi.org/10.3390/APP10031020

5. Rajpurkar OM, Kamble SS, Nandagiri JP, Nim-
kar A V. Alert Generation on Detection of Suspi-
cious Activity Using Transfer Learning. 2020
11th Int. Conf. Comput. Commun. Netw. Tech-
nol. ICCCNT 2020, 2020. https://doi.org/10.1109/
ICCCNT49239.2020.9225263

6. Cabanillas-Carbonell M, Rivera JS, Muñoz JS.
Artificial intelligence in video surveillance sys-
tems for suspicious activity detection and inci-
dent response: A systematic literature review. Adv
Sci Technol Res J 2025;19:389–405. https://doi.
org/10.12913/22998624/196795

7. Concha DT, Maia HDA, Pedrini H, Tacon H, Brito
ADS, Chaves HDL, et al. Multi-stream Convolu-
tional Neural Networks for Action Recognition
in Video Sequences Based on Adaptive Visual
Rhythms. Proc - 17th IEEE Int Conf Mach Learn
Appl ICMLA 2018 2018:473–80. https://doi.
org/10.1109/ICMLA.2018.00077

8. Chen L, Hoey J, Nugent CD, Cook DJ, Yu Z.

Sensor-based activity recognition. IEEE Trans Syst
Man Cybern Part C Appl Rev 2012;42:790–808.
https://doi.org/10.1109/TSMCC.2012.2198883

9. Lloret J, Canovas A, Sendra S, Parra L. A smart
communication architecture for ambient assisted
living. IEEE Commun Mag 2015;53:26–33. https://
doi.org/10.1109/MCOM.2015.7010512

10. Marsden M, McGuinness K, Little S, O’Connor NE.
ResnetCrowd: A residual deep learning architecture
for crowd counting, violent behaviour detection and
crowd density level classification. 2017 14th IEEE
Int. Conf. Adv. Video Signal Based Surveillance,
AVSS 2017, Institute of Electrical and Electron-
ics Engineers Inc.; 2017. https://doi.org/10.1109/
AVSS.2017.8078482

11. Gorave A, Misra S, Padir O, Patil A, Lad-
ole K. Suspicious activity detection using
live video analysis, 2020;203–14. https://doi.
org/10.1007/978-981-15-0790-8_21

12. Dhulekar PA, Gandhe ST, Sawale N, Shinde V,
Khute S. Surveillance System for Detection of Sus-
picious Human Activities at War Field. 2018 Int.
Conf. Adv. Commun. Comput. Technol. ICACCT
2018, 2018;357–60. https://doi.org/10.1109/
ICACCT.2018.8529632

13. Pappula S, Nadendla T, Lomadugu NB, Revanth
Nalla S. Detection and Classification of Pneumo-
nia Using Deep Learning by the Dense Net-121
Model. 2023 9th Int Conf Adv Comput Commun
Syst ICACCS 2023 2023:1671–5. https://doi.
org/10.1109/ICACCS57279.2023.10113110

14. Khan RU, Haq AU, Hussain SM, Ullah S, Almak-
di S, Kumar R, et al. Analyzing and Battling the
Emerging Variants of Covid-19 Using Artificial
Neural Network and Blockchain. 2021 18th Int
Comput Conf Wavelet Act Media Technol Inf Pro-
cess ICCWAMTIP 2021 2021:101–5. https://doi.
org/10.1109/ICCWAMTIP53232.2021.9674142

15. Al-qaness MAA, Dahou A, Abd Elaziz M, Helmi
AM. Human activity recognition and fall detec-
tion using convolutional neural network and trans-
former-based architecture. Biomed Signal Process
Control 2024;95:106412. https://doi.org/10.1016/J.
BSPC.2024.106412

16. Kaya Y, Topuz EK. Human activity recognition
from multiple sensors data using deep CNNs. Mul-
timed Tools Appl 2024;83:10815–38. https://doi.
org/10.1007/S11042-023-15830-Y/METRICS

17. Islam MM, Nooruddin S, Karray F, Muhammad
G. Multi-level feature fusion for multimodal hu-
man activity recognition in Internet of Healthcare
Things. Inf Fusion 2023;94:17–31. https://doi.
org/10.1016/J.INFFUS.2023.01.015

18. Kshirsagar AP, Azath H. YOLOv3-based human
detection and heuristically modified-LSTM for ab-
normal human activities detection in ATM machine.

351

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

J Vis Commun Image Represent 2023;95:103901.
https://doi.org/10.1016/J.JVCIR.2023.103901

19. Sudharson D, Srinithi J, Akshara S, Abhirami K,
Sriharshitha P, Priyanka K. Proactive headcount
and suspicious activity detection using YOLOv8.
Procedia Comput Sci 2023;230:61–9. https://doi.
org/10.1016/J.PROCS.2023.12.061

20. Zhou Y. A YOLO-NL object detector for real-time
detection. Expert Syst Appl 2024;238:122256.
https://doi.org/10.1016/J.ESWA.2023.122256

21. Zhang Y, Ye M, Zhu G, Liu Y, Guo P, Yan J. FFCA-
YOLO for small object detection in remote sensing
images. IEEE Trans Geosci Remote Sens 2024;62:1–
15. https://doi.org/10.1109/TGRS.2024.3363057

22. [22] Kuehne H, Jhuang H, Stiefelhagen R, Serre
T. HMDB51: A large video database for human
motion recognition. High Perform Comput Sci
Eng 2012 - Trans High Perform Comput Center,
Stuttgart, HLRS 2012 2013:571–82. https://doi.
org/10.1007/978-3-642-33374-3_41

23. HMDB_Human_Activity_Recognition n.d. https://
www.kaggle.com/datasets/avigoen/hmdb-human-
activity-recognition (accessed November 14, 2024).

24. Gianluigi C, Raimondo S. An innovative algorithm
for key frame extraction in video summarization.
J Real-Time Image Process 2006;1:69–88. https://
doi.org/10.1007/s11554-006-0001-1

25. García GB. Learning Image Processing with OpenCV :
exploit the amazing features of OpenCV to create pow-
erful image processing applications through easy-to-
follow examples. Packt Publishing; 2015.

26. Jiang Z, Zhao L, Li S, Jia Y, Liquan Z. Real-time
object detection method for embedded devices. n.d.

27. Choi W, Heo S. Deep learning approaches to automated
video classification of upper limb tension test. Healthc
2021;9. https://doi.org/10.3390/healthcare9111579

28. Malla PP, Sahu S, Alutaibi AI. Classification of Tu-
mor in Brain MR Images Using Deep Convolutional
Neural Network and Global Average Pooling. Pro-
cesses 2023;11. https://doi.org/10.3390/pr11030679

29. Shdefat AY, Mostafa N, Al-Arnaout Z, Kotb Y, Al-
abed S. Optimizing HAR Systems: Comparative
Analysis of Enhanced SVM and k-NN Classifiers.
Int J Comput Intell Syst 2024;17:1–32. https://doi.
org/10.1007/S44196-024-00554-0/FIGURES/9

30. Culjak, Ivan and Abram, David and Pribanic, Tomislav
and Dzapo, Hrvoje and Cifrek M. A brief introduction
to OpenCV | IEEE Conference Publication | IEEE
Xplore 2012:1725–30. https://ieeexplore.ieee.org/ab-
stract/document/6240859 (accessed August 25, 2024).

31. Huang G, Liu Z, Van Der Maaten L, Weinberger
KQ. Densely connected convolutional networks.
Proc - 30th IEEE Conf Comput Vis Pattern Recog-
nition, CVPR 2017;2017-January:2261–9. https://
doi.org/10.1109/CVPR.2017.243

32. Elnazer M, Elmamoon A, Mustapha AA. A compar-
ative study of deep learning models for human activ-
ity recognition. Cloud Comput Data Sci 2025;6:79–
93. https://doi.org/10.37256/CCDS.6120256264

33. Rachmatullah MN, Sutarno S, Isnanto RF. Video
annomaly classification using convolutional neu-
ral network. Comput Eng Appl J 2024;13:74–82.
https://doi.org/10.18495/COMENGAPP.V13I1.468

34. Nayak S, Panigrahi CR, Pati B, Nanda S, Hsieh MY.
Comparative analysis of HAR datasets using classifi-
cation algorithms. Comput Sci Inf Syst 2022;19:47–
63. https://doi.org/10.2298/CSIS201221043N

35. Dewi C, Chen RC. Human activity recognition
based on evolution of features selection and ran-
dom forest. Conf Proc - IEEE Int Conf Syst Man
Cybern 2019;2019-October:2496–501. https://doi.
org/10.1109/SMC.2019.8913868

36. Bouchabou D, Nguyen SM, Lohr C, Leduc B,
Kanellos I. A survey of human activity recognition
in smart homes based on IoT sensors algorithms:
taxonomies, challenges, and opportunities with
deep learning. Sensors 2021;21:6037. https://doi.
org/10.3390/S21186037

37. Kumar P. Human activity recognition with
deep learning: overview, Challenges & Pos-
sibilities 2021. https://doi.org/10.20944/PRE-
PRINTS202102.0349.V1

38. Fasciglione A, Leotta M, Verri A. Improving ac-
tivity recognition while reducing misclassifica-
tion of unknown activities. Proc Work Enabling
Technol Infrastruct Collab Enterp WETICE
2021;2021-October:153–8. https://doi.org/10.1109/
WETICE53228.2021.00039

39. Lateef R, Abbas A. Tuning the hyperparameters of the
1D CNN Model to improve the performance of human
activity recognition. Eng Technol J 2022;40:547–54.
https://doi.org/10.30684/ETJ.V40I4.2054

40. Ahmad I, Basheri M, Iqbal MJ, Rahim A. Per-
formance comparison of support vector machine,
random forest, and extreme learning machine for
intrusion detection. IEEE Access 2018;6:33789–95.
https://doi.org/10.1109/ACCESS.2018.2841987

41. Janiesch C, Zschech P, Heinrich K. Machine learn-
ing and deep learning. Electron Mark 2021;31:685–
95. https://doi.org/10.1007/S12525-021-00475-2/
TABLES/2

42. Zhang C, Li G, Qi Y, Wang S, Qing L, Huang Q,
et al. Exploiting completeness and uncertainty of
pseudo labels for weakly supervised video anomaly
detection 2023:16271–80.

43. Qi Z, Zhu R, Fu Z, Chai W, Kindratenko V. Weakly
supervised two-stage training scheme for deep video
fight detection model. Proc - Int Conf Tools with Ar-
tif Intell ICTAI 2022;2022-October:677–85. https://
doi.org/10.1109/ICTAI56018.2022.00105

352

Advances in Science and Technology Research Journal 2025, 19(9), 333–352

44. Liu Y, Zhuang C, Lu F. Unsupervised Two-Stage
Anomaly Detection 2021.

45. Saleem MH, Velayudhan KK, Potgieter J, Arif KM.
Weed identification by single-stage and two-stage
neural networks: a study on the impact of image
resizers and weights optimization algorithms. Front
Plant Sci 2022;13:850666. https://doi.org/10.3389/
FPLS.2022.850666/BIBTEX

46. Dudukcu HV, Taskiran M, Gulru Cam Taskiran Z,
Kahraman N. Human Activity Recognition with
Ensemble Learning. 2024 26th Int Conf Digit Sig-
nal Process Its Appl DSPA 2024 2024. https://doi.
org/10.1109/DSPA60853.2024.10510025

47. Ghalan M, Aggarwal RK. Novel Human Activity
Recognition by graph engineered ensemble deep
learning model. IFAC J Syst Control 2024;27:100253.
https://doi.org/10.1016/J.IFACSC.2024.100253

48. Haresamudram H, Essa I, Plötz T. Assessing the state of
self-supervised human activity recognition using wear-
ables. Proc ACM Interactive, Mobile, Wearable Ubiqui-
tous Technol 2022;6. https://doi.org/10.1145/3550299

49. Khan MA, Javed K, Khan SA, Saba T, Habib U,
Khan JA, et al. Human action recognition using
fusion of multiview and deep features: an ap-
plication to video surveillance. Multimed Tools

Appl 2024;83:14885–911. https://doi.org/10.1007/
S11042-020-08806-9/TABLES/7

50. Dastbaravardeh E, Askarpour S, Saberi An-
ari M, Rezaee K. Channel attention-based ap-
proach with autoencoder network for human ac-
tion recognition in low-resolution frames. Int
J Intell Syst 2024;2024:1052344. https://doi.
org/10.1155/2024/1052344

51. Liu M, Li B, Yu Y. OmniCLIP: Adapting CLIP for
Video Recognition with Spatial-Temporal Omni-
Scale Feature Learning 2024.

52. Wu G, Wen C, Jiang H. Wushu Movement Recogni-
tion System Based on DTW Attitude Matching Al-
gorithm. Entertain Comput 2025;52:100877. https://
doi.org/10.1016/J.ENTCOM.2024.100877

53. Uddin MA, Talukder MA, Uzzaman MS, Debnath
C, Chanda M, Paul S, et al. Deep learning-based hu-
man activity recognition using CNN, ConvLSTM,
and LRCN. Int J Cogn Comput Eng 2024;5:259–68.
https://doi.org/10.1016/J.IJCCE.2024.06.004

54. Butt UM, Ullah HA, Letchmunan S, Tariq I, Hassan
FH, Koh TW. Leveraging transfer learning for spa-
tio-temporal human activity recognition from video
sequences. Comput Mater Contin 2022;74:5017–
33. https://doi.org/10.32604/CMC.2023.035512

