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INTRODUCTION

Human activity recognition (HAR) has be-
come a significant field of study, with precise 
identification of human actions generating con-
siderable interest among researchers [1, 2]. This 
field seeks to determine a subject’s behaviors 
using video recordings obtained by surveillance 
and/or smartphones cameras. Recordings are 
made as the individual engages in a set of spe-
cific actions, such as walking, laughing, nodding, 
driving, running, and punching. The information 
about people’s behaviors is used by the research-
ers to meet demands from such domains like 
health care, fitness, or home automation [3], and 
to detect suspicious and non-suspicious activities 
in various environments.

Suspicious or abnormal behavior can vary 
depending on the context. In places like offices, 
airports, and banks, such behavior often includes 
actions like running, falling, jumping, fighting, 
or slipping. Recognizing these actions can help 
in identifying potential risks and ensuring safety 
in these settings [4]. In addition, examples may 
include illegal access to personal property, failure 
to pay a ticket at a subway station, and child ab-
duction. If the place is an indoor facility such as 
a store, the unusual behavior becomes “shoplift-
ing,” “theft,” or “burglary” [5]. Kicking, shoving, 
and punching can be reported as suspicious action 
to be noticed and identified in the video surveil-
lance system.

Moreover, recent research [6] shows that 
the integration of AI with technologies such as 
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computer vision, IoT, and edge computing sig-
nificantly advances the capabilities of video sur-
veillance across various environments. Consid-
ering this context, deep learning-based research 
is being conducted on the SAD in academic en-
vironment. In this study, an AI-based cognitive 
surveillance system, designed specifically for 
academic environments, is introduced. The sys-
tem can analyze video input derived from sever-
al smartphone cameras, which is processed into 
individual frames to form the basis of analyz-
ing anomalies. A fundamental component of our 
methodology is the Hybrid YOLO-DenseNet 
Pseudo Labeling (HYDPL) algorithm, which 
integrates state-of-art image processing tech-
niques, interactive feature extraction with pre-
trained C3D encoders, and real-time object de-
tection with YOLOv4-tiny model. To enhance 
the ability of analyzing the behaviors like run-
ning, falling and punching as suspicious the 
system employs the two-phase self-training 
scheme, resulting in more robust and accurate 
surveillance in academic environments.

Two datasets were utilized to assess the algo-
rithm’s performance: CampusWatch (Dataset-I), 
a collection of real-world scenarios, specifically 
collected for this study and the Human Motion 
Database 51 (HMDB51) [7], also referred to as 
Dataset-II, which is a collection of scripted vid-
eos or movie clips.

This article summarizes a research study on 
suspicious activity detection (SAD) in academia, 
focusing on: (1) gathering a new real-time HAR 
dataset from academia; and (2) implementation 
of a new multi-stage algorithm for HAR.

Related works 

Recent progress in artificial intelligence 
and deep learning has resulted in the creation 
of multiple methods for the immediate obser-
vation and identification of potentially suspi-
cious behaviors. Some of the existing research 
focuses on activity prediction in intelligent 
homes[8], detection of health emergencies[9], 
and abnormal actions in crowds [10]. Detection 
is also carried out in a variety of settings, such 
as shopping environments [11] and war field 
conditions [12]. As the area of activity detection 
evolves, new approaches have emerged to meet 
issues in a variety of settings and scenarios. The 
techniques discussed in this section are catego-
rized into three main areas: AI-driven methods 

for HAR, YOLO-based applications for object 
detection, and the utilization of the HMDB51 
dataset for action recognition in videos. Each 
category demonstrates unique approaches that 
contribute to the effectiveness of automated sur-
veillance systems.

AI-driven techniques

Deep learning architecture has demonstrat-
ed remarkable versatility in both healthcare 
and surveillance applications. For instance, 
DenseNet121 has been successfully repurposed 
for pneumonia detection in chest X-rays [13] 
and COVID-19 diagnosis [14] underscoring its 
efficacy in medical imaging. Beyond health-
care, HAR systems increasingly leverage hy-
brid models to improve accuracy. [15] proposed 
a parallel CNN-transformer architecture to 
classify activities such as walking, sitting, and 
falling using wearable sensor data, while [16] 
employed raw accelerometer and gyroscope in-
puts with a 1D CNN model for real-time mo-
tion analysis. Multi-modal approaches are also 
gaining traction: [17] integrated CNN and Con-
vLSTM networks for smart healthcare applica-
tions, achieving robust performance through 
multi-level feature fusion. In surveillance 
contexts, [18] developed an optimized LSTM 
model using a Hybrid Spider Monkey-Chicken 
Swarm Optimization (HSM-CSO) technique 
to distinguish normal and abnormal behaviors 
at ATMs, highlighting the role of hybrid algo-
rithms in edge-case scenarios.

YOLO applications for detection

In [19], an AI-based monitoring system using 
YOLOv8 was proposed for real-time crowd den-
sity evaluations and abnormal activity detection. 
The system excelled in detecting weapons or fires 
in crowded areas, thereby enhancing public safe-
ty through instant alerts and preventing crowd-
smashing accidents. Building on the features of 
YOLO, [20] proposed YOLO-NL as a new object 
detector that enhances the identification of ob-
jects of various scales in intricate environments. 
The model utilized a global dynamic label assign-
ment approach to balance precision detection and 
localization while improving CSPNET and PA-
NET for detection. Further, FFCA-YOLO was 
developed as a lightweight detector specifically 
aimed at identifying small objects within remote 
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sensing images [21]. This innovative approach 
incorporates lightweight elements designed to 
enhance features, facilitate fusion, and provide 
spatial context, making it effective for this spe-
cialized application.

HMDB51

A multi-stream architecture for HAR from 
video clips was proposed in [7], leveraging the 
Optical Flow Rhythm integration stream for tem-
poral action recognition. The method was based 
on convolutional neural networks and weighted 
voting. The model was assessed against UCF101 
and HMDB51 datasets and can pinpoint odd be-
havior. The HMDB51 dataset is one of the most 
valuable and practical resources for HAR model 
evaluation [22]. It contains about 7000 manually 
tagged video clips of human actions clustered 
into 51 classes.

DATASETS

Dataset-I

The CampusWatch dataset, referred to as 
Dataset-I and specifically collected for this 
research, aims to identify human suspicious 
behavior by analyzing video clips from vari-
ous indoor and outdoor situations acquired by 

smartphone cameras in academic environments. 
This dataset provides approximately 23,041 
frames categorized into ten classes: “kicking”, 
“punching”, “running”, “normal”, “pushing”, 
“smoking”, “throwing”, “jumping”, “falling”, 
and “talking”. (Figure 1) displays various activ-
ity frames from the collected dataset. The Cam-
pusWatch dataset used in this study is available 
at (https://rb.gy/bbdjlj).

The videos are recorded in SD and HD stan-
dards wherein the minimum frame rate is 30 fps 
which enables detailed behavior analysis. Each 
video clip ranges from 3 to 4 seconds, provid-
ing brief scenarios for recognizing suspicious 
activities. Dataset-I includes recordings from 
different educational institutions, presenting a 
variety of scenarios. The classes are balanced to 
ensure robust training and evaluation of mod-
els. Additionally, the dataset introduces chal-
lenges such as diverse camera angles, lighting 
variations, occlusions, and background clutter, 
which test the effectiveness of activity recogni-
tion algorithms.

Dataset-II

In addition, Dataset-II was also utilized 
for analysis. Derived from the HMDB51 data-
set available on the Kaggle website [23], the 
HMDB51 dataset originally contains 51 class-
es. However, for this study, only 10 classes 

Figure 1. Example images for each activity in CampusWatch (Dataset - I)
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relevant to suspicious activities were selected. 
Nine of these activities were classified as sus-
picious, while all other activities, except these 
nine, were categorized as normal. Furthermore, 
Information on the dataset, including the over-
all count of images (number of frames) corre-
sponding to each of the ten activity types, is 
provided in (Table 1).

Data pre-processing

To ensure consistency and reproducibility, 
both datasets underwent the following prepro-
cessing steps:

Frame downsampling

Videos in Dataset-I (CampusWatch) were 
recorded at 30 fps. To balance computational ef-
ficiency and temporal resolution, we extracted 5 
frames per second (fps) using motion-based key-
frame selection [see Section Frame extraction]. 
This reduced redundancy while retaining critical 
action phases.

Frame resizing and standardization

All frames are resized to 224 × 224 pixels us-
ing bilinear interpolation (Figure 4).

Ethical constraints

CampusWatch data was anonymized, and 
participants provided written informed consent 
via a dedicated consent form, adhering to ethical 
guidelines for surveillance research.

METHODS

A multi-stage approach-based algorithm, 
Hybrid YOLO-DenseNet Pseudo Labeling (HY-
DPL), is designed and implemented in this study 
for robust detection of suspicious activities. To 
conduct the experiments, the academic environ-
ment is considered. The developed algorithm 
integrates state-of-the-art methods for analyzing 
images, extracting important features, and detect-
ing objects. The research plan commenced with 
the acquisition of videos through multiple smart-
phone cameras, followed by the transformation 
of video streams into discrete frames using visual 
consistency measure and reconstruction quality 
measure, as adopted by [24]. These frames under-
go preprocessing to standardize image sizes and 
enhance visual features, which are critical for the 
subsequent analysis, as discussed in [25]. Hence-
forth, the YOLOv4-tiny algorithm, selected for its 
real-time performance and precision, is employed 
for object detection as described in [26], while 
DenseNet121 [27] with Global Average Pooling 
[28] is used to extract and refine features. The 
architecture of this integrated approach is illus-
trated in (Figure 2), providing a comprehensive 
overview of the model’s workflow. Henceforth, 
the refined data feeds into a two-stage self-train-
ing scheme, enabling the iterative improvement 
of pseudo-labels and anomaly detection accuracy. 
Finally, the classification layer [29] employs the 
enhanced feature vector along with the video-lev-
el label Y to assess whether the activities being 
observed are considered suspicious or not. The 
research process is illustrated in (Figure 3) and 
the detailed steps of the HYDPL are described in 
Algorithm 1.

Table 1. Overview of activity categories and frame counts
S. No Category Dataset-I Dataset-II Sub Total

1 Kicking 2.744 81,862 84606

2 Punching 2.150 130,162 132312

3 Running 2.110 78,930 81040

4 Normal 2.700 82,811 85511

5 Pushing 1587 157,312 158899

6 Smoking 2.090 63,589 65679

7 Throwing 1.950 92,300 94250

8 Jumping 2.700 162,930 165630

9 Colliding 2.300 95,162 97462

10 Talking 2.710 155,282 157992

Total   = 23,041 1,100,340 1,123,381
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Frame extraction

Frame extraction is a critical component 
of the HYDPL data preparation process. Vid-
eos were split into individual frames using 

OpenCV function [30]. To ensure represen-
tative and non-redundant keyframes, we em-
ployed continuity, priority, and repetition 
avoidance criteria [see Section Image resizing 
and standardization].

Figure 2. Framework for activity recognition model

Algorithm 1. Hybrid YOLO-DenseNet Pseudo Labelling (HYDPL) 
Initialize  
Define video set 𝑉𝑉 from the input where each video Vj ∈ V1, V2, ……., VN  
For each video 𝑉𝑉𝑗𝑗:  
 Convert video 𝑉𝑉𝑗𝑗 into a series of frames 𝐹𝐹𝑗𝑗 =  𝑓𝑓1𝑗𝑗, 𝑓𝑓2𝑗𝑗, … … , 𝑓𝑓𝑛𝑛𝑗𝑗 
 Apply preprocessing 𝐶𝐶 on frames 𝐹𝐹𝑗𝑗 :  
  Standardize image sizes using OpenCV resizing.  
For each frame 𝑓𝑓𝑖𝑖𝑗𝑗 ∈  𝑓𝑓𝑗𝑗  : 
 Detect objects using YOLOv4-tiny.  
For each frame 𝑓𝑓𝑖𝑖𝑗𝑗 with detected objects: 
 Extract features 𝐷𝐷𝑖𝑖𝑗𝑗 using DenseNet121 
 Apply Global Average Pooling (GAP) on extracted features.  
Generate pseudo-labels 𝐿𝐿𝑖𝑖𝑗𝑗 for each frame based on initial detection results. 
Employ a two-stage self-training process:  
 Stage 1: Train the model with initial pseudo-labels. 
 Stage 2: Refine labels and retrain the model iteratively. 
Identify suspicious activities A in each frame based on the refined pseudo-labels and features. 
Estimate anomaly scores for each video clip based on refined pseudo-labels. 
Classify videos into suspicious activities based on detected behaviours. 
Validate the performance on datasets:  
 Dataset-I: Real-world academic environment scenarios.  
 Dataset-II: HMDB51, staged video clips. 
Generate final detection report 𝑅𝑅𝑗𝑗 for each video 𝑉𝑉𝑗𝑗. 
If validation performance is unsatisfactory, revisit steps 3-11. 
 End 
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The visual consistency measure (VCM) and 
reconstruction quality measure (RQM) were 
used to validate frame quality. VCM evaluates 
preservation of significant actions, while RQM 
assesses reconstruction fidelity of the original 
video sequence [see Section Image resizing 
and standardization].

Pre-processing (image resizing)

As detailed in [see Section Data Pre-process-
ing], all frames are resized to 224 × 224 pixels 
(Figure 4) using bilinear the OpenCV library [30] 
facilitated this standardization, ensuring consis-
tent input dimensions for the model.

YOLOv4-tiny for object detection

YOLOv4-tiny is applied to enhance 
object recognition from real-time video 
frames. This lightweight model is based on 

CSPDarknet53-tiny, which improves model 
learning by splitting and combining feature 
maps using CSPBlock modules, demonstrating 
high efficiency with low computational cost. 
Parallelly, the LeakyReLU activation func-
tion helps in faster and more effective feature 
extraction, and the Feature Pyramid Network 
helps in faster multi-scale feature extraction. 
Henceforth, the prediction process is based on 
grid-based image analysis accompanied by the 
bounding boxes, whereby the Jaccard Overlap 
score, loss function aims at fitting the vital de-
tection and classification.

DenseNet121

In our study, DenseNet121 is employed as 
the backbone for feature extraction, utilizing its 
dense connectivity and efficient parameter usage 
to enhance the model’s ability to capture robust 
features, crucial for accurate anomaly detection. 

Figure 3. Activity detection methodology
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The architecture comprises multiple dense blocks, 
with each layer receiving input from all preceding 
layers, maximizing information flow and mitigat-
ing the vanishing gradient problem. To improve 
performance, transition layers are added between 
these dense blocks, minimizing the size of feature 
maps and increasing computing efficiency. These 
layers include batch normalization for stable 
training, 1 × 1 convolution to reduce the num-
ber of feature maps, and 2 × 2 average pooling to 
downsample spatial dimensions, allowing for ef-
ficient processing of high-dimensional data while 
preserving key features for accurate classification 
and anomaly detection. 

Backbone selection rationale

DenseNet-121 was selected as the backbone 
due to its superior feature reuse, gradient flow, 
and parameter efficiency [31]. Comparative stud-
ies in activity recognition and video anomaly de-
tection confirm its higher accuracy and stability 
over other CNN architectures like ResNet50 and 
VGG architectures [32, 33], making it ideal for 
surveillance tasks.

Global average pooling for feature extraction

After frames extraction and evaluation of the 
visual consistency and the quality of the recon-
structed image, the features are obtained with the 
help of global average pooling (GAP). This pro-
cedure is used to further reduce the dimensional-
ity of the spatial domain of the extracted frames 
while maintaining attributes that would be benefi-
cial in detecting suspicious activity.

Feature extraction and labeling

Identifying and classifying suspicious ac-
tivities in video footage relies heavily on feature 
extraction and labeling. Each frame taken from a 
video is treated as an individual instance within a 
framework known as the bag-of-instances (BoI) 
model. These instances are combined to create a 
refined feature vector that encapsulates the key 
characteristics of the video content. In this con-
text, the label Y ∈ {1,0} indicates whether suspi-
cious activity is present or absent in the video. 
The extracted feature vector is then optimized or 
further adjusted to suit the classification layer. 
Such labeling of critical features at this stage 
affects the model in a precise manner, enabling 
it to distinguish between normal and suspicious 
activities, thereby boosting the chances of a last-
ing classification.

Classification layer

The final step towards activity detection is 
to identify the observed activity as suspicious 
or non-suspicious. After condensing the feature 
maps by GAP, the fine-tuned feature vector is ar-
ranged along with the pseudo-labels obtained in 
the Feature Extraction and Labeling step, which 
assist the classification process. These inputs, in-
cluding the video-level label, are passed into the 
classification layer, which helps the final classifi-
cation decision. This layer uses a fully connected 
layer and applies a SoftMax activation function 
to the logits obtained and provides probability 
scores in the two classes namely either suspicious 
or non-suspicious. 

Figure 4. Image A (on the left) displays the original frame, while Image B (on the right)
illustrates the same frame resized to 224 × 224 pixels using OpenCV
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EXPERIMENTS

Frame extraction

The process of frame extraction begins with 
maintaining a steady frame rate, denoted as f, This 
frame rate can be determined using the formula:

 𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (1)

where: T represents the total duration of the video 
in seconds, while Ntotal refers to the over-
all number of frames present in the video. 
Priority is managed by assigning higher 
weights to frames depicting significant 
actions, defined by the priority function  
P(t) as shown in Equation 2.

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
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𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (2)

where: α represent a constant greater than 1, 
which serves to enhance the likelihood of 
detecting frames that exhibit suspicious 
activities. 

Repetition avoidance ensures non-redundant 
frame extraction to reduce the computational 
cost and more accurate detection. The relation-
ship between frames i and j is expressed through 
a similarity measure, denoted as S (i, j), which is 
defined in Equation 3.

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (3)

Frames are considered redundant if S (i, j) ex-
ceeds a threshold θ. This combination of continu-
ity, priority, and repetition avoidance ensures that 
the selected frames are informative and non-re-
dundant, optimizing the data for further analysis.

Visual consistency measure 

The video comparison metric (VCM) is deter-
mined by employing the semi-Hausdorff distance, 
which serves as a method to evaluate and contrast 
the original video sequence V. This approach is 
outlined in Equation 4:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (4)

with the extracted key frames K, expressed in 
Equation 5:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (5)

To quantify the distance between a frame Fv 
(t + n) in the video sequence V and the set of key 
frames K, we compute as written in Equation 6:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (6)

where: Diff(.) is a suitable frame difference mea-
sure, such as pixel-wise difference or 
structural similarity index.

The maximum frame distance Δ(V, K) be-
tween the video sequence V and the set of key 
frames K is expressed in Equation 7:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (7)

Finally, Visual Consistency Measure F(V, K) 
can then be computed using Equation 8:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (8)

Higher values of F(V, K) indicate that the ex-
tracted frames effectively represent the video, en-
suring that the model receives frames with crucial 
information for accurate classification.

Reconstruction quality measure (RQM)

RQM uses frame interpolation FIA(.) to gen-
erate interpolated frames 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 from the key 
frames K, defined in Equation 9:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (9)

The RQM is calculated by comparing the 
original frames Fv (t + n) with the interpolated 
frames 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 using a Frame Similarity Mea-
sure (FSM) as expressed in Equation 10:

 

𝑓𝑓 =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑇𝑇  

 

P(t) =  {α if frame at time t contains A
1 otherwise  

 

 

𝑆𝑆 (𝑖𝑖, 𝑗𝑗 ) =  1
𝑛𝑛  ∑|𝐹𝐹𝑖𝑖[𝑘𝑘] −  𝐹𝐹𝑗𝑗[𝑘𝑘]|

𝑛𝑛

𝑘𝑘=1
 

 

𝑉𝑉 =  {𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛)|𝑛𝑛 = 0,1, … . 𝛿𝛿𝑁𝑁𝐹𝐹 } − 1 

 

𝐾𝐾 =  {𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘)|𝑛𝑛𝑘𝑘𝜖𝜖 𝐼𝐼𝑘𝑘  } 

 

δ =  (𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾) =  𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 

{𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛))|𝑗𝑗 = 1,2, … , 𝜉𝜉𝑁𝑁𝐾𝐾𝐹𝐹} 

 

∆(𝑉𝑉,𝐾𝐾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛  

{δ(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛),𝐾𝐾)|𝑛𝑛 = 0,1, … , 𝜉𝜉𝑁𝑁𝐹𝐹 − 1} 

 

 

ℱ(𝑉𝑉,𝐾𝐾) = 𝑀𝑀𝑚𝑚𝑚𝑚𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 −  ∆(𝑉𝑉,𝐾𝐾) 

 

�̃�𝐹 (𝑡𝑡 + 𝑛𝑛) − 𝐹𝐹𝐼𝐼𝐹𝐹 

(𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑘𝑘),𝐹𝐹𝑘𝑘  (𝑡𝑡 + 𝑛𝑛𝑗𝑗+1),𝑛𝑛,𝑛𝑛𝑗𝑗,𝑛𝑛𝑗𝑗+1) 

 

𝑅𝑅𝑅𝑅𝑀𝑀 (𝑉𝑉,𝐾𝐾) =  

= ∑ 𝐹𝐹𝑆𝑆𝑀𝑀
𝑁𝑁𝑉𝑉−1

𝑛𝑛=0
(𝐹𝐹𝑣𝑣  (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) 

 

 

 

 (10)

The FSM is modeled after a PSNR-like mea-
sure, expressed in Equation 11:

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (11)
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where: C is a constant, and Diff(.) is the frame 
difference distance. The motion-based 
down sampling (30 fps → 5 fps) ensured 
non-redundant keyframes while main-
taining an RQM score of 89.7%, confirm-
ing reconstruction fidelity. This measure 
ensures that the key frames allow for ac-
curate reconstruction, preserving the se-
quence integrity necessary for detecting 
suspicious activities. 

Image resizing and standardization

The resizing and normalization procedures 
retrieved key frames based on continuity, prior-
ity, and non-redundancy approaches. Therefore, 
maintaining the integrity of video content relies 
on these key frames, which contain the most in-
formative and non-redundant data. For consisten-
cy, each extracted frame was processed using the 
“resize_and_save_image” function.The function 
steps are defined in Algorithm 2.

To achieve consistent and accurate model in-
put, the extracted frames were uniformly scaled, 
as depicted in (Figure 4) Further, the implementa-
tion details are discussed in [25].

YOLOv4-tiny for object detection

The standardized 224 × 224 pixel images 
provide a consistent input format, ensuring that 
the YOLOv4-tiny model can effectively detect 
objects within each frame while maintaining 
high accuracy.

Network structure

The base network, CSPDarknet53-tiny [26], 
utilizes a CSPBlock module, enhancing gradient 
flow and learning capabilities compared to ear-
lier YOLO versions, although it increases com-
putation by 10–20%. To improve efficiency, we 
employed the LeakyReLU activation function, 
defined as shown in Equation 12:

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (12)

where: xi ∈ (1, ∞) and ai is a constant parameter.

Feature fusion is achieved through a feature 
pyramid network (FPN) that processes feature 
maps of sizes 13 × 13 and 26 × 26 optimizing 
speed while maintaining detection accuracy. 

YOLOv4-tiny prediction process

The prediction process begins by resizing the 
input images and segmenting them into a grid of 

S × S cells.YOLOv4-tiny is designed to redict 
several bounding boxes within each cell. To eval-
uate the accuracy of these predictions, a metric 
known as the “Jaccard Overlap” score Jacc(i,j) is 
computed using Equation 13:

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (13)

where: P(i,j) indicates whether an object is present 
in the cell, and Jaccard(pred ∩ truth) measures 
the overlap between the predicted bound-
ing box and the actual ground truth box, 
serving as an indicator of how well the 
prediction aligns with the true location 

Algorithm 2: Image resizing 
Initialize 

Receive two arguments: 
path_to_input: This is the location of the input image file. 
path_to_output: This is the location where you want to save the resized image. 
Utilize the cv.imread function to read the image from the input_path. Store the result in a variable 
named image. 
Use the cv.resize function to adjust the image size to 224 × 224 pixels. The resized image should 
be saved in a variable called resized_image. 
Store the resized image at the given output location using cv.imwrite. 
Display a message indicating that the image resizing and saving process was successful 
End 
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of the object.This approach helps assess 
both the overlap and the accuracy of lo-
calization of objects within the predicted 
bounding boxes.

A threshold is applied based on the Jaccard 
Overlap score to streamline predictions and re-
duce redundancy. Here only bounding boxes with 
Jaccard Overlap scores greater than threshold val-
ue are preserved for further processing. Further, 
(Figure 5) shows the overall prediction schema in 
YOLOv4-tiny.

YOLOv4-tiny loss function

To enhance the model’s effectiveness during 
training, YOLOv4-tiny utilizes a detailed loss 
function that consists of three primary components:
 • Detection Loss (lossdetect): This aspect of the 

loss function penalizes both incorrect object 
detections and errors in localization, relying 
on the Jaccard Overlap scores as outlined in 
Equation. 14. 

lossdetect =  −  

=  − ∑ ∑ Wij
objB

j=0
[Ĉi

jlog (Ĉi
j) + (1 − Ĉi

j) log (1 − Ĉi
j)]

S2

i=0
  (14)

 • Category Loss (losscat): This component as-
sesses the inaccuracies in predicting object 
categories.

Bounding box regression loss (lossbbox): This 
part of the loss function evaluates how accurate-
ly the predicted bounding box coordinates align 
with the actual ground truth, optimizing the spa-
tial localization.

DenseNet121

The input frames denoted as 𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 
include the regions identified by YOLOv4-tiny. 

DenseNet121 processes these frames to gener-
ate comprehensive feature maps denoted as 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 . 
The architecture’s dense connectivity, expressed 
mathematically in Equation 15, ensures robust 
feature propagation:

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (15)

where: 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 
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]
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𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣
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∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 is the output of the 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 
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Ĉi
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j) log (1 − Ĉi
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]
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𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )
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Ĉi
jlog (Ĉi
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vector that combines feature maps of all 
preceding layers.

Transition layers
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where: Xbn refers to the input that has undergone 
batch normalization, while wconv denotes 
the weights associated with the convolu-
tional layer, and bconv represents the bias 
term. This process effectively compress-
es the feature maps, striking a balance 

Figure 5. YOLOv4-tiny prediction process



343

Advances in Science and Technology Research Journal 2025, 19(9) 333–352

between preserving essential information 
and minimizing the computational load.

Finally, a 2 × 2 average pooling layer was 
utilized to down-sample the feature maps and 
reduce the spatial dimension of the feature maps 
to half. This pooling operation is mathematically 
described in Equation 17:
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These feature maps were then transferred to 
the Global Average Pooling (GAP) layer. The 
GAP layer transformed these spatially reduced 
maps into a feature vector that retained essential 
spatial information, making it highly effective 
for the classification and anomaly detection tasks 
in our study.

Global average pooling operation

The key video frames are represented as as 
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 where (C) is the number of chan-
nels, (H) is the height, and (W) is the width of the 
frames. The pooling function fAP  calculates the out-
put feature map (Y) by averaging the pixel values 
within a specified window. This average pooling 
function is mathematically defined in Equation 18:
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where: c' represents the channel index of the out-
put feature map Y, the term (c') refers to the 
index of the channel in the output feature 
map Y. The variables i' and j' indicate the 
spatial locations within this output feature 
map (Y). The expression Xc,sxi' u,sxj' + v repre-
sents the pixel value located at the position 
s × i' + u, s × j' + v  in the input frame 
X. The output feature map Y has spatial di-
mensions 𝐻′ and W′, which are determined 
as outlined in Equation 19 and 20: 
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𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (19)

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 ) 

 (20)

The down-sampled feature maps are obtained 
by down-sampling the original feature maps, 
which retain only the spatial information for ac-
curate human activity identification. It also mini-
mizes the model’s complexity, allowing it to fo-
cus on relevant data, for processing large volumes 
of real-time information.

Feature extraction and labeling

This phase is pivotal for effectively identify-
ing and classifying suspicious activities within 
the video sequences.

Frame representation and video-level labeling

Consider a series of extracted frames 
𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1

𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 from a video, where each frame fi 
represents an instance. The video-level label Y 
indicates the presence or absence of anomalies, 
following the BoI representation.

Feature extraction with pretrained encoders

The frames, denoted as F, underwent process-
ing through a pretrained feature encoder like C3D. 
This method was utilized to extract features from 
each frame, resulting in collections of features rep-
resented as 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

. Given a pair of bags (e.g., a positive 
bag Ba with anomalous frames and a negative bag 
Bn with normal frames), we employ a self-training 
approach to estimate anomaly scores for each 
frame. Let 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 and {𝑠𝑠𝑖𝑖𝑛𝑛}𝑖𝑖=1𝑁𝑁   denote the anom-
aly scores for frames in Ba and Bn, respectively.

Pseudo label generation and feature encoder 
fine-tuning

The clip-level pseudo labels  

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 
are generated from estimated anomaly scores 
through a smoothing function 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

= smoothing_
fumction 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

. which normalizes and smooths 
these scores. A pseudo label generator G is trained 
with a deep Multiple Instance Learning (MIL) 
ranking loss, aiming to optimize G parameters to 
produce accurate clip-level pseudo labels, as de-
picted in (Figure 6, Pseudocode).

Feature encoder architecture

Figure 7 illustrates the architecture of our 
proposed feature encoder ESGA, derived from a 
vanilla feature encoder (e.g., C3D) enhanced with 
a self-guided attention mechanism. The encoder 
is optimized using the estimated pseudo labels, 
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minimizing the loss function 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 as described in 
Equation 21:

 

𝐹𝐹𝐹𝐹𝐹𝐹 (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛)) = 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( MaxDiff
Diff (𝐹𝐹𝑣𝑣 (𝑡𝑡 + 𝑛𝑛), �̃�𝐹 (𝑡𝑡 + 𝑛𝑛))

) 

 

𝑦𝑦𝑖𝑖 =  {
𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≥ 0
𝑥𝑥𝑖𝑖
𝑎𝑎𝑖𝑖

 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  ≤ 0 

 

Jacc(𝑖𝑖,𝑗𝑗) =  𝑃𝑃(𝑖𝑖,𝑗𝑗)  × Jaccard(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡ℎ) 

 

lossdetect =  − ∑ ∑ Wij
objB

j=0
[

Ĉi
jlog (Ĉi

j) + 

(1 − Ĉi
j) log (1 − Ĉi

j)
]

S2

i=0
 

 

𝑥𝑥ℓ =  𝐻𝐻ℓ([𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1]) 

 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  =  𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣  × 𝑥𝑥𝑏𝑏𝑐𝑐  +  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 

 

𝑥𝑥𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 (𝑖𝑖, 𝑗𝑗) =  

= 1
4 ∑ ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣 (2𝑖𝑖 +  𝑚𝑚, 2𝑗𝑗 +  𝑛𝑛 )

1

𝑐𝑐=0

1

𝑚𝑚=0
 

 

𝑌𝑌 𝑐𝑐′, 𝑖𝑖′, 𝑗𝑗′ =  

= 1
𝑘𝑘2  ∑ ∑ 𝑋𝑋𝑐𝑐,𝑠𝑠×𝑖𝑖′+𝑡𝑡,𝑠𝑠×𝑗𝑗′+𝑣𝑣

𝑘𝑘−1

𝑣𝑣=0

𝑘𝑘−1

𝑡𝑡=0
 

 

𝐻𝐻′ =  ⌊𝐻𝐻 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝑊𝑊′ =  ⌊𝑊𝑊 − 𝑘𝑘
𝑠𝑠 ⌋ + 1 

 

𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ = arg 𝑚𝑚𝑖𝑖𝑛𝑛𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℒ (𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸, �̂�𝑌𝑎𝑎, �̂�𝑌𝑐𝑐 )  (21)

where: 

𝐹𝐹 =  {𝑓𝑓𝑖𝑖}𝑖𝑖=1
𝑁𝑁  

 

�̅�𝐹 

 

[𝑥𝑥0, 𝑥𝑥1, … … , 𝑥𝑥ℓ−1] 

 

𝑋𝑋 ∈ ℝ𝐶𝐶 × 𝐻𝐻 × 𝑊𝑊 

 

{𝑠𝑠𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑎𝑎 =  {�̂�𝑌𝑖𝑖
𝑎𝑎}𝑖𝑖=1

𝑁𝑁  

 

�̂�𝑌𝑖𝑖
𝑎𝑎 

 

(𝑠𝑠𝑖𝑖
𝑎𝑎) 

 

ℒ 

 

�̂�𝑌  =  {�̂�𝑌𝑖𝑖} 

 

 

 

 could be a cross-entropy loss or an-
other suitable loss function tailored for 
self-training and anomaly detection. 

To further improve the discriminative ability 
of the feature encoder ESGA for anomalous frame 
detection, a self-guided attention module is in-
corporated to attend to salient regions of frames. 
As illustrated in Figure 8, the C3D encoder, en-
hanced by a self-guided attention mechanism, re-
fines the extracted features before passing them to 
the classification layer. 

Pseudocode. Pseudo label generation and encoder fine-tuning 
Initialize  
Input: Anomalous frames bag 𝐵𝐵𝑎𝑎 = {𝑓𝑓1, . . . , 𝑓𝑓𝑁𝑁}  
 Pretrained feature encoder E (e.g., C3D) 
 Initial anomaly scores s = {𝑠𝑠1, . . . , 𝑠𝑠𝑁𝑁}  
Step 1: Feature Extraction 
 F̅ = E(𝐵𝐵𝑎𝑎)  
Step 2: Estimate Anomaly Scores (already computed) 
  𝑠𝑠𝑖𝑖𝑎𝑎 = anomaly score for frame i 
Step 3: Generate Pseudo Labels 
 for i in range(N): 
 �̂�𝑌[i] = sigmoid(𝑠𝑠[𝑖𝑖]) 
Step 4: Fine-tune Encoder ESGA using pseudo labels  
 loss = MIL_Ranking_Loss(ESGA(F̅), �̂�𝑌)  
 Backpropagate(loss) and update θ_ESGA 
 End 
 

 

Figure 6. Pseudo labeling generator
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This ensures a smooth transition to the final 
classification step, where the model determines 
whether the observed activities are suspicious or 
non-suspicious.

Classification layer

The classification process begins with the 
combination of several significant inputs ex-
tracted from the Feature Extraction and Labeling 
process. First, the refined feature vector frefined, 

which contains significant information from the 
input frames, is obtained from the GAP layer and 
feature extraction process. This vector is repre-
sented in Equation 22:

 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  =  𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹) 

 

𝑧𝑧 =  𝑊𝑊. 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  +  𝑏𝑏 

 

𝐺𝐺(𝑦𝑦 =  𝑗𝑗 | 𝑧𝑧 ) =  𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

 

 

𝐿𝐿 =  − ∑ 𝑦𝑦𝑗𝑗

𝐾𝐾

𝑗𝑗=1
 log(𝐺𝐺(𝑦𝑦 =  𝑗𝑗 | 𝑧𝑧 )) 

 

 

 (22)

where: F denotes the feature maps extracted from 
the video frames.

Henceforth, anomaly scores {si} or each frame 
are generated throughout the pseudo labeling 

Figure 7. Feature encoder architecture

Figure 8. C3D encoder based self-guided attention mechanism
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Table 3. Test data distribution of Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 823 645 633 810 476 627 585 810 690 813

Dataset-II 24559 39049 23679 24843 47194 19077 27690 48879 28549 46585

process and play a significant role in generating 
pseudo labels. The pseudo labels, 
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 of-
fer an initial classification of the frames as either 
anomalous or normal. Subsequently, the self-
guided attention mechanism improves the feature 
representations to become more discriminative 
and optimal for the classification process.

The refined feature vector frefined and the 
generated pseudo labels 
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 are then passed into 
the classification layer. The classification process 
involves a fully connected layer, which performs 
a linear transformation of the features. This opera-
tion is mathematically represented in Equation 23:
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where: z represents the logits, W is the weight 
matrix, and b is the bias term. The logits 
z contain raw prediction values for each 
class – suspicious and non-suspicious 
activities.

Next, these logits are fed into the softmax ac-
tivation function, which normalizes them into a 
probability distribution across the classes as de-
fine in Equation 24:
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where: P(y = j | z) denotes the probability of the 
input being classified as class j, with K 
representing the total number of classes. 
This probabilistic output enables the 
model to assign a confidence score to 
each classification, allowing for the de-
tection of suspicious activities with a de-
gree of certainty.

To fine-tune the model, cross-entropy loss is 
calculated as shown in Equation 25:
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where: yj is the ground truth label. This loss 
function penalizes incorrect classifica-
tions and guides the optimization process 
during training. The backpropagation al-
gorithm then updates the weights W and 
bias b based on the computed gradients, 
minimizing the loss and improving the 
model’s classification accuracy over time.

RESULTS

The results section evaluates the perfor-
mance of the developed algorithm using Data-
set-I and Dataset-II. During the training phase, 
a collective strategy was employed, involv-
ing a comprehensive training set of 786,367 
images distributed across ten classes. Train-
ing utilized a Google Colab T4 GPU with the 
Adam optimizer (learning rate = 1e−4, batch 
size = 32, 50 epochs) This includes 16,129 im-
ages from Dataset-I and 770,238 images from 
Dataset-II, representing 70% of the total image 
count for each dataset, as detailed in (Table2). 
For testing, Dataset-I comprised 6.912 images, 
and Dataset-II included 330,102 images, mak-
ing up 30% of the total image count for each 
dataset, as shown in (Table 3). These distribu-
tions were crucial for ensuring a balanced and 
comprehensive assessment of the model’s ac-
curacy and robustness across varied scenarios. 
To ensure statistical reliability and minimize 
variance due to data splits, a 5-fold cross-vali-
dation was additionally conducted. The results 
reported align consistently across folds, vali-
dating the model’s generalizability.

Table 2. Train data distribution of Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 1921 1505 1477 1890 1111 1463 1365 1890 1610 1897

Dataset-II 57303 91113 55251 57968 110118 44512 64610 114051 66613 108697
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ROC curve analysis across datasets

The ROC curve analysis assesses the model’s 
performance in distinguishing between different 
classes. Each class is represented by a distinct 
color on the ROC curve, as depicted in (Figure 9) 
for dataset-I. AUCs are computed to measure the 
discriminative ability of the model with respect 
to each class. The ROC curves for each class are 
depicted with distinct colors. The AUC values for 
these classes are summarized in (Table 4). Among 
the suspicious activity classes, “Jumping”, “Fall-
ing” and “Normal” demonstrated the strongest 
performance, each with an AUC value of 0.98 or 
higher in Dataset-I and 0.94 or higher in Dataset-
II. The “Talking” class recorded the lowest AUC 
values, indicating relatively lower discriminative 
power for this activity, with AUCs of 0.93 in Da-
taset-I and 0.89 in Dataset-II.

Confusion matrix analysis across datasets

The confusion matrix provides a de-
tailed breakdown of the model’s classification 

performance across the 10 activity classes. 
(Figure 10) present the confusion matrices for 
Dataset-I and Dataset-II, offering insights into 
where the model performs well and where it 
faces challenges.

Punching: Across both datasets, the Punching 
class exhibits highest accuracy, with the majority 
of predictions being correctly identified. However, 
there is considerable misunderstanding between 
the Kicking and Running classes, indicating a 
moderate overlap in how the model perceives these 
activities. Throwing: Throwing is significantly 
misclassified with Kicking and Running in both 
the datasets. This implies that the model struggles 
to distinguish between these physically compa-
rable activities, indicating a need for additional 
refining. Talking: The Talking class consistently 
demonstrates significant misclassifications across 
multiple other classes, leading to its lower AUC 
values, particularly in Dataset II. This highlights 
the model’s difficulty in effectively recognizing 
Talking and indicates areas for improvement.

Overall, the confusion matrix analysis dem-
onstrates the model’s strengths in the “Punching” 

Figure 9. ROC curve analysis of CampusWatch (Dataset-I)

Table 4. ROC curve analysis results for Dataset-I and Dataset-II
Metric Kicking Punching Running Normal Pushing Smoking Throwing Jumping Falling Talking

Dataset-I 0.96 0.97 0.94 0.99 0.97 0.96 0.94 0.98 0.99 0.93

Dataset-II 0.91 0.94 0.90 0.96 0.93 0.94 0.92 0.95 0.94 0.89
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and the “Normal” classes; however, some areas, 
like “Throwing” and “Talking”, still require im-
provement to enhance classification performance 
across both datasets.

Performance metrics across datasets

To validate the reliability of HYDPL, 5-fold 
cross-validation was performed on the training 
set, achieving an average accuracy of 97.86% 
across folds (Table 5), confirming consistent per-
formance. Furthermore, as shown in (Table 6), 
Dataset-I achieved 98% accuracy, 0.97 precision, 
1 recall, and 0.98 F1-score, with an FPR of 0.28 
and no false negatives (FNR = 0). Dataset-II re-
ported 97% accuracy, 0.97 precision, 0.99 recall, 
and 0.98 F1-score, with higher FPR (0.39) and 
FNR (0.005). These results show strong detection 
performance, with improvement needed in mini-
mizing false positives and negatives for Dataset-II.

DISCUSSION

The results obtained from ROC and confusion 
matrix analyses offer significant insights into the 
efficiency and accuracy of the HYDPL algorithm 
in recognizing suspicious activity when applied 
to both Dataset-I and Dataset-II.

Performance across datasets

The HYDPL algorithm provides promising 
results with overall accuracy rates of 98% for Da-
taset-I and 97% for Dataset-II, showcasing its effi-
ciency in recognizing various activities, including 
suspicious ones, across diverse environments. The 

slightly higher accuracy in Dataset-I may be due to 
a more balanced representation of activity types. 
This result is comparable to modern practices, es-
pecially if traditional machine learning methods or 
less complex neural networks are used, which of-
ten have a low accuracy when working with differ-
ent datasets [34, 35]. Additionally, the consistency 
of results across cross-validation folds further 
supports the robustness of the proposed HYDPL 
algorithm. Moreover, strengths and limitations of 
the HYDPL algorithm are demonstrated through 
class class-wise study. The values of AUC ≥ 0.93 
were found for “Jumping”, “Smoking”, and “Fall-
ing”, demonstrating a strong discriminative capac-
ity. However, the model performs relatively poorly 
in classifying the “Talking” activity, achieving an 
AUC of 0.93 on Dataset-I and 0.89 on Dataset-II. 
This difficulty might be attributed to the less robust 
visual cues inherent in talking, which are less dis-
tinctive than those of more dynamic activities. Ear-
lier studies in similar contexts have also reported 
challenges in classifying less visually distinctive 
activities [36, 37].

Misclassification issues

The confusion matrices show the patterns 
of misclassification, especially in the “Throw-
ing” and “Talking” classes. Misclassification of 
“Throwing” as “Kicking” and “Running” im-
plies difficulty in distinguishing between similar 
physical movements. Significant misclassifica-
tions in the “Talking” class reflect the classifier’s 
difficulty in distinguishing subtle movements. 
Such issues are consistent with other studies that 
highlight misclassification problems in HAR 

Table 5. Cross-validation of Dataset-I and Dataset-II
Fold Accuracy (%) Precision (%) Recall (%) F1 Score (%)

1 97.8 96.9 99.1 97.9

2 97.5 96.7 99.0 97.8

3 98.1 97.2 99.3 98.2

4 97.9 97.0 99.2 98.0

5 98.0 97.1 99.1 98.1

Avg ± SD 97.86 ± 0.21 97.0 ± 0.18 99.14 ± 0.11 98.0 ± 0.15

Table 6. Performance metrics
Metric Accuracy (%) Precision (%) Recall (%) F1 Score (%) FPR (%) FNR (%)

Dataset-I 98 97 100 98 0.28 0

Dataset-II 97 97 99 98 0.39 0.5
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systems, where activity characteristics are often 
similar, emphasizing the need for model refine-
ment to enhance accuracy [38, 39].

Comparison with other methods

In comparison to other methods, the HYDPL 
algorithm’s overall performance is commend-
able, especially in handling complex activities 
and maintaining high accuracy. For instance, 
traditional machine learning approaches, such as 
SVM or random forests, typically show lower ac-
curacy when applied to similarly complex tasks 
[40, 41]. Furthermore, the two-stage self-training 
scheme implemented in HYDPL significantly en-
hances the quality of pseudo-labels and anomaly 
detection, marking an improvement over single-
stage training methods commonly used in earlier 
studies [42–45]. Additionally, (Table 7) com-
pares accuracy rates for the HMDB51 dataset, 

demonstrating the competitive performance of 
the HYDPL algorithm against various contempo-
rary methods and highlighting its superior han-
dling of complex activity recognition tasks.

Limitations and future work 

The HYDPL algorithm performs well; how-
ever, it has certain limitations. For instance, the 
misclassification of the “Talking” activity shows 
the model’s struggle during classification, indi-
cating the model’s need to be further refined with 
additional features or sophisticated techniques 
such as attention mechanism or ensemble learn-
ing [46–48]. Furthermore, the scope of the study 
is limited to academia, and only nine suspicious 
activities are considered. Future research should 
also explore the impact of incorporating more 
varied datasets during training to improve the 
model’s adaptability to different environments.

Figure 10. Confusion matrix analysis for each class for Dataset-I

Table 7. Comparison of accuracy rates (%) for HMDB51
Method Results Improvement

DNN and VGG19 [49] 0.93 +0.04

CNN with CAMs and AEs [50] 0.77 +0.20

OmniCLIP with PTA and SPG [51] 0.74 +0.23

Dynamic time warping and hierarchical model with K-Class [52] 0.61 +0.36

CNN, ConvLSTM, and LRCN [53] 0.92 +0.05

Two-Stream ConvNet and BiLSTM [54] 0.90 +0.07
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In conclusion, the HYDPL algorithm dem-
onstrates strong potential for detecting suspi-
cious activities in academic environments, out-
performing several existing approaches in terms 
of accuracy and robustness. Nonetheless, certain 
limitations, such as misclassification in cases like 
“Talking” and the narrow scope of suspicious 
activity categories, highlight areas for improve-
ment. Future work will aim to integrate advanced 
techniques, such as attention mechanisms or en-
semble models and extend the dataset to enhance 
generalizability across both academic and non-
academic settings.
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