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INTRODUCTION

The force meter (dynamometer), as a device 
designed to measure forces or torques, is widely 
used in the engineering industry [1, 2]. This de-
vice is commonly applied in machining process-
es such as turning, milling, and drilling, where it 
enables precise measurement of cutting forces in 
multiple directions [3,4]. Such measurements al-
low for real-time monitoring and assessment of 
mechanical loads acting on the cutting tool and 
workpiece, which is essential for evaluating tool 
performance, process stability, and machining 
efficiency [5]. Dynamometers are often used in 
experimental setups to analyse the effects of cut-
ting parameters – such as feed rate, cutting speed, 

and depth of cut–on force components and ener-
gy consumption [6]. They also support optimiza-
tion of machining conditions, tool geometry, and 
cooling strategies to improve surface quality and 
reduce tool wear [7]. In research and industrial 
environments, cutting force measurements are es-
sential for validating simulation models and for 
characterizing the machinability of advanced ma-
terials, including titanium alloys and shape mem-
ory alloys [8, 9].

In engineering practice, dynamometers are 
calibrated using the specialised measuring sta-
tions designed to reproduce tensile, compressive 
or shear forces [10, 11]. Most often, this involves 
point tests, for which the load realised is a percent-
age of the permissible load of the dynamometer 
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(e.g. 20%, 40%, 60%, 80% and 100% of the max-
imum load value) [12]. The readings of the cali-
brated device are compared with the readings of 
force standards [13]. The repeatability of the dy-
namometer readings for the measurement points 
carried out during calibration is also verified [14]. 
However, these are static tests that do not fully 
reflect the dynamic loads [15] that affect the dy-
namometer during measurements carried out in 
the actual operating conditions of the engineering 
infrastructure [16].

In order to increase the accuracy [17] of dy-
namometers, the paper proposes the procedure 
consisting of the assessment of the dynamic er-
rors for this type of measuring devices [18–21]. 
This procedure is based on the results of the par-
ametric identification [22] of the dynamometer, 
carried out in the conditions of a the real meas-
urement experiment [23, 24]. The dynamometer 
is excited impulsively using the modal hammer 
[25], and its time response is recorded using ded-
icated measurement software, e.g. DynoWare 
or LabVIEW [26, 27]. Then, on the basis of the 
recorded results, the numerical procedure is car-
ried out which is aimed at determining the pa-
rameters of the mathematical model (the transfer 
function) of the dynamometer [28]. Satisfactory 
modelling results [29] can be obtained by us-
ing the Monte Carlo method [30] or the Leven-
berg-Marquardt algorithm [31]. The first method 
is a randomised procedure based on the selected 
pseudorandom number generator, while the Lev-
enberg-Marquardt algorithm is an iterative pro-
cedure implementing nonlinear optimisation by 
combining the steepest descent and Gauss-New-
ton methods. After determining the dynamometer 
model parameters, simulation and computational 
studies are carried out, aimed at determining the 
upper bound of the dynamic error in accordance 
with the assumed quality criterion [18–20]. The 
upper bound of the dynamic error is defined as the 
highest possible value of the dynamic error that 
may be obtained during the real dynamometer op-
eration [18–20]. This error corresponds to the sig-
nal with constraints, also determined by computa-
tional and simulation methods [18, 19] which has 
a property such that only the lower value of the 
dynamic error can be obtained as a result of any 
other real dynamic signal contained in its con-
straints [18, 19]. The paper presents the research 
procedure aimed at determining the upper bound 
of the dynamic error (according to the absolute 
error criterion) and the corresponding signal with 

two constraints [18, 19]. These constraints con-
cern the magnitude and the duration of the signal 
which is therefore rectangular in shape. The num-
ber of signal time-switchings (signal changes) and 
the time values corresponding to these switchings 
are determined by simulation way using the dedi-
cated computation algorithm. 

This paper presents examples of calculations 
of the upper bound of the dynamic error and the 
corresponding signal with constraints for the se-
lected Kistler dynamometer of type 9257B and 
for x-axis [32]. Additionally, the values of the 
upper bound of the dynamic error were deter-
mined [18–20] for the grid of the dynamometer 
parameters which were assumed in advance, but 
around the parameters obtained on the basis of the 
parametric identification of the dynamometer. On 
this basis, the spatial (multivariate) regression of 
these points was performed and the correspond-
ing functions were determined [33–36]. As a re-
sult, it is possible to determine the upper bound 
of the dynamic error by substituting into these 
functions any values of the dynamometer model 
parameters, without the need to implement nu-
merical and computational procedures necessary 
to determine the above error.

The solutions presented in the paper are an 
extension of the results obtained based on tradi-
tional calibration methods, commonly used in en-
gineering practice, by the special functions which 
allow to obtain the value of the upper bound of 
the dynamic error by easy way without the need 
to perform the complex numerical calculations. 
The upper bound of the dynamic error can be an 
additional comparative criterion when assessing 
the accuracy of dynamometers manufactured by 
different companies. However, determining the 
grid of points for multivariate regression require 
the implementation of parametric identification 
aimed at determining all parameters related to 
the mathematical model of the dynamometer, in-
cluding the damping factor. This was achieved by 
using the parametric identification methods based 
on recording the step response of the dynamom-
eter which is a function of time. Determining of 
these parameters, using the frequency response 
function (including both the amplitude and phase 
response with respect to frequency), would re-
quire exceeding the resonance frequency which 
would be associated with a high risk of damaging 
of the dynamometer. 

The solutions presented here can contribute 
to the effective selection of dynamometers for 
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measurement applications in the engineering in-
dustry, based on the assessment of the dynamic 
errors. Therefore, a significant increase in the ac-
curacy of measurements carried out using these 
devices can be achieved.

Next Section 2 of this paper presents the the-
oretical basis necessary to determine the upper 
bound of the dynamic error, as well as to carry 
out the spatial (multivariate) regression based on 
the calculation points for this type of error. Sec-
tion 3 presents the research results for the Kistler 
dynamometer of type 9257B and determines the 
spatial functions representing the dynamic error 
for selected ranges of parameter variation for the 
mathematical model of the dynamometer. Section 
4 presents the verification of the obtained results 
while Section 5 concerns the summary of the re-
sults obtained during the conducted research. 

MATERIALS AND METHODS

The mathematical model of the dynamometer is 
defined by the transfer function as follows [19, 21]:
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where: 	a[V/N], ω0 [rad/s] and β [ – ] denote 
the static amplification factor, the pulsa-
tion of natural undamped vibrations and 
the damping factor, respectively, while 
s = jω denotes a Laplace operator and 

j = √−1 
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ℒ−1 

 is the imaginary number.

The parameters a, ω0 and β in Equation 1 re-
sults from the following relations [19]:
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where:	m [kg], k [N/m] and r [kg/s] denote the 
mass, spring constant and dumping co-
efficient which are associated with the 
equivalent model of dynamometer.

As in most calibration procedures, to deter-
mine the upper bound of the dynamic error based 
on the model given by Equation 1, a reference 
model is necessary. An analogue filter of higher 
order can be efficiently applied as the reference 

model [19]. For simulation purposes, the eighth-
order Butterworth filter was adopted in this paper. 
The mathematical model of this filter is given by 
the following transfer function:
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	 ωc = 2 πfc, and fc  denotes the cut-off fre-
quency which corresponds to the operat-
ing range of the dynamometer under con-
sideration [19].

The cut-off frequency fc of the filter should be 
determined so that it corresponds to the operating 
bandwidth of the dynamometer. This bandwidth 
results from the 3-decibel deviation of the ampli-
tude-frequency response from its steady state [19, 
21, 30].

The value of the parameter fc  is determined by 
solving the following equation:

	

𝐾𝐾d(𝑠𝑠) =
−𝑎𝑎𝜔𝜔0

2

𝑠𝑠2 + 2𝜔𝜔0𝛽𝛽𝛽𝛽 + 𝜔𝜔0
2 = 

= −2π𝑎𝑎𝜔𝜔𝜔𝜔02
𝑠𝑠2 + 4π𝑓𝑓0𝛽𝛽𝛽𝛽 + 2π𝑓𝑓02

 

 

𝑎𝑎 = 𝑚𝑚/𝑘𝑘,𝜔𝜔0 = √𝑘𝑘/𝑚𝑚, 
𝛽𝛽 = 𝑟𝑟/(2√𝑘𝑘𝑘𝑘) 

 
 

𝐾𝐾r(𝑠𝑠) =
𝑎𝑎

𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3 + 𝛼𝛼4
 

 
 

𝑎𝑎 + 𝑎𝑎
100%Λ = 𝑎𝑎

√[1 − (𝑓𝑓c𝑓𝑓0)
2
]
2
+ 4𝛽𝛽2 (𝑓𝑓c𝑓𝑓0)

2
 

 
 

𝐷𝐷 = ∫ |𝑘𝑘(𝑡𝑡)|d𝑡𝑡
𝑇𝑇

0
 

 
 

𝑘𝑘(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] − ℒ−1[𝐾𝐾r(𝑠𝑠)] 
 
 

𝑥𝑥0(𝑡𝑡) = 𝑎𝑎 ∙ sgn[𝑘𝑘(𝑇𝑇 − 𝑡𝑡)] 
 
 

𝑒𝑒(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥0(𝜏𝜏)d𝜏𝜏 

 
 

pC
N =

pFV
N

dc + cc
 

 
 

pC
N = 1

320
V
N 

 
 

𝛽𝛽 =
|

| −ln (∆𝑦𝑦𝑎𝑎 )

√ln2 (∆𝑦𝑦𝑎𝑎 ) + π2
|

|
 

 
 

 

	(4)

where:	Λ denotes the percentage degree of devia-
tion of the amplitude-frequency response 
A(f) from the value A(0). Considering that 
solving this equation produces four val-
ues, the negative results are rejected for 
obvious reasons (the parameter fc  cannot 
have negative values), and the lower posi-
tive value obtained is assumed as the so-
lution result [19, 21].

The upper bound of the dynamic error for as-
sumed the absolute criterion, denoted below by D 
is calculated using the following formula:
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where:	T denotes the dynamometer test time, 
while k(t) is the time function given by 
the following formula:
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where:	 

j = √−1 
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ℒ−1  denotes the inverse Laplace trans-
form. The function k(t) is therefore the 
impulse response which is obtained as 
the difference between the impulse re-
sponses of the dynamometer and the im-
pulse response of corresponding refer-
ence [18, 19].

The signal with two constraints (magnitude 
and time T) is determined using the following 
formula:
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where:	 notation sgn denotes the signum function, 
and the following condition: 0 < t < Tis 
fulfilled [18, 19].

The magnitude of the signal x0(t) is equal to 
the value of parameter α of the dynamometer. The 
number of switchings of this signal is correlated 
with the number of zero crossings of the impulse 
response k(t). 

The time representation of dynamic error as-
sociated with the signal x0(t) defined by the con-
volution integral, as follows:
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where:	 τ is the integration variable [18, 19].

The error e(t) has the highest possible value 
for t = T which corresponds to the upper bound of 
the dynamic error. The error e(t) has the property 
that it always reaches its maximum value for the 
final time T which is characteristic of the absolute 
error criterion [18, 19]. Figure 1 shows the ex-
ample error e(t) 

RESULTS AND DISCUSSION

The results of parametric identification rep-
resent the values of the parameters:α, ω0 and 
β of the transfer function Kd(s) given by Equa-
tion 1. This identification was carried out using 
the measuring station equipped with the Kistler 
dynamometer of type 9257B, the modal ham-
mer of type 086D05 and the measuring system 
with computers and DynoWare software version 
3.1.2.0 which is used to record the impulse re-
sponse of the dynamometer for the x-axis [27]. 
Two computers were used to facilitate the visu-
alisation of the obtained results. Figure 2 shows 
the system applied for purpose of the parametric 
identification of the dynamometer.

The dynamometer was impacted directly into 
its housing using the modal hammer according 
to the x-axis and the corresponding impulse re-
sponse was recorded. One hundred samples were 
recorded at times t equal to 0.014 s. The measure-
ment points of the impulse response were select-
ed in such a way that this response started from 
zero and ended when they achieved the steady-
state [32]. The regression of the measurement 
points of the recorded impulse responses was 
performed using the Monte Carlo method and 
the Box-Muller pseudorandom number generator. 
The number of Monte Carlo trials carried out was 
equal to 2 × 105 [30]. The influence of environ-
mental parameters (e.g. humidity, temperature) 
on the measurement conditions of the dynamom-
eter impulse responses was not taken into account 
in this paper.

An analogous procedure to that shown in Fig-
ure 2 should be used in the case of impacting the 
dynamometer according to the y- and z- axes. In 
a similar way as for the x-axis, the corresponding 
impulse response measurement points should be 
recorded. However, in order to obtain consistency 

Figure 1. Example error e(t)
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of the final results, an analogous method of ap-
proximating these measurement points (e.g. the 
Monte Carlo method) should be used.

Examples of measurement and simulation ex-
periments for all three axes of the dynamometer us-
ing the Monte Carlo method are presented in [37].

Table 1 presents the results of regression car-
ried out for the tested dynamometer for the x-axis. 
This Table contains the value of the parameters: 
α, ω0 and β  as well as the associated uncertain-
ties: u(a), uω0 and uβ

The values of the parameter ω0 included in 
Table 1 differ from those reported in the datasheet 
[37]. These differences may be due to the fact 
that the identification of the dynamometer model 
based on the impulse response for the x-axis was 
aimed at determining also the parameter β related 
to the mathematical formula given by Equation 1 
and not included in the corresponding datasheet. 
In order to compare the values of parameter α in-
cluded in Table 1 and in the corresponding data-
sheet, there is a need to transform the unit pC/N 
to the unit V/N, as follows:
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where:	 the parameters dc and cc denote the dy-
namometer and connecting cable capaci-
tances. The value of these parameters are 
equal to 220 pF and 100 pF for the Kistler 
dynamometer of type 9257B, respective-
ly. Hence, based on Equation 9, we obtain
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Recalculation of the value of parameter α in-
cluded in Table 1 according to Equation 10, gives 
the value of this parameter tabulated in the cor-
responding datasheet [38], where the parameter α 
is equal to –7.5 pC/N.

The value of parameter β can be also obtained 
based on the data included in the datasheet [37], 
by involving the parameters called there as the 
sensitivity and overload. Late us denote by Δy the 
overload parameter. Than, we have
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Substituting the value of parameters: α in V/N 
and Δy  in kN included in the corresponding data-
sheet to Equation 11, we obtain: β = 0.975. Con-
sidering that the value of this parameter, similarly 
to the parameter ω0  tabulated in Table 1, is dif-
ferent than the values ​​​​included in the correspond-
ing datasheet, below we check the compatibility 
of the parameters included in Table 1 and in the 
datasheet by comparing the 10% bandwidth for 
the corresponding amplitude responses, calculat-
ed by using the following formula

	 𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 
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+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (12)

which involves the transfer function given by 
Equation 1.

Figure 3 shows the amplitude responses deter-
mined for the parameters: α, ω0 and β tabulated in 

Figure 2. Measurement system applied for dynamometer parametric identification: 1 – dynamometer,
2 – impact hammer, 3 – computers equipped with DynoWare software
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Table 1 and obtained based on the corresponding 
datasheet. These responses have different shapes, 
but the same value of the cut-off frequency denot-
ed by fc which is equal to 220 Hz. The equality of 
the both cut-off frequencies can be considered as 
a confirmation of the correctness of determining 
the model parameters given by Equation 1 for the 
x-axis. It should also be emphasized that the cut-
off frequency fc is also important for the purpose 
of determining the upper bound of the dynamic 
error, according to Equation 5.

Based on the results included in Table 1, the 
values of the upper bound of the dynamic error and 
the corresponding signals x0(t) were determined.

Figure 4 shows the impulse responses: kd(t), 
kr(t) and k(t) obtained for the parameters included 
in Table 1. The time T corresponds to the steady-
state time of these responses and is equal to 0.025 
s. The parameter fc, calculated based on Equa-
tion 4, is equal to 258 Hz.

The impulse response k(t) shown in Figure 4 
was determined based on Equation 6, while the 
impulse responses kd(t) and kr(t) were obtained by 
using the following formulae:

	

𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (13)

From Figure 4, it follows that the impulse re-
sponse kd(t)  has a steady state of about 0.005 s, 
while this time for the impulse responses kr(t) and 
k(t) has a much higher value which corresponds 
to the time T.

Figure 5 shows the signal x0(t) and error e(t) 
obtained for the parameters tabulated in Table 1 
The signal x0(t) shown in this Figure has 13 

Table 1. Value of parameter α, ω0 and β s and
associated uncertainties

x-axis 

Dynamometer parameters 

𝑎𝑎 
[V/N] 

𝜔𝜔0 [rad/s] 𝛽𝛽 [–] 

– 0.023 4410 0.3812 

Associated uncertainties 

𝑢𝑢(𝑎𝑎) 
[V/N] 

𝑢𝑢(𝜔𝜔0) [rad/s] 𝑢𝑢(𝛽𝛽) [–] 

– 0.006 258 0.0039 

 

Figure 3. Amplitude responses determined for parameters tabulated in Table 1 (a)
and obtained based on the datasheet (b)
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time-switchings, and its essential property is that 
for any other signal contained within its con-
straints, we can obtain the error D of a value that 
is lower than or equal to the error obtained for the 
signal x0(t) [18,19]. The error e(t) shown in this 
Figure increases with successive deviations from 
the value equal to zero up to a value t equal to T, 
where this error reaches its highest value. This er-
ror has six positive and five negative deviations. 

The error D given by Equation 5 is equal to 3.96 
× 10–3 Vs. Figures 4–5 were developed using 
MathCad 5 software. 

The 3D graphs and functions showing the re-
lationship between the error D and the parameters 
α and β for ω0 equal to 4000 and 5000 rad/s are 
presented below. It has been shown that the influ-
ence of changing the parameter ω0 on the error 
values D  is minimal and depends on the accuracy 

Figure 4. Impulse responses: kd(t), kr(t) and k(t)
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of the performed calculations. The values of the 
parameters α and β for the 3D analysis were se-
lected based on the results presented in Table 1. 
The test ranges for the parameters α was assumed 
to be from 0.01 to 0.05, with a step of 0.01 and for 
the parameter β were was assumed to be from 0.1 
to 0.5, with a step of 0.1.

Table 2 presents the values of the param-
eter fc determined based on Equation 4 and for 
the parameter β from the above assumed range, 
i.e. from 0.1 to 0.5. It should be emphasised that 
the parameter fc  does not change with changes in 
the parameter α. Considering that the time T of 
the steady state of the impulse response k(t) de-
pends on the parameter fc, the last row of Table 2 
presents the values for this time. These values are 
0.025 s and 0.020 s for frequency fc  equal to 4000 
rad/s and 5000 rad/s, respectively.

Based on the data presented in Table 2, it can 
be easily seen that the value of the parameter fc  
increases as the parameters β and ω0  increase. 

The values of the error D determined for the 
parameter α within the range of 0.01 to 0.05 with 
a step of 0.01 and parameter β within the range 
of 0.1 to 0.5 with a step of 0.1 for frequency fc  

equal to 636.6 Hz and 795.8 Hz, respectively, are 
tabulated in Table 3.

Based on the data included in Table 3, it can 
be seen that the values of the error D for the pa-
rameter ω0  equal to 4000 and 5000 rad/s are very 
close to each other for analogous values of the 
parameters α and β. Hence, the values of the er-
ror D were determined only for two values of the 
parameter ω0.

The relationship between the error D given 
and the parameters α and β for ω0 equal to 4000 
rad/s is represented by the polynomial equation 
of the third order given by the following formula: 

	

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 

−6.36 ∙ 𝛽𝛽 + 1.06 ∙ 104 ∙ 𝑎𝑎2 − 

− 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

	 (14)

where:	 the sum of squared errors (SSE) of the 
approximation is equal to 0.53, while the 
root mean square error (RMSE) is 0.19.

Figure 5. Signal x0(t) (a) and error e(t) (b)
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The relationship between the error D given 
and the parameters α and β for ω0 equal to 5000 
rad/s is represented by the polynomial equation 
of the third order given by the following formula:

	

𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (15)

where:	 the SSE and RMSE are equal to 0.43 and 
0.17, respectively.

Based on the analysis of the values of the 
SSE and RMSE, it can be easily noticed that 
slightly lower values of these parameters (by 

about 19% and 11%, respectively) were ob-
tained for the function given by Equation 15.

The functions given by Equations 14 and 15 
make it possible to determine the error D for any 
values of the parameters α and β in the range 0.1 
to 0.5 and for the parameter ω0  equal to 4000 
and 5000 rad/s, respectively, without the need 
to use the computational procedure given by 
Equations 4–8. This accelerates and, above all, 
simplifies the calculation of the error D given 
by Equation 5.

Figures 6 (a) and (b) correspond to Equa-
tions 14 and 15 and show the 3D charts which 
represent the relationship between the error D 
given by Equation 5 and the parameters α and β 
for ω0  equal to 4000 rad/s (Figure 6a) and 5000 
rad/s (Figure 6b). These Figures were obtained 
using MATLAB R2024 software.

The grids of computational points which 
are presented in Figure 6 (a) and (b) were ob-
tained by performing the numerical calcula-
tions using Equations 1–8. The functions given 
in Equations 13 and 14 allow determining the 
upper bound of the dynamic error for interme-
diate points with respect to the points of both 
grids. Based on these functions, one can easily 
determine the values of parameters α and β for 
the intervals shown in Figure 6 which are con-
sidered symmetrically around the parameters as 
tabulated in Table 1, and obtained on the basis 
of the implementation of the parametric identi-
fication procedure.

Table 2. The values of the parameter fc  for the x-axis

𝜔𝜔0 [rad/s] 

 4000 5000 

𝛽𝛽 [−] 

0.1 194.1 242.6 
242.6 

0.2 201.0 251.3 

0.3 214.7 268.3 

0.4 240.4 300.5 

0.5 301.0 376.2 

𝑇𝑇 [s] 0.025 0.020 

 

Table 3. Values of error D [Vs] ∙ 10–3 

𝜔𝜔0 = 4000 rad/s, 𝑇𝑇 = 0.025 s 

 
𝛽𝛽 [−] 

0.1 0.2 0.3 0.4 0.5 

𝑎𝑎  
[V/N] 

0.01 1.06 0.87 0.79 0.74 0.72 

0.02 4.22 3.46 3.15 2.96 2.89 

0.03 9.50 7.79 7.08 6.66 6.50 

0.04 16.9 13.8 12.6 11.8 11.6 

0.05 26.4 21.6 19.7 18.5 18.1 

𝜔𝜔0 = 5000 rad/s, 𝑇𝑇 = 0.020 s 

 
𝛽𝛽 [−] 

0.1 0.2 0.3 0.4 0.5 

𝑎𝑎  
[V/N] 

0.01 1.06 0.87 0.79 0.74 0.72 

0.02 4.25 3.48 3.16 2.97 2.89 

0.03 9.55 7.84 7.11 6.67 6.50 

0.04 17.0 13.9 12.6 11.9 11.6 

0.05 26.5 21.8 19.8 18.5 18.1 
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RESULTS VERIFICATION

The verification of the functions given by 
Equations 14 and 15 and shown in Figure 6 is 
presented below. This verification consists in sub-
stituting selected values ​​between the points listed 
in Table 3 into these functions. Additionally, it 
has been shown that any signal contained in the 
constraints of the signal x0(t)gives an error D of 
a value lower than the error corresponding to the 
signal with constraints.

Table 4 includes the results of the verification 
of the function given by Equations 14 and 15. The 
values ​​of error D were determined based on the 
intermediate points for those given in Table 3 and 
by substituting them into Equation 14 and 15.

The data presented in Table 4 confirm the 
correctness of the error determination based on 
Equations 14 and 15. For both function cases, the 
errors have values ​​intermediate between those 
given in Table 3. The verification presented in 
Table 4 shows that the error values D can be de-
termined quickly and easily without the need to 
apply complex calculation methods.

Figure 7 shows the signal x0(t) determined for 
the parameters: α = 0.015 N/V, β = 0.25 and ω0 = 
4000 rad/s i.e. for those included in Table 4.

Signal x0(t) shown in Figure 5 has the fol-
lowing switching’s: 0.0022 s, 0.0049 s, 0.0075 
s, 0.0102 s, 0.0139 s, 0.0158 s, 0.0187 s, 0.0226 
s, 0.0233 s, 0.0241 s and 0.0250 s. Based on 
these switching’s, the polynomial function 
p(t) with switching times corresponding to the 
switching of the signal x0(t) was developed. 
This function is:

	

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 

0.013 ∙ 𝑡𝑡11 + 0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 

− 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 ± 

± 5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+ 1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

	(16)

Let us use the function p(t) as the verifica-
tion signal xv(t), contained in the constraints of 
the signal x0(t).

Additionally, the signal xv(t) was rescaled in 
such a way that its magnitude was as close as 
possible to the magnitude constraint of the signal  
x0(t). This rescale is 3 × 1025.

Figure 8 shows the signals x0(t) and xv(t). The 
error e(t) that corresponds to the signal xv(t) is cal-
culated using the following formula

Figure 6. Relationship between the error D and the parameters α and β for ω0 = 4000 rad/s  (a)
and ω0 = 5000 rad/s (b)
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𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (17)

Figure 9 shows the error ev(t) which maxi-
mum value denoted below by Dv is the equivalent 
of the error D.

The error Dv represents the maximum value 
of the error ev(t) which is equal to 2.77 × 10–4. 
It is easy to notice that this value is definitely 
lower than the error presented in Table 4 and 
obtained for the above-considered parameters of 
the mathematical model of dynamometer. This 
confirms that each signal contained in the con-
straints of the signal x0(t) produces the error with 
the values lower than the error corresponding to 
the signal x0(t).

Below, the upper bound of the dynamic er-
ror D obtained for the dynamometer parameters 

as follow: α = 0.01 V/N, β = 0.01 and ω0 = 4000 
rad/s is compared with the corresponding error 
denoted below by symbol D0 and determined 
based on the simpler formula, as follow

	

𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (18)

where:

	

𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 

	 (19)

while k(t) is determined based on Equation 6 and  
xt(t) denotes the special testing signal cor-
related with the dynamometer parameters 
α and ω0 [19].

The value of error D tabulated in Table 
3 is equal to 1.06 ∙ 10–3 Vs, while the error D0 

Table 4. Values of error D [Vs] ∙ 10–3obtained using the functions given by Equations 14 and 15
𝜔𝜔0 = 4000 rad/s, 𝑇𝑇 = 0.025 s 

 
𝛽𝛽 [−] 

0.1 0.2 0.3 0.4 0.5 

𝑎𝑎  
[V/N] 

0.01 1.06 0.87 0.79 0.74 0.72 

0.02 4.22 3.46 3.15 2.96 2.89 

0.03 9.50 7.79 7.08 6.66 6.50 

0.04 16.9 13.8 12.6 11.8 11.6 

0.05 26.4 21.6 19.7 18.5 18.1 

𝜔𝜔0 = 5000 rad/s, 𝑇𝑇 = 0.020 s 

 
𝛽𝛽 [−] 

0.1 0.2 0.3 0.4 0.5 

𝑎𝑎  
[V/N] 

0.01 1.06 0.87 0.79 0.74 0.72 

0.02 4.25 3.48 3.16 2.97 2.89 

0.03 9.55 7.84 7.11 6.67 6.50 

0.04 17.0 13.9 12.6 11.9 11.6 

0.05 26.5 21.8 19.8 18.5 18.1 

 

Figure 7. Signal x0(t) during verification
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calculated based on Equation 18 is 5.08 ∙ 10–4Vs. 
This means that the difference between the above 
errors is 47.9%. Considering that the error D is 
determined based on the maximizing signal x0(t), 
this percentage value increases the accuracy of 

determining the upper bound of the dynamic error 
based on the procedures presented in the paper.

Figure 10 shows the visual comparison be-
tween the error e(t) shown in Figure 5 and the er-
ror e0(t) calculated based on the following formula

Figure 8. Signals x0(t) and xv(t) 

Figure 9. Error ev(t)

Figure 10. Comparison between the errors e(t) and e0(t) 
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𝐴𝐴(𝑓𝑓) = √𝐾𝐾d(j2π𝑓𝑓)𝐾𝐾d(−j2π𝑓𝑓) 

 

𝑘𝑘d(𝑡𝑡) = ℒ−1[𝐾𝐾d(𝑠𝑠)] 

𝑘𝑘r(𝑡𝑡) = ℒ−1[𝐾𝐾r(𝑠𝑠)] 

 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.080 + 117.1 ∙ 𝑎𝑎 − 6.36 ∙ 𝛽𝛽 + 

+1.06 ∙ 104 ∙ 𝑎𝑎2 − 984.8 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 49.0 ∙ 𝛽𝛽2 + 

+ 1333 ∙ 𝑎𝑎3 − 7857 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+ 1640 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 75.83 ∙ 𝛽𝛽3 

 

𝐷𝐷(𝑎𝑎, 𝛽𝛽) = −0.09 + 112.2 ∙ 𝑎𝑎 − 

− 5.79 ∙ 𝛽𝛽 + 1.08 ∙ 104 ∙ 𝑎𝑎2 − 

− 956.7 ∙ 𝑎𝑎 ∙ 𝛽𝛽 + 46.0 ∙ 𝛽𝛽2 + 

+ 7.92 ∙ 10−10 ∙ 𝑎𝑎3 − 80.29 ∙ 𝑎𝑎2 ∙ 𝛽𝛽 + 

+1610 ∙ 𝑎𝑎 ∙ 𝛽𝛽2 − 71.83 ∙ 𝛽𝛽3 

 

𝑝𝑝(𝑡𝑡) = −𝑡𝑡13 + 0.174 ∙ 𝑡𝑡12 − 0.013 ∙ 𝑡𝑡11 + 

+0.609 ∙ 10−3 ∙ 𝑡𝑡10 − 0.018 ∙ 10−3 ∙ 𝑡𝑡9 + 3.61 ∙ 𝑡𝑡8 + 

±5.03 ∙ 𝑡𝑡7 + 4.86 ∙ 𝑡𝑡6 − 3.19 ∙ 𝑡𝑡5 + 

+1.37 ∙ 𝑡𝑡4 − 3.53 ∙ 𝑡𝑡3 + 4.66 ∙ 𝑡𝑡2 − 2.11 ∙ 𝑡𝑡 

 

𝑒𝑒V(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝑥𝑥v(𝜏𝜏)d𝜏𝜏 

 

𝐷𝐷0 = max [∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏] 

 

𝑥𝑥t(𝑡𝑡) = 𝑎𝑎 ∙ sin(𝜔𝜔0𝑡𝑡) 

 

𝑒𝑒0(𝑡𝑡) = ∫ 𝑘𝑘(𝑡𝑡 − 𝜏𝜏)𝑥𝑥t(𝜏𝜏)
𝑡𝑡

0
d𝜏𝜏 	 (20)

which is correlated with the formula given by 
Equation 19.

It is easily seen from Figure 10 that the error 
e(t) gradually increases until it reaches a maxi-
mum value corresponding to the upper bound of 
the dynamic error D, while the error e0(t) reaches 
a stabilized value equal to an approximately the 
value of error D0 for the time t = 0.08 s. 

CONCLUSIONS 

The results obtained in this paper, confirm 
that in the case of force meters (dynamometers), 
it is possible to determine the upper bound of dy-
namic error which constitute the highest possible 
value of the error. The values of such errors can 
be used as a reliable criterion intended both for 
assessing the accuracy of individual dynamom-
eters and for the mutual comparison of a larger 
number of such devices.

The consistency of the dynamometer param-
eters obtained using parametric identification 
and the corresponding datasheet was confirmed 
by checking the bandwidth. For both cases, an 
analogous cut-off frequency value equal to 220 
Hz was obtained. The functions obtained by the 
spatial regression of the calculation points for 
the upper bound of the dynamic error confirm 
that they can be a very useful tool in assessing 
the accuracy of dynamometers in engineering 
applications. These functions are the new solu-
tion in the field of analysis of the dynamometers 
dynamic error and allow for the easy and fast de-
termination of the upper bound of the dynamic 
error for any values of the parameters α (static 
amplification factor) and β (damping factor) 
related to the mathematical model of the dyna-
mometer, without the need to apply dedicated 
calculation algorithms. Additionally, research 
carried out in this paper shows that the value 
of the dynamic absolute error obtained for the 
testing signal is about 50% less than the upper 
bound of the dynamic error.

The upper bound of the dynamic error is the 
highest value of the dynamic error that can be ob-
tained during the operation of the dynamometer. 
This error applies to both the cutting forces and 
the results of recorded during measuring the other 

forces, e.g. roughing and finishing turning. The 
upper bound of the dynamic error is therefore a 
reference to the dynamic errors arising during 
measurements of various types of forces and can 
be treated as an equivalent to the accuracy class 
applicable during static measurements (the input 
signal has a defined shape in advance).

The limitation of the proposed method is de-
termination of the relationship between the upper 
bound of the dynamic error and only two param-
eters of the dynamometer model. This limitation 
could be eliminated by using the neural networks 
in the future of research work.
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