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INTRODUCTION

This research aims to develop a sophisticated 
data reconstruction and measurement system, us-
ing electrical impedance tomography (EIT) and, 
eventually, ultrasound transmission tomography 
(UST) [1-9]. The primary objective is to incor-
porate this system into wearable technology, en-
abling non-invasive monitoring and diagnosis of 
functional urinary tract disorders in children.

Functional disorders of the urinary tract are 
common in the pediatric population, with studies 
indicating that over 20% of children under five 
years old and 2–4% of adolescents are affected. 

These conditions may occur alongside other 
anomalies in the urinary system, constipation, 
or neurological issues like spina bifida and cere-
bral palsy. However, many children experience 
these disorders independently, without associated 
health complications [3–4, 10].

The absence of non-invasive diagnostic tools 
for thorough functional assessment of the uri-
nary tract hinders the ability to make accurate 
diagnoses and provide effective treatments. This 
gap may also lead to more children undergoing 
unnecessary treatments without clear clinical 
justification. Additionally, the development of a 
physical tomographic model is challenging due 
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to the intricate nature of acoustic wave behavior 
in small, heterogeneous environments within the 
body. Despite these challenges, the radial wave 
propagation model employed in UST has prov-
en effective in identifying internal irregularities 
and is already used in medical practice for non-
invasive diagnosis and monitoring of lower uri-
nary tract dysfunctions. The innovative aspect 
of this approach lies in the combined evaluation 
of urinary tract function through the integration 
of Electrical Impedance Tomography and Ultra-
sound Tomography [3, 9].

EIT is a non-invasive imaging technology 
that allows visualization of internal body struc-
tures, including muscles, blood vessels, and or-
gans. However, no EIT-based diagnostic system 
for the urinary tract is currently available glob-
ally. The development of such a system faces 
numerous hurdles, including limited research in 
the field, anatomical variations among individu-
als, and challenges in imaging bone structures 
and gas-filled areas. The envisioned system is in-
tended for clinical use, where it will support the 
diagnosis of urinary tract dysfunctions in specific 
groups of children with confirmed disorders.

Innovation of solution

Diagnosis of urinary disorders in children is 
usually associated with a great deal of stress for 
the patient. Currently used objective diagnostic 
methods (e.g., complete urodynamic examina-
tion, which involves the insertion of a catheter 
into the bladder and a rectal probe to assess uri-
nary tract function during bladder filling and dur-
ing micturition) in most cases are characterized 
by a significant degree of invasiveness, which 
often leads to their results being burdened with 
numerous artifacts, often resulting in their misin-
terpretation. Therefore, the authors of the project 
decided to create a device for non-invasive uri-
nary tract diagnostics, which will provide reliable 
results and significantly reduce negative feelings 
and risks for children with micturition disorders.

The device is ultimately intended to be a 
compilation of urinary potentials using electrical 
impedance tomography ultrasound and electro-
myography (EMG) for reading sphincter muscle 
tension (urethra and rectum). The energy effi-
ciency of the device for the first method is cur-
rently being analysed. In the following stages, 
the full device will be studied. The device pro-
duced is expected to create the conditions for 

broader imaging diagnostics of urinary tract func-
tion without invasive techniques, reducing the 
stress and risk associated with this and expanding 
the range of methods and their availability to chil-
dren. The child’s participation in the study poses 
no additional health risks to the child related to 
the study procedures. The procedures will be car-
ried out according to standards. The only differ-
ence is the combination of multiple consultations 
and activities into a single inpatient or outpatient 
visit. The benefit to the child will be a thorough 
medical specialty (urology) examination, a more 
thorough ultrasound evaluation of the urinary 
tract, and more detailed specialized advice (urolo-
gist/nephrologist and physiotherapist) on urinary 
hygiene conducted at the time of qualification 
for the study. The direct benefits of the proposed 
medical examinations will benefit children, who 
will be diagnosed more accurately and qualified 
for targeted diagnostics during the comprehen-
sive evaluation. The advantage will be the com-
prehensiveness and reduced time spent perform-
ing three specialized visits simultaneously (usg/
urologist/physiotherapist).

Children without urinary tract disorders will 
benefit from the test in the form of a more ac-
curate evaluation of the urinary tract, urological 
consultation and specialized advice on urinary 
hygiene. The outcome of the entire project (the 
manufacture of a device for non-invasive urinary 
tract diagnosis) will benefit society by obtaining 
a non-invasive diagnostic tool – it is expected to 
reduce the suffering associated with lower urinary 
tract diagnosis.

Electrical impedance tomography for 
urological applications

Using EIT as a non-invasive method for as-
sessing urinary tract function and the effects of 
urinary tract rehabilitation treatment is a unique 
solution on a global scale [1–2, 4]. There are no 
available urological diagnostic solutions of this 
type. The developed system will allow for con-
tinuous, long-term assessment of the current con-
dition of the urinary tract. EIT is a technique sen-
sitive to interference and requires the design of 
dedicated measurement sensors to ensure proper 
(electrical) contact with the patient’s body [4, 11]. 

Based on the collected test results, the sys-
tem will be designed to support the process of 
diagnosing urological diseases and planning in-
dividual therapy and rehabilitation dedicated to 
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a specific patient. The developed system is in-
tended to be a tool supporting the doctor’s work. 
The system will work based on measurement data 
from the device developed in the project and other 
diagnostic methods. Particular challenges when 
building such a system are: the development and 
implementation of deep neural network learning 
algorithms and the expansion of the classic ap-
proach to deep networks with elements of fuzzy 
set theory and fuzzy logic (deep neural fuzzy net-
work), which will allow for the possible exten-
sion of the developed system with the possibility 
of interpreting the results of processes teaching 
and/or introducing additional, not necessarily 
precise, knowledge in the learning process. The 
authors believe that such a system will contribute 
to developing a reference method in treating uri-
nary incontinence. They may influence guidelines 
in the diagnosis of functional urinary disorders. 
Currently, similar solutions are not available on 
the market [5–7]. 

Electrical impedance tomography 

EIT includes ECT for systems dominated 
by dielectric materials and ERT for processes 
involving conductive materials. Although these 
sub-modalities require different hardware setups, 
the core theoretical basis for solving electrical to-
mography problems originates from Maxwell’s 
equations [12–13]. Electrical tomography is an 
imaging technique that utilizes the varying elec-
trical properties of materials. This method applies 
a voltage or current source to the object of inter-
est, with measurements taken along its boundary. 
The acquired data is then processed by an algo-
rithm that reconstructs the image [6, 8].

In ECT, measurements are obtained by as-
sessing the capacitance between sensors posi-
tioned along the object’s boundary, functioning 
as capacitor sensors. Electrical resistivity (or im-
pedance) tomography similarly utilizes the vary-
ing electrical characteristics of materials for im-
aging. This method applies a voltage or energy 
source to the object, generating current flow or 
voltage distributions along its edges. The result-
ing data are processed through an algorithm that 
reconstructs the image. A key limitation of this 
tomography lies in its relatively low spatial reso-
lution, primarily due to the restricted number of 
available measurements, the non-linear nature 
of current flow through the medium, and the low 
sensitivity of voltage measurement devices to 

conductivity variations in the region of interest. 
Image reconstruction in electrical tomography is 
highly sensitive to modeling inaccuracies arising 
from poorly characterized auxiliary variables in 
the measurement model. A common issue is the 
imperfect knowledge of the object’s geometry, 
with errors in this aspect shown to have signifi-
cant consequences for the reconstruction process.

In EIT, the solution to the forward problem is 
to determine the potential distribution in an ob-
ject, given the boundary conditions and data. The 
numerical analysis of the problem at this point is 
presented using the example of electrical imped-
ance tomography and the finite element method. 
It is currently the most widely used numerical 
method for the approximate solution of field prob-
lems of complex geometry, in which the medium 
may exhibit characteristics of current heterogene-
ity, conductivity, etc. Most of the currently used 
image reconstruction algorithms use this method. 
Depending on the geometry of the area, there is a 
tendency to use isoparametric triangular or quad-
rilateral finite elements.

In medical diagnostics, many methods of im-
aging the human internal structure are used, each 
as an independent or complementary method. 
We should mention here the systems widely used 
today, with moderate prices, using ultrasound 
waves (ultrasonography and Doppler apparatus), 
as well as costly systems (requiring specialized 
equipment), but providing images (diagnostic in-
formation) of very good quality and high resolu-
tion, using magnetic resonance imaging (MRI).

Another class of imaging systems uses X-rays 
(X-ray equipment, computed tomography). Com-
puted tomography (CT – computer tomography) 
provides us with images of the best quality so far 
(carrying the most diagnostic information).

The computer tomograph is built based on an 
X-ray tube with which a sequence of layered im-
ages is made. The data set is then subjected to the 
analytical image reconstruction process. The re-
sulting image, called a tomogram, is obtained and 
carries information about the distribution of the 
linear X-ray attenuation coefficient in the exam-
ined tissue cross-section. X-ray methods (as op-
posed to the first two) are harmful to the patient’s 
health, which is particularly important in CT sys-
tems, as the patient’s absorption dose during a 
single examination is many times greater than a 
typical chest X-ray examination.

Impedance measurements appeared in medi-
cal research as early as the beginning of the 20th 
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century and settled permanently in the 1960s. 
They use the electrical properties of biological 
tissue (different types of biological tissue (and 
therefore different organs) and are character-
ized by different specific impedances [12–15]). 
The main task of EIT is non-invasive and, at the 
same time, completely harmless to the patient’s 
health [16–27]. Two-dimensional (or even three-
dimensional) imaging of the internal structure of 
the human body, using the differences above in 
impedance of the examined structures.

MATERIALS AND METHODS

Measuring system

Figure 1 presents the block diagram of the op-
eration of the impedance tomography system de-
signed for monitoring bladder filling with urine. 
The control element is an Intel Altera Cyclone 
IV FPGA, which communicates with the execu-
tive components via buses and interfaces. A DAC 
converter controlled by a functional block in the 

FPGA system is used as the excitation signal 
source. This solution allows for generating a sig-
nal with any waveform and synchronized phase. 
Another digital-to-analog converter controls the 
reference voltage value for the signal source and 
regulates the signal amplitude. The prepared 
signal is transmitted to the multiplexer system 
through a current measurement block (current/
voltage converter). Current measurement uses a 
programmable instrumentation amplifier and an 
analog-to-digital converter.

Upon detecting the start signal, the system 
initiates the measurement process, synchronizing 
the measurement time with a multiple of the sig-
nal period duration. This parameter has been im-
plemented as a configurable element to improve 
measurement accuracy while simultaneously 
extending the duration of the process itself. The 
most commonly used value of the measurement 
time multiplier relative to the excitation signal 
period is 3, which at an excitation frequency of 50 
kHz corresponds to a single measurement dura-
tion of 60 μs. This means that each measurement 

Figure 1. Block diagram of the impedance tomography system designed to monitor bladder filling. The 
FPGA-based system (Intel Altera Cyclone IV) controls the DAC converter generating the excitation signal, 
the instrumentation amplifier measuring current and voltage, and the multiplexer switching the measuring 

electrodes. The analog measurement data is digitized by the ADC converter and sent to RAM, from where it is 
sent to the data processing unit performing image reconstruction. The arrows indicate the direction of signal flow 

between the blocks
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cycle lasts about 180 μs. Further increasing this 
value does not bring any noticeable improvement 
in measurement accuracy.

A single measurement sequence measures 
both voltage and current values simultaneously. 
After verifying the correct setting of the current 
regulation block, the process of recording the 
measured value to a RAM cell corresponding to 
the ordinal number of a given measurement in 
the sequence is initiated in the next clock cycle. 
Simultaneously, the sequence for switching the 
multiplexer settings is activated according to the 
programmed assumptions.

The measurement in the solution is performed 
cyclically: the signal is measured sequentially on 
all 16 electrodes, after which the excitation and 
ground electrode positions are switched to the 
next in the sequence. The shift between the exci-
tation and ground electrode numbers is executed 
at the start of the measurement process by setting 
the initial values of the variables.

The ADC controller block measures current 
and voltage. This block performs measurement 
procedures and controls the measurement du-
ration, serving synchronization functions. The 
number of samples needed to synchronize the 
process with the signal period correctly is calcu-
lated based on the control signal from the excita-
tion signal sources. 

The root mean square (RMS) value is mea-
sured in two stages. In the first stage, the mean 
value of the measured signal is calculated, pro-
viding information about the DC component of 
the signal, if present. Next, the absolute values of 
the measured signals, reduced by the mean value, 
are summing. In the subsequent clock cycle, the 
sum is divided by the number of samples, gener-
ating a completion flag. This process results in a 
value proportional to the signal’s RMS value.

The FPGA signal measurement and process-
ing system stores one series of measurements in 
its memory. After completing a cycle of 256 mea-
surements (one series), a readiness flag is set to 
transfer the data to the processor, where further 
processing and analysis are performed.

After verifying the correctness and stability 
of the blocks’ operation, tests were conducted 
to measure the entire matrix. For this purpose, a 
test probe filled with a saline water solution and a 
plastic phantom were used (Figure 2).

Five measurement series were recorded for a 
sequence with an excitation shift relative to the 
ground by 180°. During the measurements, the 

Figure 2. Test tank used for calibration and 
verification of the EIT device. Inside the tank 

there is a phantom made of plastic that imitates 
the conductive properties of biological tissues. On 

the inner surface of the tank wall, 16 measuring 
electrodes are placed evenly distributed in one plane. 
The electrodes are used to cyclically measure voltage 
and current as part of the measurement sequence. This 
arrangement allows for simulation of the conditions 
of a real examination of the urinary bladder using an 

impedance tomography system

measured voltage value and the excitation voltage 
setting required to achieve the current within the 
desired range were recorded. The example below 
sets the acceptable under-regulation range to +/- 1 
µA. For this setting, the adequate time for measur-
ing one complete sequence (256 measurements) 
they are ranged from 50 to 100 ms, corresponding 
to about 10–20 frames per second. The maximum 
theoretical measurement speed for these settings, 
assuming an excitation frequency of 50 kHz and 3 
periods per measurement, is 0.016 s, which gives 
about 60 frames per second. However, this time 
is extended due to the need for constant current 
adjustment in real-world objects (Figure 3).

The measuring device is used to image the 
bladder. The tomography method is based on al-
ternating current stimulation and measuring the 
voltage on the skin surface. It is possible to re-
construct the studied area from the collected mea-
surements, i.e., to visualize the distribution of 
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electrical conductivity values. This distribution is 
obtained using proprietary algorithms primarily 
based on solving the inverse problem. The trans-
ducer module will be fastened to the underwear 
using a velcro strap (Figure 4) to maintain hy-
giene and allow for easy device reuse with other 
patients. Meanwhile, the measurement module is 
enclosed in a separate box that can be worn on 
a dedicated belt or placed in another convenient 
location for the patient. Using the tomography 
method, the system allows for imaging and moni-
toring the abdominal cavity in real time.

The device uses an AC excitation sequence 
between electrodes numbered i and i+3, where i 
denotes the electrode number in a given electrode 
strip. There are no excitations between the first 
and second sets of electrodes. The excitation se-
quence used allows for collecting 256 measure-
ments. The device records the voltage on the elec-
trodes, the excitation current, the excitation cur-
rent voltage, and the phase shift of the excitation 
current. There is dedicated software BETS (blad-
der electrical tomography system) version 1.1 
to operate the device, as shown in Figure 4. The 
program’s functionalities allow for measurement, 

Figure 3. Example of the measurement signal recorded during five measurement series in the test tank. The 
graph shows the voltage values   measured on the electrodes (continuous line) and the corresponding excitation 

voltage settings (measurement points), which allow maintaining a constant current intensity within the 
permissible control range of ± 1 μA. The repeatability of the waveforms in subsequent series and the correlation 
between the excitation voltage and the measurement response of the system are visible. These data are used to 

assess the stability of the EIT system and the accuracy of the current control

Figure 4. (a) Modular EIT measurement system consisting of the main tomograph module (measuring housing), 
an electronic unit controlling the measurement procedure (control board), and a set of 16 textile electrodes 
arranged in two rows of 8, placed in an elastic measuring underwear (visible in the photo); (b) view of the 
connection of the EIT device to the measuring head using a wire connector. The method of mounting the 

electrode and the wire leading the measurement signals from the skin surface to the processing unit is shown
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visualization, and recording. The desktop appli-
cation also allows for the reconstruction of a sin-
gle measurement and a series of measurements, 
automatically visualized in a graph representing 
a 2D cross-section of the abdominal cavity. Fig-
ure 5 shows the application’s user interface.

The device collects voltage measurements 
and processes them using built-in algorithms to 
generate a 2D reconstruction. Measurements 
from one electrode strip were used to perform the 
presented two-dimensional reconstructions, and 
the Gauss-Newton method with a regularization 
constant of 1e-8 was used to solve the inverse 
problem [28–31]. Additionally, the electrode 
placement was shown in the reconstruction plots.

Characteristics of electromagnetic compat-
ibility tests

The EMC tests conducted on the device aimed 
to thoroughly assess its resistance to various elec-
tromagnetic disturbances that may occur in its typi-
cal operating environment. The tests considered the 
emission of electromagnetic disturbances and the 
immunity to such disturbances to ensure the device 
complies with safety requirements and performance 

standards for medical devices and home environ-
ments. Each test was conducted under controlled 
laboratory conditions, by established methods and 
testing protocols, and the results were carefully 
analyzed against the criteria defined in standards, 
including PN-EN 55011 and PN-EN 55032.

During the electromagnetic emission tests, 
both conducted and radiated emissions were ex-
amined to assess the device’s ability to limit un-
wanted electromagnetic signals across a wide 
frequency range. Conducted emissions ranged 
from 0.15 to 30 MHz, while radiated emissions 
were measured from 30 MHz to 6 GHz. The re-
sults indicate that the device effectively limits 
electromagnetic emissions to acceptable levels, 
evidenced by well-designed shielding and filter-
ing components. Meeting these requirements is 
crucial, as excessive electromagnetic emissions 
can interfere with the operation of other sensi-
tive devices, especially in medical environments 
where precise measurements and device stability 
are essential (Figure 6).

Figure 6 presents merged measurement re-
sults obtained for the EUT (equipment under 

Figure 5. The main panel of the BETS (Bladder Electrical Tomography System) application in version 1.1, 
used to operate the EIT system. The user interface consists of three main sections: (1) a panel for connecting to 
a tomographic device via a USB port (with selection of the appropriate COM port), (2) a panel for visualizing 

measurement signals in real time, and (3) a panel for reconstructing a 2D image showing a cross-section of 
the abdominal cavity. The program allows for performing, saving, and analyzing single measurements and 

measurement series with automatic reconstruction of conductivity images
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test). This graph includes all measurement re-
sults obtained during the preliminary test. Still, 
it shows only the highest level at each frequency 
(blue solid line – for peak detector, green solid 
line – for average detector). Final measurement 
results for selected frequencies are omitted be-
cause recorded levels were more than 10 dB be-
low limits during the preliminary test. The red 
line is the permissible limit for a qua-si-peak de-
tector by EN 55011 class B group 1 and PN-EN 
55032, and the pink line is the allowable limit 
for the average detector by EN 55011 class B, 
group 1 and PN-EN 55032.

The immunity tests of the device to electro-
magnetic disturbances examined the system’s 
response to various external disruptions. The 
electrostatic discharge (ESD) and electrical fast 
transient (EFT) immunity tests simulated sud-
den, short bursts of energy that can occur due 
to direct user contact with the device or from 
external electrical disturbances. The device 
demonstrated a high level of immunity to these 
disturbances, showing no significant deviations 
in functionality, confirming its ability to oper-
ate stably under real-world conditions. Addi-
tionally, surge immunity and power frequency 
magnetic field tests were conducted to evaluate 
whether the device can function effectively in 
strong electromagnetic disturbances, such as 

fluctuating magnetic fields in typical operation-
al environments (Figures 7–9).

Figure 7 presents merged measurement re-
sults obtained for the EUT. This graph includes 
all measurement results obtained during the 
preliminary test but shows only the highest lev-
el at each frequency (blue line). The final mea-
surement results for selected frequencies are 
presented as blue rhombus (using a quasi-peak 
detector). The red line is the permissible limit 
for EN 55011 class B, group 1 devices, PN-EN 
55032, and QP detectors. In the case of the ra-
diated emission test (Figure 7), local exceed-
ances of the permissible interference levels for 
class B according to the EN 55011 standard 
were observed. These exceedances occurred 
in a narrow frequency range and were repeat-
able in subsequent tests. They were most likely 
caused by conductive elements inside the hous-
ing not covered by sufficient shielding. There-
fore, design modifications to the device are 
planned (including strengthening the shielding 
and signal filtering), which will be taken into 
account before the product is implemented in 
clinical practice. Despite the exceedances, the 
device demonstrated stable operation without 
loss of functionality, which is also confirmed 
by interference immunity tests.

Figure 6. Measurement results of the interference voltages conducted in the power supply port of the device 
(EUT – Equipment Under Test), obtained during electromagnetic compatibility (EMC) tests. The graph shows 

the peak values   (blue continuous line – peak detector) and average values   (green continuous line – average 
detector) for all measurement frequencies in the range of 0.15–30 MHz. The red line represents the permissible 

interference level for the quasi-peak detector according to the EN 55011 class B, group 1 standard, and the 
pink line – for the average detector according to the same standard. The device meets the requirements of the 

standards in the entire range of tested frequencies
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Figure 7. Results of the measurement of the level of radiated interference emitted by the EUT (equipment under 
test) in the frequency range of 30 MHz – 1 GHz, performed during electromagnetic compatibility (EMC) tests. 
The blue line shows the highest recorded signal level in a given frequency during the preliminary test. The blue 
diamonds indicate the final measurement values   obtained with the quasi-peak (QP) detector. The red line shows 
the permissible emission level according to the EN 55011 class B, group 1 standard. Local exceedances of the 

limit values   are visible in several frequency ranges, which is discussed in the body of the article

Figure 8. Electromagnetic field levels recorded during a radiation immunity test in the 1 GHz – 2.7 GHz range 
using horizontal polarization, conducted in an anechoic chamber (SAC). The blue line shows the level of electric 
field exposure (E-field) in the vicinity of the tested device (EUT - equipment under test). The test was performed 
in accordance with the PN-EN 61000-4-3 standard. The device did not show any interference in operation, which 

confirms its immunity to radiated interference in this frequency band

As part of the electromagnetic radiation im-
munity tests, measurements were carried out in 
the SAC (Semi-Anechoic Chamber), in the fre-
quency range from 1 GHz to 2.7 GHz. Figure 8 
shows the levels of exposure to the electromag-
netic field (horizontal polarization), recorded in 
the vicinity of the tested device (EUT). All re-
corded values   were below the permissible thresh-
olds specified in the PN-EN 61000-4-3 standards, 

which confirms the device’s immunity to interfer-
ence in this frequency band.

The radiation immunity tests in the 1–2.7 
GHz band are supplemented by measurements 
performed using vertical polarization, the results 
of which are shown in Figure 9. As in the case 
of horizontal polarization, all recorded exposure 
values   were below the permissible thresholds 
according to the PN-EN 61000-4-3 standard. 
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The device did not show any undesirable reac-
tions, which confirms its immunity also in this 
measurement system.

The conducted EMC tests confirmed that the 
device meets stringent electromagnetic compat-
ibility requirements, both in terms of minimizing 
emissions and in terms of immunity to external 
disturbances. This ensures that the device can be 
safely used in medical environments, where oper-
ational stability and reliability are crucial, as well 
as in home environments. The results obtained 
during the tests comply with the standard require-
ments, providing a basis for a positive assessment 
of the device’s compliance and further certifica-
tion. These tests represent an important stage in 
the evaluation and market introduction of medical 
devices, ensuring their safety, performance, and 
reliability across a wide range of applications.

RESULTS

A machine learning model was applied to re-
ceive an image reconstruction from the obtained 
EIT measurements. In the context of energy and 
time optimization, it is important to choose the 
proper reconstruction method. In this section, 
three different machine learning algorithms were 
presented and compared: Decision Tree, NNET, 

and Elastic Net. The application of artificial in-
telligence provides a non-invasive and effective 
solution for the image reconstruction problem.

The models were trained on EIT simulated 
data using R programming language [32] and 
packages such as rpart (version 4.1.19) [33], 
nnet (version 7.3.18) [34], and glmnet (version 
4.1.7) [35]. The Electrical Tomography Imped-
ance (EIT) dataset was generated by simulation 
based on realistic anatomical models represent-
ing the conduction conditions in the lower ab-
dominal cavity. The training set consisted of a 
measurement matrix (3750 observations of the 
measurement vector) and corresponding image 
data of the urinary bladder (3750 observations of 
7320 pixels). The measurement vector contained 
32 voltage measurements at the measuring elec-
trodes. The adopted measurement sequence was 
intended to reflect the designed hardware. The 
test set consisted of 1250 observations. A model 
was built for each of the 7320 pixels. This ap-
proach ensures better reconstruction quality. It 
was applied for every discussed method. Due to 
the number of models being built, the hyperpa-
rameters were selected by manual search. The 
paper contains exemplary image reconstructions 
and the comparison of the models using measures 
such as mean squared error (MSE, formula 1) and 
structural similarity index (SSIM, formula 2).

Figure 9. Electromagnetic field levels recorded during a radiation immunity test in the 1 GHz – 2.7 GHz 
frequency range, conducted in a semi-anechoic chamber (SAC) using vertical polarization. The blue line shows 
the electric field (E-field) exposure level in the vicinity of the EUT (Equipment Under Test). The device met the 
interference immunity criteria according to the PN-EN 61000-4-3 standard, showing no functional interference
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where: xi is the true value, yi denotes the predicted 
value and n is the sample size.
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where: c1 and c2 balance the division, μx, μy are 
the mean values of x and y, σ1

2, σ2
2 are the 

variances of x and y, σxy is the covariance 
of x and y.

The metrics were calculated for each case 
and then averaged. The selection of algorithms 
for image reconstruction from EIT measure-
ments was guided by the need to balance three 
fundamental criteria: prediction accuracy, com-
putational efficiency, and feasibility of applica-
tion in real-time systems. Given the inherent 
limitations of EIT, including the relatively low 
spatial resolution and the nonlinearity of electri-
cal current propagation in biological tissues, it is 
crucial to employ machine learning techniques 
that are capable of modeling complex relation-
ships between voltage measurements and the 
corresponding internal conductivity distribution 
while maintaining acceptable processing times. 
The first method analysed was the Decision Tree, 
a model that partitions the input space into hier-
archically structured regions based on sequential 
decision rules [36]. Decision trees are valued for 
their transparency and intuitive interpretability, 
making them suitable for scenarios where model 
explainability is critical. While relatively fast and 
straightforward to implement, they are prone to 
overfitting, especially in the absence of appro-
priate pruning mechanisms. Despite this, their 
ability to model non-linear relationships makes 
them a relevant baseline in the context of EIT. 
The second approach, neural network (NNET), 
utilizes layers of interconnected artificial neu-
rons to approximate complex functions [37]. In 
the context of EIT, neural networks are particu-
larly advantageous due to their capacity to learn 
intricate, non-linear mappings from measurement 
data to reconstructed images. Proper configura-
tion of the network architecture and training pa-
rameters allows for effective generalization and 
robust performance. When adequately regular-
ized and trained, neural networks can offer both 
high reconstruction accuracy and low latency, 
making them promising candidates for deploy-
ment in energy- and time-constrained systems. 
The third method, Elastic Net, represents a linear 

regression model enhanced with a combination 
of L1 and L2 regularization [38]. This hybrid 
penalty framework allows the model to handle 
high-dimensional data and multicollinearity more 
effectively than traditional regression methods. 
Elastic Net is particularly suitable when the num-
ber of predictors is large relative to the number 
of observations. However, as a linear model, it 
may be less capable of capturing the complex, 
non-linear structures typically present in EIT 
data, which can limit its reconstruction accuracy 
in comparison to more flexible models. The three 
selected algorithms reflect a range of modelling 
philosophies—from simple to complex. This di-
versity enables a comprehensive assessment of 
their respective strengths and limitations in the 
context of EIT-based image reconstruction, with 
a particular focus on balancing accuracy, compu-
tational demand, and practical applicability.

Comparison of machine learning algorithms

Three machine learning algorithms were com-
pared in the context of reconstructing images from 
EIT measurements: decision tree, NNET, and 
elastic net. A decision tree is a machine learning 
model that facilitates data classification or regres-
sion by organizing information into a hierarchical 
structure of conditions. The algorithm recursively 
partitions the dataset into progressively smaller 
subsets, ultimately reaching terminal nodes, or 
“leaves,” which correspond to the final predic-
tions for individual observations. The partitioning 
process at each node is guided by criteria such as 
entropy, the Gini index, or mean squared error, de-
pending on the task at hand. While decision trees 
are intuitive and easily interpretable, they are prone 
to overfitting, particularly when the tree structure 
becomes overly complex or too deep. To mitigate 
overfitting, various techniques such as pruning, 
cross-validation, or tree aggregation methods—
like random forests or boosting—are employed. 
Decision trees are versatile models suitable for a 
range of applications, including forecasting, data 
mining, dimensionality reduction, and detecting 
interactions between variables (Figure 10).

The NNET model is a neural network avail-
able through the nnet package in R, commonly 
used for machine learning tasks that require un-
covering complex patterns and relationships in 
data. A neural network is composed of layers of 
artificial neurons, where each neuron processes 
input data via activation functions and weighted 
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Figure 10. Comparison of the original object (on the left) and the Decision Tree reconstruction (on the right) for 
four randomly selected cases from the test set

connections. The nnet package allows the creation 
and training of a feedforward neural network with 
a single hidden layer. The model can be applied to 
both classification and regression tasks, depend-
ing on the nature of the target variable – either cat-
egorical or numeric. It is trained using a backprop-
agation algorithm, which fine-tunes the network’s 
weights by minimizing the errors between pre-
dicted and actual outcomes. Additionally, regular-
ization is used to prevent overfitting by penalizing 

excessively large weights. In this configuration, 
the model uses three neurons in the hidden layer, 
balancing the ability to capture intricate patterns 
with the risk of overfitting. The weights are ini-
tialized randomly within a specified range of 0.2, 
influencing the initial state of the network’s learn-
ing. To prevent overfitting, a small regularization 
factor (0.0005) is applied, which improves gener-
alization by adding a penalty to large weights. The 
learning algorithm is set to run for a maximum of 

Figure 11. Comparison of the original object (on the left) and the NNET reconstruction (on the right) for four 
randomly selected cases from the test set
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200 iterations, allowing sufficient exploration of 
the solution space, though extended training can 
increase the risk of getting stuck in local minima 
and lengthen the computation time. This configu-
ration enables the model to learn effectively while 
managing the trade-off between complexity and 
overfitting (Figure 11).

The Elastic Net is a linear regression model 
that incorporates both L1 and L2 penalties as 
a form of regularization, effectively combining 
the strengths of Ridge and Lasso regression. This 
dual regularization method helps reduce dimen-
sionality and prevents overfitting, making it par-
ticularly useful when the dataset contains a large 
number of features compared to the number of 
observations. By applying regularization, Elastic 
Net ensures that the model remains generalizable, 
even in high-dimensional spaces. The degree to 
which the L1 and L2 penalties are applied is con-
trolled by the alpha parameter, which ranges from 
0 to 1. When alpha equals 0, the model behaves 
as Ridge regression (L2 penalty), and when alpha 
equals 1, it mimics Lasso regression (L1 penalty). 
For values of alpha between 0 and 1, Elastic Net 
applies a combination of both penalties, allowing 
for greater flexibility in controlling the model’s 
complexity. Elastic Net is widely employed in 
fields such as data analysis, text mining, and visu-
alization, where it excels in handling datasets with 
many correlated variables. Its ability to manage 
the problem of multidimensionality, particularly 

when the number of variables exceeds the num-
ber of observations, makes it a robust choice for 
regression tasks that require balancing bias and 
variance (Figure 12).

Image reconstruction quality

Table 1 compares the performance of three 
discussed machine learning algorithms based on 
two metrics: MSE (mean squared error) and SSIM 
(structural similarity index). The lower the value of 
MSE and the higher the value of SSIM, the better 
the quality of the obtained image reconstructions. 
Additionally, the time of prediction generation 
was measured. Regarding energy and performance 
optimization, the model should have the most mi-
nor reconstruction error and make predictions in 
the shortest time possible. It can be seen that the 
NNET method (a neural network with 3 neurons 
in the hidden layer) has the lowest MSE and the 
highest SSIM, what suggests that it has the best 
forecasting quality. It also makes predictions in the 
shortest time of 7.49 seconds. The Decision Tree 
algorithm has slightly higher MSE value than the 
NNET model, what means that it is less efficient 
at predicting the value of the dependent variable. 
The Elastic Net algorithm has the highest MSE 
value, indicating the worst forecasting accuracy. 
However, from the prediction time point of view, it 
performs similarly to the NNET network. Among 
the evaluated methods, the NNET one proved to be 

Figure 12. Comparison of the original object (on the left) and the Elastic Net reconstruction (on the right) for 
four randomly selected cases from the test set
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the most effective for EIT-based image reconstruc-
tion. It offers the best balance between accuracy 
and computational efficiency, making it a suitable 
choice for energy-aware and real-time applications. 
Despite its numerous advantages, EIT has several 
significant limitations that can affect the quality of 
the obtained results. One of the key challenges is 
its sensitivity to modelling errors. Small inaccura-
cies in the geometric model of the examined object 
or errors in the assumptions regarding conductivity 
properties can significantly reduce the quality of 
image reconstruction. In addition, the limited num-
ber of available measurements and the nonlinear 
nature of current flow through various media inside 
the body make it difficult to obtain high-resolution 
images. Another significant limitation is the imper-
fection of the measurement equipment, especially 
the sensitivity of the sensors and limitations in the 
precision of voltage and current measurements. 
Even small disturbances in the electrical contacts 
between the electrodes and the patient’s skin can 
lead to errors in the measurement results, which in 
turn affects the quality of image reconstruction. In 
the case of portable EIT devices, where compact 
and energy-efficient solutions are required, limita-
tions related to the miniaturization of the equipment 
can also affect the accuracy of the obtained images. 
Despite the promising results obtained using image 
reconstruction algorithms in EIT, this technique is 
still limited by its sensitivity to modelling errors 
and hardware imperfections. Future research will 
need to focus on improving measurement accura-
cy, developing more advanced mathematical mod-
els, and designing more efficient sensors. These 
improvements will allow for increased precision 
in image reconstruction and broader applications 
of EIT in medical diagnostics. To summarize the 
research, the most suitable method is the NNET 
neural network. It provides fast and high-quality 
prediction. Artificial intelligence is an appropriate 
and beneficial solution to the image reconstruction 
problem based on EIT measurements.

CONCLUSIONS

The EIT enables non-invasive study of in-
ternal processes in objects, without the need for 
direct intervention. The collected data is anal-
ysed and transformed into images using special-
ized algorithms. However, this form of tomogra-
phy suffers from limitations in image resolution. 
Challenges include the limited number of mea-
surements, the complex nature of electric cur-
rents in different media, and the low sensitivity 
of voltage measurements to conductivity changes 
in the studied area. A key challenge remains the 
development of precise measurement tools and 
algorithms for effective image reconstruction. 
Data analysis plays a key role in tomography-
based diagnostics, and the inverse problem is re-
lated to optimization, identification, or synthesis, 
where parameters describing the field are inferred 
from the collected information. These problems 
are complex, often lack clear solutions, and are 
prone to misinterpretation due to insufficient or 
excessive data. A better understanding of the re-
construction process can increase the system’s 
robustness to incomplete data. Our research has 
shown that in processes based on electrical to-
mography, there is no single, universal method 
that is ideal for data reconstruction and analysis. 
Machine learning methods, such as Elastic Net, 
may be less precise with real measurement data, 
but they offer relatively fast results. In the context 
of optimization, the NNET neural network turned 
out to be the most effective solution. The research 
results were presented both graphically and nu-
merically, which facilitates visual and quantitative 
analysis of the results. The developed algorithms 
and observations can be used in various medical 
fields, which opens the way to new clinical appli-
cations. According to the results of our research, 
special attention should be paid to the further de-
velopment of image reconstruction techniques, 
including the use of more advanced deep learning 
methods. Potentially, the combination of imped-
ance tomography techniques with ultrasound can 
significantly increase the precision of diagnosing 
and monitoring internal organ dysfunctions, espe-
cially in the field of pediatric medicine. However, 
it is worth noting that achieving high resolution 
requires not only improving algorithms, but also 
optimizing measurement systems, including im-
proving sensors and developing new signal pro-
cessing methods.

Table 1. Comparison of image reconstruction indicators

The method Time [s]
Indicator

MSE SSIM

Decision tree 25.96 0.002255 0.999969

NNET 7.49 0.0004245 0.9999945

Elastic net 8.47 0.004616 0.9999368
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Our research confirms the growing impor-
tance of artificial intelligence applications in 
medical imaging techniques. While previous 
studies focused mainly on classical reconstruc-
tion methods, our work introduces new perspec-
tives related to the use of methods such as neural 
networks and their advantages over other tech-
niques in specific conditions [1]. Our results are 
consistent with this trend, and at the same time 
indicate the need for further work on the develop-
ment of more advanced models.

Practical applications of this technology in-
clude not only medical diagnostics, but also mon-
itoring and control of technological processes in 
industry. In particular, the integration of EIT tech-
nology with remote monitoring systems could be 
a significant step forward in such fields as bio-
medical engineering, process control or construc-
tion. The key direction of future research should 
be not only improving the reconstruction meth-
ods, but also analysing the energy efficiency of 
these systems, which is of particular importance 
for portable and wearable devices.

Our research highlights the potential of EIT 
techniques supported by machine learning in 
medical imaging and diagnostics. Future research 
should focus on further optimization of algo-
rithms, as well as integration of different imaging 
techniques to maximize their precision and effi-
ciency. This technology also has wide application 
possibilities in other industries, including moni-
toring industrial processes and developing remote 
diagnostic systems.
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