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ABSTRACT

Global date palm production is steadily increasing and adopting technologies such as unmanned aerial vehicles
(UAVs) and deep learning can reduce costs, save time, and improve productivity. To address this issue, the authors
have proposed an innovative approach that uses UAVs for high-resolution aerial imaging. These images, collected
by the Department of Computer Engineering at Al-Salam University in Baghdad and the Institute of Machine
Design, Faculty of Mechanical Engineering, Poznan University of Technology, support improved orchard manage-
ment, palm counting, and yield estimation. Precise spraying and pollination are also facilitated and accelerated,
reducing overall cultivation costs. The proposed methodology involves processing captured images and applying
three versions of the you only look once (YOLO) object detection algorithm, v11, v12, and YOLO-NAS - to
determine the most effective model. The YOLOv12 model achieved the highest mAP@50 at 99.12%, which vali-
dates its superior performance in this application. The main innovation is the integration of deep learning-based
palm crown detection with UAV imagery, enabling automated and scalable monitoring of palm plantations. The
proposed methodology enables rapid, cost-effective, and scalable palm tree enumeration and management. A mo-
bile application based on the trained model is planned to support real-time palm detection, yield estimation, and
resource optimisation for farmers and stakeholders.
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INTRODUCTION

The date palm tree (Phoenix dactylifera L.) is
of profound cultural, economic, and environmen-
tal importance to the Middle East and North Af-
rica (MENA) region. It is one of the oldest fruit-
ing trees in the world and has been a staple crop
in its base form. Egypt, Iran, Iraq, Saudi Arabia
and the United Arab Emirates are global leaders
in date production, producing around 67% of the
world’s production. The versatility of date palm
is notable —not only are its fruits a key nutritional

resource for humans and livestock, but the tree
also supports various industries, including those
producing oil, wine, and natural fibres [1, 2].

In addition to its economic value, the date
palm plays an important ecological role. It helps
to sustain arid environments by providing shade
and serving as a refuge for desert fauna. Beyond
the fruit, other parts of the tree, such as leaves and
bark, are utilized in the manufacture of cosmetics,
paper, and construction materials. This combina-
tion of practical utility and cultural heritage high-
lights the enduring relevance and its multifaceted
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contribution to the agricultural and ecological
systems of the region [3].

In Iraqi trade, dates are one of the most im-
portant staple foods and form a major part of the
local economy, as many farmers and exporters
depend on this fruit as a major source of income.
The total production value of agricultural produc-
tion in 2003 was approximately $139,688. How-
ever, it decreased in 2004 to $30,859, which may
be due to the impact of conflicts and socio-eco-
nomic shocks in the region during that year. The
value gradually increased in the following years
to reach $41,172 in 2005 and $43,969 in 2006. A
significant increase is observed by 2020, where
the value reaches $559,535 and then slightly de-
creases to $487,388 in 2021. However, the total
production value in 2022 reached about $617,125,
indicating good recovery and an increase in the
value of date agricultural production of dates,
which showed a good sign of recovery [4].

In recent years, modern technologies, par-
ticularly those based on computing and Al, have
demonstrated remarkable success in various
fields. For example, in the healthcare sector, arti-
ficial intelligence has been applied effectively for
diagnostics and patient monitoring [5, 6].

In agriculture, unmanned aerial vehicles
(UAVs) equipped with deep learning models have
been used to detect and count olive trees with
high precision [7].

Similarly, Al-based systems have achieved
impressive accuracy in recognizing handwritten
English and Arabic numerals, a task traditionally
considered highly challenging for machines [8§].

These achievements, many of which involve
time-consuming tasks for humans, highlight AI’s
growing potential to solve complex problems ef-
ficiently. Based on these advances, this study pro-
poses the application of Al tools to help detect and
counting of date palm trees using UAVs [9, 10].

The objectives are tridimensional: (1) to pro-
mote the management of agricultural stock and
resources; (2) to optimize the effectiveness of
pest control and pollination; and (3) to develop
the monitoring and early detection of disease
or pest infestation. Furthermore, through con-
tinuous training and development, such systems
should ideally be able to distinguish between
male and female palm trees or even identify spe-
cific date palm species using crown morphology
or canopy features.

Therefore, the correct identification and de-
tection of palm trees are of utmost importance

for proper management in the context of enu-
meration and distribution analysis. Against this,
the prediction of production volume and proper
plantation management [10]. However, obtaining
the correct statistics may be difficult and requires
modern agricultural technology. Designing an
efficient research method for personal palm tree
studies is necessary for intelligent palm tree man-
agement [11]. They are time consuming, resource
intensive and expensive [12, 13]. Remote sensing
techniques, for example, satellite and drone im-
agery, are useful in monitoring palm plantations
[14, 15]. Satellite remote sensing techniques have
been increasingly used in the past two decades in
a wide range of applications, such as land cover
classification [16], palm plantation mapping [17],
soil classification [18], counting [19], yield es-
timation [20], age estimation [21] and pest and
disease detection [22]. Where satellite images
are used, there are also difficulties caused by the
cloud base [23], whereby palm trees are difficult
to identify because the images obtained are of
poor quality [24]. Drones are the best choice, as
they are lightweight, compact, and not expensive.
The drone typically has a high-resolution camera
that can capture medium- to high-quality wide-
angle images, depending on the flight altitude.
Consequently, aerial photography has emerged as
a preferred data source for monitoring palm plan-
tations, offering cost savings, wide coverage, and
access to remote areas [14, 25].

During the past decade, revolutionary ad-
vances in computer hardware and developments
in Al technology have made novel ways of de-
tection and feature extraction from an image pos-
sible [26]. One of the primary technologies in
Al, convolutional neural networks (CNNs), has
been at the forefront of object detection and im-
age interpretation in computer vision. Traditional
machine learning object detection has been used
to identify palm trees and other objects from im-
ages collected from drones. It is a three-step pro-
cedure: image preprocessing, feature extraction,
and classification. In [25] Bazi et al. employed
scale-invariant feature transform (SIFT) features
from key points of palm trees. Feature vectors
were then drawn at each key point, which were
provided as inputs to an extreme learning ma-
chine classifier for the identification of palm trees.
The precision of the palm tree detection method
was 91.11%. Manandhar et al. in [27] used the
Circular Autocorrelation matrix for Polar Shape
(CAPS) as a feature extractor and an support
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vector machine (SVM) classifier for oil palm tree
detection using shape features. The mean accu-
racy of the method was 84%. However, feature
extractors in traditional object detection methods
are hand-designed features defined by humans. It
is difficult to make such a representation robust.
The classification accuracy relies heavily on the
set of features and classifier, which relies heav-
ily on the set of data, and hence developing such
systems manually is extremely difficult.

Another alternative to solving the above
problem is deep learning. CNNs are deep learn-
ing-based algorithms that could extract millions
of object’s higher-level features and then use
those features efficiently in object detection and
object classification. Great progress has been
made in the last few years to develop techniques
for detecting geolocated objects on high-resolu-
tion remotely detected images, such as palm tree
crowns [28]. These methods can be classified into
two groups: two-stage object detection methods
such as the Fast Region-based Convolutional
Network method (Fast R-CNN) [29] and Mask R-
CNN [30], and one-stage object detection meth-
ods such as you only look once (YOLO) v2/v3/
v4 [31, 32], RetinaNet [33], and VGG-SSD [32].
Comparing the accuracy and efficiency of several
tree crown detection techniques [32], some have
found that two-stage object detection algorithms
are superior to one-stage algorithms in accuracy,
while the one-stage algorithm can significantly
speed up tree crown detection [29]. One of the
most well-known object detection techniques is
the YOLO algorithm, presented by Redmon et al.
[34]. YOLO is a single-stage technique that has
CNNss as the foundation. The primary motivation
behind YOLO was to get beyond the limitation
of the then-existent two-stage object detection al-
gorithms’ detection time. YOLO variations have
been largely utilized and implemented in various
applications such as medicine [33], remote sens-
ing [35], transportation [36], and agriculture [37].

Previous studies have shown that the YOLO-
based approaches to object detection are effective
in different types of images. Traditional methods
of remote sensing in agriculture such as SIFT
with extreme learning machine (ELM) or CAPS
with SVM are less flexible to variations in illu-
mination, occlusion, and scale in aerial images
because they are based on handcrafted features.
Although two-stage detectors, such as Mask R-
CNN, have high accuracy, they are associated
with high computational requirements. On the

contrary, YOLOVI12 integrates speed and accu-
racy in a one-stage model, which is suitable for
real-time UAV-based surveillance, particularly in
edge computing and wide-area coverage.

The proposed research will improve palm tree
detection by reducing the computational time in
UAYV imagery. We offer a quick and stable meth-
od of accurate palm location using YOLOVI12,
which combines the advantages of previous ver-
sions. The results are part of the work that helps
to restore the palm industry and consequently the
sustainability of its agriculture and culture.

DATASET DESCRIPTION

Aerial images and videos of a date palm
plantation were captured using a camera mount-
ed on a UAV that flew over the farm. These data
were collected by the Department of Computer
Techniques Engineering at Al-Salam University,
Baghdad, Iraq, and the Institute of Machine De-
sign, Faculty of Mechanical Engineering, Poznan
University of Technology, Poland. The study area
is a private orchard called Fadak, named after a
historic oasis rich in dates. The plantation cov-
ers approximately 500 hectares (1.235 acres) and
is managed by the Imam Hussein Shrine in the
nearby holy city of Karbala. The geographical
coordinates of the plantation are 32°43°19.5”N,
43°52°35.4”E. Palm trees are plantedina 5 x 5 m
grid, with a total of 30,000 trees recorded in 2024,
a number that continues to increase annually.

Image acquisition took place on November 5,
2024, between 11:30 a.m. and 1:00 p.m. under
clear sky conditions. A high-resolution RGB
camera specifically designed to monitor agricul-
tural conditions was mounted on the UAV plat-
form. As shown in Figure 1, the UAV was used to
capture top-view images of palm crowns. Table 1
provides a complete overview of the technical
specifications of the UAV used.

The characteristics listed in Table 1 enable
high-resolution image acquisition suitable for
precision farming.

The resolution of the captured images was
1080 x 1920 and 540 x 960 pixels with 8-bit
depth per channel and spatial resolution of about
5-6 cm/pixel at altitudes of 100-310 metres (see
Figure 2). Palm tree counting did not require ge-
ometric correction. The data set consisted of 195
images and 5 videos recorded by UAV, and the
videos were divided into still frames with one
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Table 1. Technical specifications of the UAV and
camera system used for image acquisition

Component
UAV model

Specification
DJI Mini V3 Fly 4K

100-310 meters

1/2.3” CMOS, 12.35 effective
megapixels

3000 x 4000 pixels

Flight altitude range

Camera sensor

Image resolution

Lens field of view 78.8°
Focal length 26 mm
Aperture fl2.2
ISO range 100-1600
Distortion <1.5%
Autofocus range 0.5mto =
Image format JPEG

frame per 2 seconds (total 495 images), assum-
ing an average UAV speed of 6.1 m/s (22 km/h).
To improve the classification, data augmentation
increased the number of images to 1059. Data
were saved on a Micro-SD card and uploaded to
a PC to be processed. MATLA B® was used to
analyse the images, train machine learning, and
count them on an HP laptop with an Intel Core 17-
7.5K U CPU (2.70 2.90 GHz), 12 GB RAM, and
Windows 10 Pro.

DATA PREPARATION

To improve model resilience and gener-
alization across varying visual conditions, an

end-to-end data preparation pipeline was used
that included both preprocessing and enhance-
ment. Operations were performed uniformly
during training to simulate real-world object ap-
pearance and orientation variations, especially
in agriculture where lighting and viewpoints can
dramatically vary.

Preprocessing

The preprocessing step guaranteed uniform
input quality and format. Each image was auto-
matically oriented (Auto-Orient: Applied) from
the embedded metadata, placing it in the correct
orientation. Images were resized to a uniform res-
olution of 640 x 640 x 3 pixels by using a stretch-
based scaling method. This guaranteed uniform
input size across the dataset and satisfied the ar-
chitectural needs of the model.

Data augmentation

Data augmentation played an important role
in augmenting the training set and reducing over-
fitting by generating diverse image versions. Each
training image was subjected to a maximum of
seven outputs of augmentation, including spatial,
color, and geometric transformations:

e Flipping — horizontal and vertical flips were
applied randomly to simulate mirrored views
of the orchard.

e Rotations — images were rotated at 90° in-
crements (clockwise, counterclockwise, and
upside down) as well as at random angles

\

s

Figure 1. The DJI Mini V3 Fly 4K UAV was used to capture top-view images of the palm farm
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Figure 2. Four examples of UAV images of date palm crowns captured at different altitudes and angles
at Fadak Farm, Karbala, Iraq

between -25° and +25°, mimicking arbitrary

UAV camera orientations.

e Grayscale conversion — to simulate poor light-
ing or sensor quality, 15% of the images were
converted to grayscale.

e Bounding box transformations:

— rotation — applied a mild bounding box ro-
tation of £ 2°, accounting for subtle angular
deviations;

— shearing — introduced controlled shear trans-
formations of + 6° horizontally and + 7° ver-
tically, emulating perspective distortions;

— brightness variation — the boundaries were
subjected to brightness adjustments ranging
from -15% and +15%, which relate to natu-
ral varying conditions of field illumination.

This synergy in augmentation greatly in-
creased the diversity of datasets, through which
the YOLO-based model was able to perform bet-
ter against occlusions, lighting invariances, and
object pose and scale variations.

METHOD

You only look once

The recent years have witnessed a para-
digm change in object detection models with
the YOLO series as a central pillar for real-time

visual perception-based applications. Originally
designed by [34], the YOLO architecture initiated
the single stage end-to-end detection stage through
the combination of localization and classification
into a single streamlined process. This revolution
brought with it a new benchmark for speed and
accuracy, which is crucial for applications based
on robotics, surveillance, and agriculture.

With every repetition of the sequence, each
occurrence had encountered upcoming issues in
detection processes. YOLOv8 experienced the
shift towards anchor-free architecture with de-
coupled detection head and improved multiscale
feature extraction through parsed CSP backbone
and Feature Pyramid Network. It was an expres-
sion of a consistent trade-off between accuracy
and speed and was applicable for low-weight re-
al-time applications [38].

YOLOVWY introduced the Generalized Efficient
Layer Aggregation Network (GELAN) architec-
ture and the programmable gradient information
(PGI), which helped the model converge faster
and generalize better, especially in difficult con-
ditions. YOLOv10 also improved performance
with a dual-assignment scheme, light heads, and
decoupled down sampling — eliminating post-pro-
cessing steps such as non-max suppression [39].

Following this trajectory, YOLOv1l em-
ployed cutting-edge modules such as spatial pyra-
mid pooling-fast (SPPF) and Convolutional block
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with Parallel Spatial Attention (C2PSA), improv-
ing detection accuracy, particularly in occlusion
and varying illumination. It was also the fastest of
all its versions, having an inference time of only
2.4 ms, and thus very compatible for real-time ap-
plication [38].

YOLOV12, the most recent version, represents
a significant leap forward in attention-driven de-
sign. It incorporates the Area Attention (A?) mod-
ule for dynamic receptive field adjustment, along
with Residual Efficient Layer Aggregation Net-
work (R-ELAN) blocks that ensure robust gradi-
ent flow and efficient feature fusion. Additionally,
flash attention mechanisms and adaptive multilay-
er perceptron (MLP) ratios were added to accel-
erate inference and enhance model precision [40].

The YOLOv12 model was implemented on
the Python platform. The image labelling soft-
ware was used to draw the outer rectangle over
the palm trees in every image in the training set
to complement hand-marking. The images were
marked using the smallest rectangle that could fit
around the palm trees to ensure that the rectan-
gle touched the least amount of background. The
Rectified Linear Unit (ReLU) activation function
was used to optimize model performance can be
calculated by Equation 1, and a gradient descent
algorithm was used to adjust the neural network
weights by Equation 2:

f(x) = max (0,x) (1)

1. Input

640x640x3

Initial Conv (Conv

Wepr = we—n - VL (wy) 2

where: w is the weight vector at iteration ¢; # is
the learning rate; VL (w;) is the gradient
of the loss function with respect to the
weights.

Figure 3 shows the structure of the YOLOv12
model, where the final output of the neural net-
work is the palm tree detection box.

As shown in Figure 3, the YOLOv12 model
comprises four major modules: the input layer,
the backbone network, the neck module and the
head unit. The input layer processes the input
images, which are normalized to 640 x 640 in
RGB and are represented in the algorithm model
by the orange background. The backbone net-
work is a feature extractor that depends on the
CSPDarknet53 architecture. It has two branching
components for pixel feature extraction horizon-
tally and vertically, as in the blue area. The neck
module pools and processes features from the
backbone. It performs multiscale feature fusion
to robustly enhance the representation of objects
at different scales, depicted in the green area.
And finally, the head unit or the detection head
holds the loss function and optimization method.
This module utilizes the positive-negative sam-
ple matching method and auxiliary head training,
enhancing performance and speeding up training
through multidirectional branch, highlighted in
the yellow area.

[64,3,21)
P1/2

(Conv [128, 3,2])
P2/4

C3K2[256]
(Stage P2)

R-ELAN [256]

Conv [256, 3,2]
P3/8

C3K2[512]
(Stage P3)

R-ELAN [512]

Conv [512, 3,2]
Pa/16

A2C2f [512, True]
(Area Attention + Conv)
(Stage P4)

R-ELAN [512]

Conv [1024, 3,2]
P5/32

A2C2f [1024, True]
(Area Attention + Conv)
(Stage P5)

R-ELAN [1024]

2. Backbone

Upsample
(Nearest)
Concat [P4]

A2C2f [512, False]
(Area Attention + Conv)
+
Upsample
+
Concat [P3]

A2C2f 256, False]
(Area Attention + Conv)
+
Upsample
+
Concat [P4]

Detection
Head

(Boxes +
Scores)

Figure 3. YOLOvVI12 network architecture
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Dataset summary and model evaluation
strategy

The experimental data set had a median im-
age resolution of 1280 x 720 pixels, 8-bit RGB,
and an average image resolution was about 0.92
megapixels. Based on these visual sources, 2784
annotated images, which are individual palm tree
crowns, were manually annotated after augmen-
tation. 66% for training (2.616 images, gener-
ated from 327 originals using 7 augmentations
each), 17% for validation (84 images), and 17%
for testing (84 images). In particular, augmenta-
tion was applied only to the training set after data
split to prevent data leakage and ensure reliable
evaluation. This methodology enabled consistent
performance measures and prevented duplicates
of the same image in different subsets. The pro-
posed model for palm crown detection is dis-
played in Figure 4.

This dataset preparation and augmentation
pipeline was uniformly applied to three differ-
ent object detection architectures: YOLOvII,
YOLOvV12, and YOLO-NAS, to allow a fair and
consistent comparative analysis. The goal of this
evaluation was to identify the most accurate and
efficient model for the specific task of automat-
ing the detection and counting of palms tree using
UAYV images. Through the preservation of consis-
tent training environments and input preparation
across all models, the study aimed to eliminate
extraneous confounding variables that may ex-
ist under actual agricultural field conditions and

distill the architectural benefits of distinct ver-
sions of YOLO. Such a rigorous setup guarantees
a valid platform for the subsequent performance
results’ interpretation with assurance.

RESULTS AND DISCUSSIONS

To compare the performance of object detec-
tion models in palm tree detection and counting
from UAV images, three state-of-the-art archi-
tectures YOLOvV11, YOLOv12, and YOLO-NAS
were trained and tested under the same condi-
tions. They were compared according to three
standard metrics: mean average precision at 0.5
Intersection over union (MAP@S50), precision,
and recall as presented in Table 2.

Performance analysis

Among the three models, YOLOv12 demon-
strated the best overall balance across all evalu-
ation criteria. It achieved the highest mAP@50
value (99.12%), indicating exceptional ability
to accurately localizing and classify palm trees
across the test dataset. The precision of YOLOv12
(96.8%) suggests that the model consistently
minimized false positives, which is particularly
crucial in tree-counting applications where over-
estimation can mislead agricultural planning. Al-
though its recall (96.7%) was slightly lower than
YOLO-NAS, the difference is marginal and com-
pensated by higher localization accuracy.

UAV

CAM

A

y

Object detection model

A 4

Bounding Box Visualization

v
Label Visualization

A 4

Property Definitions

Output (Labelled image) |

Figure 4. The proposed model for the detection of palm crowns
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Table 2. The results of each YOLO model

Model mA{:/@)SO Precision (%) | Recall (%)
(1]
YOLOv11 99.01 95.7 97.3
YOLOv12 99.12 96.8 96.7
YOLO-NAS 98.5 90.4 99.2

The mathematical equations for precision, re-
call and mean average precision (mAP@0.5), as
written in Equation 3.

Precision = L 3)
TP+ FP
where: TP (true positives) — correctly predicted
positive instances, FP (false positives) —
incorrectly predicted as positive.

Precision is the proportion of correctly classi-
fied positive results among all predicted positive
instances.

TP
R — 4)
Recall TP L FN

where: FN (false negatives) — actual positives in-
correctly predicted as negative, Recall —
is the ability of the model to identify all
instances pertaining to the dataset

Mean average precision (mAP@0.5)

For object detection, mAP@0.5 is typically
calculated by first computing average precision
(AP) for each class at IoU threshold = 0.5, then
averaging over all classes:

e intersection over union (IOU):

e average precision (AP) is the area under the
Precision—Recall curve:

Area of Overlap
IoU = —_— Y =
Area of Union

)

1
AP = j P(r)dr (6)
0

where: P(r) is the Precision as a function of
Recall.
e mean average precision (mMAP@0.5):

N
1
mAP@0.5 = 5 ZAPi (7

=1

where: N — number of object classes.

e AP, — average precision for class iii, at [oU
threshold 0.5.

In our study for single-class cases (eg, just palm
crowns), mAP@0.5 is equal to AP for that class.
Furthermore, the results revealed that detection
accuracy improved significantly as the altitude
decreased, allowing the camera to capture clear-
er and more detailed images of individual trees.
As illustrated in Figure 9, lower flight altitudes
resulted in minimal or no crown overlap between
crown of palms, enhancing model performance.
On the contrary, Figure 7 shows images captured
from a higher altitude, where overlapping crowns
were more frequent, which poses a notable chal-
lenge for detection models. This observation un-
derscores a critical insight: Image resolution and
viewing angle have a direct influence on detec-
tion reliability.

This finding also presents a practical chal-
lenge: In large-scale field surveys, flying at lower
altitudes may not always be feasible due to time
and coverage constraints. A promising solution lies
in deploying higher-resolution cameras or mul-
tisensor payloads to compensate for altitude-re-
lated detail loss. Enhancing the optical quality of
UAV-mounted sensors could therefore mitigate
crown overlap issues and improve detection con-
sistency, especially in densely planted orchards.

YOLOvI11, although slightly  behind
YOLOvVI12 in overall precision, performed ro-
bustly with a mAP@50 of 99.01% and recall
of 97.3%, demonstrating a superb capabili-
ty of identifying most palm trees in the image-
ry accurately. It also demonstrated a high pre-
cision value (95.7%), reflecting its effective-
ness for use in the field by real-time systems
with little overhead computation.

On the other hand, YOLO-NAS presented an
interesting trade-off. It achieved the highest recall
score of 99.2%, reflecting its strength in minimizing
missed detections, even under occlusion or com-
plex background interference. However, its lower
precision score (90.4%) reveals a tendency toward
false positives, which may require further post-
processing or threshold adjustments before opera-
tional deployment. Its mAP@50 of 98.5%, while
still high, places it third in overall performance.

Visual interpretation

Figure 5 shows Precision—Recall curve
for the YOLOv12 model. This curve helps to
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visualize the trade-off between true positive rate
and false positive rate.

In Figure 6 literates bar chart comparing
mAP@50, precision, and recall for the three mod-
els. The chart clearly shows that YOLOv12 is the
most balanced model, while YOLO-NAS leads in
recall but falls behind in precision.

In Figure 7-9. Sample inference output on
challenging images, showing detection bounding
boxes from the YOLOvV12 model on the output

image frame. The proposed model was used to
detect individual palm tree crowns, and in sce-
narios with dense tree clusters or varying shadow
conditions, YOLOv12 demonstrated precise and
consistent bounding box placement.

Model selection consideration

From a practical deployment perspective,
especially in UAV-based palm crowns census

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
1.0 1.0
201 2.5 —e— results r-*

..... smooth | 2.00 1 0.5 -
1.5 =0 1751
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1.0 A 0.4 1 0.4 1
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0.2 1 0.2 1
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Figure 5. Training and validation performance of the YOLOv12 model for palm crown detection,
illustrating steadily decreasing loss curves along with high Precision, Recall,
and mAP scores — demonstrating effective learning and strong detection accuracy
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Figure 6. The performance comparison of YOLOv11, YOLOv12, and YOLO-NAS based on mAP@50,
Precision, and Recall
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operations, the selection of a model depends on

application priorities.

e If Precision is paramount (eg, inventory accu-
racy, yield forecasting), YOLOV12 is the most
reliable.

e To maximize detection coverage, particularly
in 21 diverse lighting or occlusion scenarios,
YOLO-NAS offers strong recall, but may re-
quire downstream filtering.

e YOLOvII provides a favorable balance of
speed and accuracy and is highly recom-
mended for edge devices with constrained
resources.

Ultimately, YOLOv12 emerges as the most
suitable candidate for the palm crowns detection
and counting task, given its superior precision-
recall balance and leading detection accuracy. Its
performance indicates robust generalization and
strong potential for integration into agricultural
monitoring systems.

CONCLUSIONS

This paper compared YOLOv11, YOLOv12,
and YOLO-NAS in automated detection of date
palm crowns based on UAV images. The overall
performance of YOLOv12 (mAP@50: 99.12%,
precision: 96.8%, recall: 96.7%) was the best,
which is why it can be used in precision agricul-
ture in real life. YOLOV11 provided a trade-off be-
tween accuracy and efficiency, and YOLO-NAS
achieved the best recall (99.2%) but poor preci-
sion due to false positives in crowded scenes.

The study presented an innovative applica-
tion of YOLOv12 enhanced with Area Attention
and R-ELAN blocks and augmented to simulate
orchard conditions. The model will be imple-
mented in real time on mobile devices to facili-
tate field inventory.

The data did not have enough variety in envi-
ronmental settings, including cloudy skies, partly
sunny landscapes, different shadows, and orchard
types. This diversity should be increased to im-
prove the accuracy of detection and applicabili-
ty to other tree species. Although some of these
challenges were simulated using data augmen-
tation to improve the performance of the model,
it is important to collect more diverse images to
improve the model further.

Future work will improve the robustness of
the system in adverse conditions, increase the

size of data sets with seasonal and structural di-
versity, add depth sensing to increase accuracy,
and optimise models to run in real-time on UAV
edge devices.
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