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INTRODUCTION 

The date palm tree (Phoenix dactylifera L.) is 
of profound cultural, economic, and environmen-
tal importance to the Middle East and North Af-
rica (MENA) region. It is one of the oldest fruit-
ing trees in the world and has been a staple crop 
in its base form. Egypt, Iran, Iraq, Saudi Arabia 
and the United Arab Emirates are global leaders 
in date production, producing around 67% of the 
world’s production. The versatility of date palm 
is notable – not only are its fruits a key nutritional 

resource for humans and livestock, but the tree 
also supports various industries, including those 
producing oil, wine, and natural fibres [1, 2].

In addition to its economic value, the date 
palm plays an important ecological role. It helps 
to sustain arid environments by providing shade 
and serving as a refuge for desert fauna. Beyond 
the fruit, other parts of the tree, such as leaves and 
bark, are utilized in the manufacture of cosmetics, 
paper, and construction materials. This combina-
tion of practical utility and cultural heritage high-
lights the enduring relevance and its multifaceted 
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contribution to the agricultural and ecological 
systems of the region [3].

In Iraqi trade, dates are one of the most im-
portant staple foods and form a major part of the 
local economy, as many farmers and exporters 
depend on this fruit as a major source of income. 
The total production value of agricultural produc-
tion in 2003 was approximately $139,688. How-
ever, it decreased in 2004 to $30,859, which may 
be due to the impact of conflicts and socio-eco-
nomic shocks in the region during that year. The 
value gradually increased in the following years 
to reach $41,172 in 2005 and $43,969 in 2006. A 
significant increase is observed by 2020, where 
the value reaches $559,535 and then slightly de-
creases to $487,388 in 2021. However, the total 
production value in 2022 reached about $617,125, 
indicating good recovery and an increase in the 
value of date agricultural production of dates, 
which showed a good sign of recovery [4].

In recent years, modern technologies, par-
ticularly those based on computing and AI, have 
demonstrated remarkable success in various 
fields. For example, in the healthcare sector, arti-
ficial intelligence has been applied effectively for 
diagnostics and patient monitoring [5, 6].

In agriculture, unmanned aerial vehicles 
(UAVs) equipped with deep learning models have 
been used to detect and count olive trees with 
high precision [7].

Similarly, AI-based systems have achieved 
impressive accuracy in recognizing handwritten 
English and Arabic numerals, a task traditionally 
considered highly challenging for machines [8].

These achievements, many of which involve 
time-consuming tasks for humans, highlight AI’s 
growing potential to solve complex problems ef-
ficiently. Based on these advances, this study pro-
poses the application of AI tools to help detect and 
counting of date palm trees using UAVs [9, 10]. 

The objectives are tridimensional: (1) to pro-
mote the management of agricultural stock and 
resources; (2) to optimize the effectiveness of 
pest control and pollination; and (3) to develop 
the monitoring and early detection of disease 
or pest infestation. Furthermore, through con-
tinuous training and development, such systems 
should ideally be able to distinguish between 
male and female palm trees or even identify spe-
cific date palm species using crown morphology 
or canopy features.

Therefore, the correct identification and de-
tection of palm trees are of utmost importance 

for proper management in the context of enu-
meration and distribution analysis. Against this, 
the prediction of production volume and proper 
plantation management [10]. However, obtaining 
the correct statistics may be difficult and requires 
modern agricultural technology. Designing an 
efficient research method for personal palm tree 
studies is necessary for intelligent palm tree man-
agement [11]. They are time consuming, resource 
intensive and expensive [12, 13]. Remote sensing 
techniques, for example, satellite and drone im-
agery, are useful in monitoring palm plantations 
[14, 15]. Satellite remote sensing techniques have 
been increasingly used in the past two decades in 
a wide range of applications, such as land cover 
classification [16], palm plantation mapping [17], 
soil classification [18], counting [19], yield es-
timation [20], age estimation [21] and pest and 
disease detection [22]. Where satellite images 
are used, there are also difficulties caused by the 
cloud base [23], whereby palm trees are difficult 
to identify because the images obtained are of 
poor quality [24]. Drones are the best choice, as 
they are lightweight, compact, and not expensive. 
The drone typically has a high-resolution camera 
that can capture medium- to high-quality wide-
angle images, depending on the flight altitude. 
Consequently, aerial photography has emerged as 
a preferred data source for monitoring palm plan-
tations, offering cost savings, wide coverage, and 
access to remote areas [14, 25].

During the past decade, revolutionary ad-
vances in computer hardware and developments 
in AI technology have made novel ways of de-
tection and feature extraction from an image pos-
sible [26]. One of the primary technologies in 
AI, convolutional neural networks (CNNs), has 
been at the forefront of object detection and im-
age interpretation in computer vision. Traditional 
machine learning object detection has been used 
to identify palm trees and other objects from im-
ages collected from drones. It is a three-step pro-
cedure: image preprocessing, feature extraction, 
and classification. In [25] Bazi et al. employed 
scale-invariant feature transform (SIFT) features 
from key points of palm trees. Feature vectors 
were then drawn at each key point, which were 
provided as inputs to an extreme learning ma-
chine classifier for the identification of palm trees. 
The precision of the palm tree detection method 
was 91.11%. Manandhar et al. in [27] used the 
Circular Autocorrelation matrix for Polar Shape 
(CAPS) as a feature extractor and an support 



3

Advances in Science and Technology Research Journal 2026, 20(1) 1–13

vector machine (SVM) classifier for oil palm tree 
detection using shape features. The mean accu-
racy of the method was 84%. However, feature 
extractors in traditional object detection methods 
are hand-designed features defined by humans. It 
is difficult to make such a representation robust. 
The classification accuracy relies heavily on the 
set of features and classifier, which relies heav-
ily on the set of data, and hence developing such 
systems manually is extremely difficult.

Another alternative to solving the above 
problem is deep learning. CNNs are deep learn-
ing-based algorithms that could extract millions 
of object’s higher-level features and then use 
those features efficiently in object detection and 
object classification. Great progress has been 
made in the last few years to develop techniques 
for detecting geolocated objects on high-resolu-
tion remotely detected images, such as palm tree 
crowns [28]. These methods can be classified into 
two groups: two-stage object detection methods 
such as the Fast Region-based Convolutional 
Network method (Fast R-CNN) [29] and Mask R-
CNN [30], and one-stage object detection meth-
ods such as you only look once (YOLO) v2/v3/
v4 [31, 32], RetinaNet [33], and VGG-SSD [32]. 
Comparing the accuracy and efficiency of several 
tree crown detection techniques [32], some have 
found that two-stage object detection algorithms 
are superior to one-stage algorithms in accuracy, 
while the one-stage algorithm can significantly 
speed up tree crown detection [29]. One of the 
most well-known object detection techniques is 
the YOLO algorithm, presented by Redmon et al. 
[34]. YOLO is a single-stage technique that has 
CNNs as the foundation. The primary motivation 
behind YOLO was to get beyond the limitation 
of the then-existent two-stage object detection al-
gorithms’ detection time. YOLO variations have 
been largely utilized and implemented in various 
applications such as medicine [33], remote sens-
ing [35], transportation [36], and agriculture [37]. 

Previous studies have shown that the YOLO-
based approaches to object detection are effective 
in different types of images. Traditional methods 
of remote sensing in agriculture such as SIFT 
with extreme learning machine (ELM) or CAPS 
with SVM are less flexible to variations in illu-
mination, occlusion, and scale in aerial images 
because they are based on handcrafted features. 
Although two-stage detectors, such as Mask R-
CNN, have high accuracy, they are associated 
with high computational requirements. On the 

contrary, YOLOv12 integrates speed and accu-
racy in a one-stage model, which is suitable for 
real-time UAV-based surveillance, particularly in 
edge computing and wide-area coverage. 

The proposed research will improve palm tree 
detection by reducing the computational time in 
UAV imagery. We offer a quick and stable meth-
od of accurate palm location using YOLOv12, 
which combines the advantages of previous ver-
sions. The results are part of the work that helps 
to restore the palm industry and consequently the 
sustainability of its agriculture and culture.

DATASET DESCRIPTION 

Aerial images and videos of a date palm 
plantation were captured using a camera mount-
ed on a UAV that flew over the farm. These data 
were collected by the Department of Computer 
Techniques Engineering at Al-Salam University, 
Baghdad, Iraq, and the Institute of Machine De-
sign, Faculty of Mechanical Engineering, Poznan 
University of Technology, Poland. The study area 
is a private orchard called Fadak, named after a 
historic oasis rich in dates. The plantation cov-
ers approximately 500 hectares (1.235 acres) and 
is managed by the Imam Hussein Shrine in the 
nearby holy city of Karbala. The geographical 
coordinates of the plantation are 32°43’19.5”N, 
43°52’35.4”E. Palm trees are planted in a 5 × 5 m 
grid, with a total of 30,000 trees recorded in 2024, 
a number that continues to increase annually.

Image acquisition took place on November 5, 
2024, between 11:30 a.m. and 1:00 p.m. under 
clear sky conditions. A high-resolution RGB 
camera specifically designed to monitor agricul-
tural conditions was mounted on the UAV plat-
form. As shown in Figure 1, the UAV was used to 
capture top-view images of palm crowns. Table 1 
provides a complete overview of the technical 
specifications of the UAV used.

The characteristics listed in Table 1 enable 
high-resolution image acquisition suitable for 
precision farming.

The resolution of the captured images was 
1080 × 1920 and 540 × 960 pixels with 8-bit 
depth per channel and spatial resolution of about 
5–6 cm/pixel at altitudes of 100–310 metres (see 
Figure 2). Palm tree counting did not require ge-
ometric correction. The data set consisted of 195 
images and 5 videos recorded by UAV, and the 
videos were divided into still frames with one 
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frame per 2 seconds (total 495 images), assum-
ing an average UAV speed of 6.1 m/s (22 km/h). 
To improve the classification, data augmentation 
increased the number of images to 1059. Data 
were saved on a Micro-SD card and uploaded to 
a PC to be processed. MATLA B® was used to 
analyse the images, train machine learning, and 
count them on an HP laptop with an Intel Core i7-
7.5K U CPU (2.70 2.90 GHz), 12 GB RAM, and 
Windows 10 Pro.

DATA PREPARATION

To improve model resilience and gener-
alization across varying visual conditions, an 

end-to-end data preparation pipeline was used 
that included both preprocessing and enhance-
ment. Operations were performed uniformly 
during training to simulate real-world object ap-
pearance and orientation variations, especially 
in agriculture where lighting and viewpoints can 
dramatically vary.

Preprocessing

The preprocessing step guaranteed uniform 
input quality and format. Each image was auto-
matically oriented (Auto-Orient: Applied) from 
the embedded metadata, placing it in the correct 
orientation. Images were resized to a uniform res-
olution of 640 × 640 × 3 pixels by using a stretch-
based scaling method. This guaranteed uniform 
input size across the dataset and satisfied the ar-
chitectural needs of the model.

Data augmentation

Data augmentation played an important role 
in augmenting the training set and reducing over-
fitting by generating diverse image versions. Each 
training image was subjected to a maximum of 
seven outputs of augmentation, including spatial, 
color, and geometric transformations:
	• Flipping – horizontal and vertical flips were 

applied randomly to simulate mirrored views 
of the orchard.

	• Rotations – images were rotated at 90° in-
crements (clockwise, counterclockwise, and 
upside down) as well as at random angles 

Table 1. Technical specifications of the UAV and 
camera system used for image acquisition

Component Specification

UAV model DJI Mini V3 Fly 4K

Flight altitude range 100–310 meters

Camera sensor 1/2.3” CMOS, 12.35 effective 
megapixels

Image resolution 3000 × 4000 pixels

Lens field of view 78.8°

Focal length 26 mm

Aperture f/2.2

ISO range 100–1600

Distortion <1.5%

Autofocus range 0.5 m to ∞

Image format JPEG

Figure 1. The DJI Mini V3 Fly 4K UAV was used to capture top-view images of the palm farm
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between -25° and +25°, mimicking arbitrary 
UAV camera orientations.

	• Grayscale conversion – to simulate poor light-
ing or sensor quality, 15% of the images were 
converted to grayscale.

	• Bounding box transformations:
−	 rotation – applied a mild bounding box ro-

tation of ± 2°, accounting for subtle angular 
deviations;

−	 shearing – introduced controlled shear trans-
formations of ± 6° horizontally and ± 7° ver-
tically, emulating perspective distortions;

−	 brightness variation – the boundaries were 
subjected to brightness adjustments ranging 
from -15% and +15%, which relate to natu-
ral varying conditions of field illumination.

This synergy in augmentation greatly in-
creased the diversity of datasets, through which 
the YOLO-based model was able to perform bet-
ter against occlusions, lighting invariances, and 
object pose and scale variations.

METHOD

You only look once

The  recent  years have witnessed a  para-
digm  change in object detection models with 
the YOLO series as a central pillar for real-time 

visual perception-based applications.  Originally 
designed by [34], the YOLO architecture initiated 
the single stage end-to-end detection stage through 
the combination of localization and classification 
into a single streamlined process. This revolution 
brought with it a new benchmark for speed and 
accuracy, which is crucial for applications based 
on robotics, surveillance, and agriculture.

With every repetition of the sequence, each 
occurrence had encountered upcoming issues in 
detection processes. YOLOv8 experienced the 
shift towards anchor-free architecture with de-
coupled detection head and improved multiscale 
feature extraction through parsed CSP backbone 
and Feature Pyramid Network. It was an expres-
sion of a consistent trade-off between accuracy 
and speed and was applicable for low-weight re-
al-time applications [38].

YOLOv9 introduced the Generalized Efficient 
Layer Aggregation Network (GELAN) architec-
ture and the programmable gradient information 
(PGI), which helped the model converge faster 
and generalize better, especially in difficult con-
ditions. YOLOv10 also improved performance 
with a dual-assignment scheme, light heads, and 
decoupled down sampling – eliminating post-pro-
cessing steps such as non-max suppression [39].

Following this trajectory, YOLOv11 em-
ployed cutting-edge modules such as spatial pyra-
mid pooling-fast (SPPF) and Convolutional block 

Figure 2. Four examples of UAV images of date palm crowns captured at different altitudes and angles
at Fadak Farm, Karbala, Iraq
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with Parallel Spatial Attention (C2PSA), improv-
ing detection accuracy, particularly in occlusion 
and varying illumination. It was also the fastest of 
all its versions, having an inference time of only 
2.4 ms, and thus very compatible for real-time ap-
plication [38].

YOLOv12, the most recent version, represents 
a significant leap forward in attention-driven de-
sign. It incorporates the Area Attention (A²) mod-
ule for dynamic receptive field adjustment, along 
with Residual Efficient Layer Aggregation Net-
work (R-ELAN) blocks that ensure robust gradi-
ent flow and efficient feature fusion. Additionally, 
flash attention mechanisms and adaptive multilay-
er perceptron (MLP) ratios were added to accel-
erate inference and enhance model precision [40].

The YOLOv12 model was implemented on 
the Python platform. The image labelling soft-
ware was used to draw the outer rectangle over 
the palm trees in every image in the training set 
to complement hand-marking. The images were 
marked using the smallest rectangle that could fit 
around the palm trees to ensure that the rectan-
gle touched the least amount of background. The 
Rectified Linear Unit (ReLU) activation function 
was used to optimize model performance can be 
calculated by Equation 1, and a gradient descent 
algorithm was used to adjust the neural network 
weights by Equation 2:

	 𝑓𝑓(x) =  𝑚𝑚𝑚𝑚𝑚𝑚 (0, x)  
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Figure 3 shows the structure of the YOLOv12 
model, where the final output of the neural net-
work is the palm tree detection box.

As shown in Figure 3, the YOLOv12 model 
comprises four major modules: the input layer, 
the backbone network, the neck module and the 
head unit. The input layer processes the input 
images, which are normalized to 640 × 640 in 
RGB and are represented in the algorithm model 
by the orange background. The backbone net-
work is a feature extractor that depends on the 
CSPDarknet53 architecture. It has two branching 
components for pixel feature extraction horizon-
tally and vertically, as in the blue area. The neck 
module pools and processes features from the 
backbone. It performs multiscale feature fusion 
to robustly enhance the representation of objects 
at different scales, depicted in the green area. 
And finally, the head unit or the detection head 
holds the loss function and optimization method. 
This module utilizes the positive-negative sam-
ple matching method and auxiliary head training, 
enhancing performance and speeding up training 
through multidirectional branch, highlighted in 
the yellow area.

Figure 3. YOLOv12 network architecture
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Dataset summary and model evaluation 
strategy

The experimental data set had a median im-
age resolution of 1280 × 720 pixels, 8-bit RGB, 
and an average image resolution was about 0.92 
megapixels. Based on these visual sources, 2784 
annotated images, which are individual palm tree 
crowns, were manually annotated after augmen-
tation. 66% for training (2.616 images, gener-
ated from 327 originals using 7 augmentations 
each), 17% for validation (84 images), and 17% 
for testing (84 images). In particular, augmenta-
tion was applied only to the training set after data 
split to prevent data leakage and ensure reliable 
evaluation. This methodology enabled consistent 
performance measures and prevented duplicates 
of the same image in different subsets. The pro-
posed model for palm crown detection is dis-
played in Figure 4.

This dataset preparation and augmentation 
pipeline was uniformly applied to three differ-
ent object detection architectures: YOLOv11, 
YOLOv12, and YOLO-NAS, to allow a fair and 
consistent comparative analysis. The goal of this 
evaluation was to identify the most accurate and 
efficient model for the specific task of automat-
ing the detection and counting of palms tree using 
UAV images. Through the preservation of consis-
tent training environments and input preparation 
across all models, the study aimed to eliminate 
extraneous confounding variables that may ex-
ist under actual agricultural field conditions and 

distill the architectural benefits of distinct ver-
sions of YOLO. Such a rigorous setup guarantees 
a valid platform for the subsequent performance 
results’ interpretation with assurance.

RESULTS AND DISCUSSIONS 

To compare the performance of object detec-
tion models in palm tree detection and counting 
from UAV images, three state-of-the-art archi-
tectures YOLOv11, YOLOv12, and YOLO-NAS 
were trained and tested under the same condi-
tions. They were compared according to three 
standard metrics: mean average precision at 0.5 
Intersection over union (mAP@50), precision, 
and recall as presented in Table 2.

Performance analysis

Among the three models, YOLOv12 demon-
strated the best overall balance across all evalu-
ation criteria. It achieved the highest mAP@50 
value (99.12%), indicating exceptional ability 
to accurately localizing and classify palm trees 
across the test dataset. The precision of YOLOv12 
(96.8%) suggests that the model consistently 
minimized false positives, which is particularly 
crucial in tree-counting applications where over-
estimation can mislead agricultural planning. Al-
though its recall (96.7%) was slightly lower than 
YOLO-NAS, the difference is marginal and com-
pensated by higher localization accuracy.

Figure 4. The proposed model for the detection of palm crowns
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The mathematical equations for precision, re-
call and mean average precision (mAP@0.5), as 
written in Equation 3.

	

𝑓𝑓(x) =  𝑚𝑚𝑚𝑚𝑚𝑚 (0, x)  
 

 
𝑤𝑤𝑡𝑡+1  =  𝑤𝑤𝑡𝑡 − 𝜂𝜂 · ∇𝐿𝐿 (𝑤𝑤𝑡𝑡) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 
 
 

𝐴𝐴𝐴𝐴 =  ∫ 𝑃𝑃(𝑟𝑟) 𝑑𝑑𝑑𝑑 (6)
1

0
 

 
 
 

mAP@0.5 =  1
𝑁𝑁  ∑𝐴𝐴𝐴𝐴𝑖𝑖  (7)

𝑁𝑁

𝑖𝑖=1
 

 
 

	 (3)

where: TP (true positives) – correctly predicted 
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where: FN (false negatives) – actual positives in-
correctly predicted as negative, Recall – 
is the ability of the model to identify all 
instances pertaining to the dataset 

Mean average precision (mAP@0.5)
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where:	P(r) is the Precision as a function of 
Recall.
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where: N – number of object classes.

	• APi – average precision for class iii, at IoU 
threshold 0.5.

In our study for single-class cases (eg, just palm 
crowns), mAP@0.5 is equal to AP for that class.
Furthermore, the results revealed that detection 
accuracy improved significantly as the altitude 
decreased, allowing the camera to capture clear-
er and more detailed images of individual trees. 
As illustrated in Figure 9, lower flight altitudes 
resulted in minimal or no crown overlap between 
crown of palms, enhancing model performance. 
On the contrary, Figure 7 shows images captured 
from a higher altitude, where overlapping crowns 
were more frequent, which poses a notable chal-
lenge for detection models. This observation un-
derscores a critical insight: Image resolution and 
viewing angle have a direct influence on detec-
tion reliability.

This finding also presents a practical chal-
lenge: In large-scale field surveys, flying at lower 
altitudes may not always be feasible due to time 
and coverage constraints. A promising solution lies 
in deploying higher-resolution cameras or mul-
tisensor payloads to compensate for altitude-re-
lated detail loss. Enhancing the optical quality of 
UAV-mounted sensors could therefore mitigate 
crown overlap issues and improve detection con-
sistency, especially in densely planted orchards.

YOLOv11, although slightly behind 
YOLOv12 in overall precision, performed ro-
bustly with a mAP@50 of 99.01% and recall 
of 97.3%, demonstrating  a  superb  capabili-
ty of  identifying  most palm trees in the image-
ry  accurately. It also  demonstrated  a  high  pre-
cision  value  (95.7%),  reflecting  its  effective-
ness  for  use in the  field  by  real-time systems 
with little overhead computation.

On the other hand, YOLO-NAS presented an 
interesting trade-off. It achieved the highest recall 
score of 99.2%, reflecting its strength in minimizing 
missed detections, even under occlusion or com-
plex background interference. However, its lower 
precision score (90.4%) reveals a tendency toward 
false positives, which may require further post-
processing or threshold adjustments before opera-
tional deployment. Its mAP@50 of 98.5%, while 
still high, places it third in overall performance.

Visual interpretation

Figure 5 shows Precision–Recall curve 
for the YOLOv12 model. This curve helps to 

Table 2. The results of each YOLO model

Model mAP@50 
(%) Precision (%) Recall (%)

YOLOv11 99.01 95.7 97.3

YOLOv12 99.12 96.8 96.7

YOLO-NAS 98.5 90.4 99.2
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visualize the trade-off between true positive rate 
and false positive rate.

In Figure 6 literates bar chart comparing 
mAP@50, precision, and recall for the three mod-
els. The chart clearly shows that YOLOv12 is the 
most balanced model, while YOLO-NAS leads in 
recall but falls behind in precision.

In Figure 7–9. Sample inference output on 
challenging images, showing detection bounding 
boxes from the YOLOv12 model on the output 

image frame. The proposed model was used to 
detect individual palm tree crowns, and in sce-
narios with dense tree clusters or varying shadow 
conditions, YOLOv12 demonstrated precise and 
consistent bounding box placement.

Model selection consideration

From a practical deployment perspective, 
especially in UAV-based palm crowns census 

Figure 5. Training and validation performance of the YOLOv12 model for palm crown detection,
illustrating steadily decreasing loss curves along with high Precision, Recall,

and mAP scores – demonstrating effective learning and strong detection accuracy

Figure 6. The performance comparison of YOLOv11, YOLOv12, and YOLO-NAS based on mAP@50, 
Precision, and Recall
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Figure 7. The example of the result of palm crowns detection from altitude 310 meters

Figure 8. The example of a result of palm crowns detection from altitude 160 meters

Figure 9. The example of the result of palm crowns detection from altitude 100 meters
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operations, the selection of a model depends on 
application priorities.
	• If Precision is paramount (eg, inventory accu-

racy, yield forecasting), YOLOv12 is the most 
reliable.

	• To maximize detection coverage, particularly 
in 21 diverse lighting or occlusion scenarios, 
YOLO-NAS offers strong recall, but may re-
quire downstream filtering.

	• YOLOv11 provides a favorable balance of 
speed and accuracy and is highly recom-
mended for edge devices with constrained 
resources.

Ultimately, YOLOv12 emerges as the most 
suitable candidate for the palm crowns detection 
and counting task, given its superior precision-
recall balance and leading detection accuracy. Its 
performance indicates robust generalization and 
strong potential for integration into agricultural 
monitoring systems.

CONCLUSIONS 

This paper compared YOLOv11, YOLOv12, 
and YOLO-NAS in automated detection of date 
palm crowns based on UAV images. The overall 
performance of YOLOv12 (mAP@50: 99.12%, 
precision: 96.8%, recall: 96.7%) was the best, 
which is why it can be used in precision agricul-
ture in real life. YOLOv11 provided a trade-off be-
tween accuracy and efficiency, and YOLO-NAS 
achieved the best recall (99.2%) but poor preci-
sion due to false positives in crowded scenes. 

The study presented an innovative applica-
tion of YOLOv12 enhanced with Area Attention 
and R-ELAN blocks and augmented to simulate 
orchard conditions. The model will be imple-
mented in real time on mobile devices to facili-
tate field inventory. 

The data did not have enough variety in envi-
ronmental settings, including cloudy skies, partly 
sunny landscapes, different shadows, and orchard 
types. This diversity should be increased to im-
prove the accuracy of detection and applicabili-
ty to other tree species. Although some of these 
challenges were simulated using data augmen-
tation to improve the performance of the model, 
it is important to collect more diverse images to 
improve the model further.

Future work will improve the robustness of 
the system in adverse conditions, increase the 

size of data sets with seasonal and structural di-
versity, add depth sensing to increase accuracy, 
and optimise models to run in real-time on UAV 
edge devices.
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