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INTRODUCTION

Degenerative diseases of the hip and knee 
joints affect millions globally, driving the de-
mand for improved arthroplasty procedures and 
long-lasting orthopaedic implants that com-
bine biocompatibility with bone-like mechani-
cal properties [1, 2]. Titanium alloys, such as 
Ti6Al4V are widely used in implant manufac-
turing due to their high strength [3]. However, 
clinical studies have raised concerns over ion re-
lease – vanadium ions exhibit cytotoxic effects 

at concentrations as low as 1 μM, while alumini-
um accumulation is associated with neurological 
disorders [4–6].

In contrast, commercially pure titanium avoids 
these toxicological risks and offers excellent bio-
compatibility. However, its relatively low yield 
strength (170–480 MPa) significantly limits its 
use in load-bearing applications, which typically 
demand strengths in the range of 800–1000 MPa. 
As a result, pure titanium is mainly used in non-
load-bearing applications, such as dental im-
plants. Recent advances in thermomechanical 
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processing (TMP) offer possibilities to enhance 
the mechanical strength of commercially pure 
titanium through controlled plastic deformation. 
However, the complex relations of titanium strain 
hardening and dynamic recovery mechanisms at 
elevated temperatures (400–600 °C) results in 
highly nonlinear stress–strain behaviour. This 
complexity makes process optimisation difficult, 
with current approaches relying heavily on trial-
and-error experimentation, resulting in significant 
time and resource costs.

This study addresses these challenges by 
proposing a thermomechanical processing for 
commercially pure titanium at intermediate tem-
peratures, with the aim of achieving the yield 
strengths suitable for orthopaedic load-bearing 
implants. A numerical model was proposed to 
simulate the plastic deformation process, en-
abling precise parameter identification, optimi-
sation, and prediction of the resulting mechani-
cal properties, reducing trail-and-error experi-
mental workload.

The Anand viscoplastic constitutive model 
was adopted to simulate the thermoplastic de-
formation of commercially pure titanium at 
intermediate temperatures. Although original-
ly developed for soft metals and solders, the 
Anand model was adapted here to account for 
the strain-rate sensitivity, temperature-depen-
dent behaviour, and work hardening of titanium 
[7, 8]. By integrating experimental data from 
compression tests with finite element simula-
tions, the model is calibrated and validated for 
pure titanium. This approach makes it possible 
to predict material behaviour with high accura-
cy and significantly reduce the need for experi-
mental iterations. 

The implementation extends Anand’s origi-
nal model by integrating temperature-dependent 
Young’s modulus and experimentally determined 
friction boundary conditions. The model is vali-
dated against compression test data, demonstrat-
ing fair prediction accuracy at 400–600 °C. It also 
allows prediction of the elastic–plastic transition, 
though with limited precision.

The proposed numerical framework offers a 
practical and efficient approach to process plan-
ning and optimisation, enabling the precise ad-
justment of deformation parameters. This sup-
ports the manufacturing of titanium implants with 
custom-tailored mechanical properties, ensuring 
both improved performance and long-term reli-
ability in biomedical applications.

METHODS

Mathematical model

Accurate simulation and optimisation of ther-
momechanical processes rely on a thorough un-
derstanding of the technological characteristics of 
the material. For each processing method, specif-
ic material properties determine its suitability. In 
plastic deformation processes, the key property is 
the yield stress (σ), defined as the stress required 
to initiate and sustain plastic flow under uniaxi-
al loading. Yield stress is influenced by strain (ε), 
strain rate (  

 

 
 

𝜎𝜎 = 𝑐𝑐𝑐𝑐; 𝑐𝑐 < 1 
 

(1) 

 
 

 

 

𝑐𝑐 = 1
𝜉𝜉 sinh−1 {[

𝜀𝜀�̇�𝑝
𝐴𝐴 exp ( 𝑄𝑄

𝑅𝑅𝑅𝑅)]
𝑚𝑚

} 

 

(2) 

 
𝜀𝜀�̇�𝑝  
 

 

 

𝜀𝜀�̇�𝑝 = 𝐴𝐴 exp (− 𝑄𝑄
𝑅𝑅𝑅𝑅) [sinh (𝜉𝜉 𝜎𝜎

𝑐𝑐)]
1
𝑚𝑚 

 

(3) 

 

 
 

�̇�𝑐 = ℎ(𝜎𝜎, 𝑐𝑐, 𝑅𝑅)𝜀𝜀�̇�𝑝 
 

(4) 

 

 

 

�̇�𝑐 = [ℎ0 (𝐴𝐴 − 𝑐𝑐
𝑐𝑐∗)

𝑎𝑎
sign (1 − 𝑐𝑐

𝑐𝑐∗)] 𝜀𝜀�̇�𝑝;  𝑎𝑎 > 1 
 

(5) 

 

 
 

𝜎𝜎∗ = 𝑐𝑐𝑐𝑐∗ 
 

(6) 

 

 

 

𝜎𝜎∗ = �̂�𝑐
𝜉𝜉 [

𝜀𝜀�̇�𝑝
𝐴𝐴 exp 𝑄𝑄

𝑅𝑅𝑅𝑅]
𝑛𝑛

sinh−1 {[
𝜀𝜀�̇�𝑝
𝐴𝐴 exp 𝑄𝑄

𝑅𝑅𝑅𝑅]
𝑚𝑚

} 

 

(7) 

 
 

 

 
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑝𝑝

= 𝑐𝑐ℎ0 |1 − 𝜎𝜎
𝜎𝜎∗| sign (1 − 𝜎𝜎

𝜎𝜎∗) ;  𝑎𝑎 > 1 

 

(8) 

 

 

 
𝜎𝜎 = 𝜎𝜎∗ − [(𝜎𝜎∗ − 𝑐𝑐𝑐𝑐0)1−𝑎𝑎 + (𝑎𝑎 + 1){(𝑐𝑐ℎ0)(𝜎𝜎∗)−𝑎𝑎}𝜀𝜀𝑝𝑝]1/(1−𝑎𝑎) 

 
 

(9) 

  
�̂�𝑐  
 

), temperature (T), as well as prior 
deformation history [9]. To capture the complex, 
temperature-dependent behaviour of materials 
during plastic deformation, this study adopted the 
Anand viscoplastic model, originally formulated 
by Anand and Brown for high-temperature metal 
deformation [10]. The model describes isotropic 
elastic-viscoplastic behaviour without explicitly 
separating yield criteria and hardening rules [11, 
12]. While traditionally applied to soft solders and 
alloys [13–17], here it is adapted for commercial-
ly pure titanium, which exhibits significant strain 
hardening and dynamic recovery during thermo-
mechanical processing. In this paper, strengthen-
ing mechanisms such as changes in dislocation 
density and grain/subgrain structure are consid-
ered to be characterised by a deformation resist-
ance variable s, which is related to the stress σ by:
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where: c is a function of strain rate and tempera-

ture, defined as.
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 is 
the plastic strain rate, A is material con-
stant, Q is the activation energy, R is the 
gas constant, T is the absolute tempera-
ture and m is the strain-rate sensitivity. 

The Anand flow equation relates plastic strain 
rate to stress and deformation resistance:
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where: s* is the saturation deformation resistance 
at a given strain rate and temperature, h0  
is the hardening/softening coefficient, and 
a controls the rate of saturation. Analo-
gously to Equation 1, the saturation stress 
is defined as:
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Combining Equations 2 and 5, the saturation 

stress can be expressed as:
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where: m is the strain rate sensitivity n is the 
strain rate sensitivity for the saturation 
value, and 

  
 

 
 

𝜎𝜎 = 𝑐𝑐𝑐𝑐; 𝑐𝑐 < 1 
 

(1) 

 
 

 

 

𝑐𝑐 = 1
𝜉𝜉 sinh−1 {[

𝜀𝜀�̇�𝑝
𝐴𝐴 exp ( 𝑄𝑄

𝑅𝑅𝑅𝑅)]
𝑚𝑚

} 

 

(2) 

 
𝜀𝜀�̇�𝑝  
 

 

 

𝜀𝜀�̇�𝑝 = 𝐴𝐴 exp (− 𝑄𝑄
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 is coefficient of deformation 
resistance.

Finally, Equations 1 and 4 lead to equation for 
differentiating stress with respect to plastic strain 
yields:
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Integrating Equation 8, the stress evolution 
during plastic deformation is given by:

 𝜎𝜎 = 𝜎𝜎∗ − [ (𝜎𝜎∗ − 𝑐𝑐𝑠𝑠0)1−𝑎𝑎 +
+ (𝑎𝑎 + 1){(𝑐𝑐ℎ0)(𝜎𝜎∗)−𝑎𝑎}𝜀𝜀𝑝𝑝

]
1/(1−𝑎𝑎)

  (9)

where: s0 is the initial value of the deformation 
resistance s. 

Experimental procedure

Determining plasticity under hot-working con-
ditions is challenging, as the structure of the mate-
rial is influenced by plastic deformation, hardening 
mechanisms, and thermally activated, time-de-
pendent phenomena that can lead to material 
weakening [18, 19]. To characterise these effects, 
an experiment was conducted to gather data on the 
response of the material under varying temperature 
conditions and strain rates, following standard pro-
cedures used by numerous researchers [20–26].

Uniaxial compression tests were performed 
on commercially pure Grade 2 titanium to char-
acterise its thermoplastic response under condi-
tions representative of industrial forming pro-
cesses. Cylindrical specimens (⌀10×12 mm) 
were machined from hot-rolled bars, with the 
longitudinal axis aligned parallel to the rolling 

direction to maintain microstructural consisten-
cy. Tests were conducted across three temper-
atures (400, 500, 600 °C) and three strain rates 
(0.01, 0.1, 1 s⁻¹), covering the typical hot-work-
ing range for titanium-based orthopaedic compo-
nents. Details of the full experimental procedure 
are available in the authors’ previous work [27]. 
Figure 1a presents the pure titanium samples, 
while Figure 1b shows the experimental setup. 
The experimental stress–strain curves were used 
as input for a four-stage parameter identification 
protocol implemented in MATLAB, employing a 
nonlinear least squares method. This procedure 
follows the protocol outlined in [7], with only the 
key steps summarised here:
1) saturation stress is extracted from the stress–

strain curves at constant temperatures and 
strain rates.

2) parameters A, Q, ξ, m, 
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/ξ as single parameter. Constants are com-
puted based on experimental parameters, i.e. 
deformation rate and maximal stress.

3) 
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/ξ. 
4) constants ch0, cs0, a  (Equation 8) are calculat-

ed using nonlinear least squares from constant 
strain rate data.

With c known, h0 and s0 are then obtained. 
The curve-fitting process was supported by a lit-
erature review to ensure the constants remained 
within reasonable physical limits [12, 13, 15, 17, 
28]. In addition, the four-stage parameter calibra-
tion has been successfully used in similar studies 
[12] and [14], providing consistent results as well 
as allowing good predictive capability within and 
beyond the calibrated range.

Numerical model and implementation

The objective of the numerical analysis was 
to verify the accuracy of the Anand model imple-
mentation by comparing simulation results with 
the experimental data from uniaxial compression 
tests. To ensure fidelity, the simulations closely 
replicated the conditions of the physical experi-
ments. Simulations were conducted in ANSYS 
Workbench 2020R2. Separate projects were cre-
ated for each temperature level (400–600 °C), 
with subcases defined by strain rate. The Anand 
viscoplastic model was implemented using the 
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previously identified material parameters. The ge-
ometry consisted of a cylindrical specimen (⌀10 
× 12 mm) compressed between two rigid anvils 
(25 × 25 × 5 mm), which were modelled as non-
deformable bodies (Figure 2). Material properties 
were defined in the Engineering Data section, in-
cluding the temperature-dependent Young’s mod-
ulus. While the room temperature modulus was set 
at 110 GPa [29], values at elevated temperatures 
were extrapolated from experimental stress-strain 
data (Figure 3 and Table 1) [30]. To mimic the in-
dustrial hot-working conditions, contact between 
the sample and anvils was set as frictional with 
a coefficient of 0.05, simulating graphite lubrica-
tion. A hexahedral mesh was used (Figure 2c), 

with 1 mm elements generating 3874 elements 
and 18357 nodes. Mesh sensitivity analysis con-
firmed that further refinement yielded negligible 
accuracy gains but significantly increased com-
putation time. Compression was simulated by 
displacing the upper anvil downward by 7 mm 
over a time interval corresponding to the target 
strain rate. Each simulation was divided into 10 
time steps to capture material response evolution. 
The sample temperature was defined as uniform 
for each case.

A total of 25 simulations were performed, 
covering all combinations of temperature and 
strain rate. Each case was solved using the PCG 
(Preconditioned Conjugate Gradient) solver, 

Figure 1. (a) Samples before (right) and after (left) TMP, (b) setup of a Gleeble TMP experiment. Heated 
cylindrical sample (⌀10 × 12) just before compression

a)

b)
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which proved effective for handling large, non-
linear deformations. Computation times ranged 
from 5 to 15 minutes per simulation.

RESULTS

Experimental results

For the purpose of developing and validating 
the constitutive model, selected results at 400 °C 
and 600 °C were used, as presented in Figures 4a 

and 4b, respectively. At higher strain rates at lower 
temperature, the curves take on an irregular shape. 
Such a curve profile indicates the so-called Porte-
vin–Le Chatelier effect, which commonly occurs 
in metals, although the mechanisms behind its for-
mation vary [31, 32]. For commercially pure α-ti-
tanium, an explanation of this behaviour was pro-
vided by Prasad [33]. During deformation, mobile 
dislocations are halted by interstitial elements such 
as C and N. Then, after overcoming these obsta-
cles, the dislocation rapidly jumps to the next bar-
rier, which results in the effect visible on the curve. 

Figure 2. Geometric model used in the simulation: full assembly view (a), cross-sectional view (b), 
and meshed sample (c)

Table 1. Young’s modulus of Grade 2 titanium as a function of temperature [30]
Temperature [C] Young’s modulus [MPa] Poisson’s ratio Bulk modulus [Pa] Shear modulus [Pa]

20 1.1e+05 0.37 1.41e+11 4.01e+10

400 8450 0.37 1.08e+10 3.08e+09

500 5580 0.37 7.15e+09 2.04e+09

600 4500 0.37 5.77e+09 1.64e+09

Figure 3. Young’s modulus of Grade 2 titanium as a function of temperature [30]
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The nature of the curves changes slightly for tests 
conducted at higher temperatures. The curves tran-
sition directly from Phase I (strain hardening) to 
Phase II – plastic flow. Similar behaviour was ob-
served by Nemat-Nasser and Zeng [18, 34]. In the 
case of lower strain rates, the curve shows a slight 
decline, indicating thermal softening (Figure 4).

Identification of model parameters

The parameters a, h0 and s0 of the mathematical 
model (9) were identified based on the experimen-
tal results using curve fitting method, in particular 
nonlinear least square method which is widely ac-
cepted by scientific community as a reliable tool 
for the desired tasks. The authors decided that the 
chosen method provides a reliable and computa-
tionally efficient solution fully consistent with the 
goals of the study and comparable with approach-
es used in related research. Additionally, nonlinear 
least square method is implemented in widely used 

mathematical tools like MATLAB or Wolfram 
Mathematica, which allows for quick implemen-
tation of this method for desired calculations. The 
parameter values are presented in Table 2 where the 
calculated constants of the model are also shown. 
The fitted curves were compared to the experimen-
tal data in order to assess the correctness of the fit 
(Figure 5). The nonlinear least square method was 
used to fit model for the 0.01 s-1 and 1 s-1 strain rates 
simultaneously. Thus, one set of the parameters en-
abling to model the material behaviour in a wide 
deformation rate range was obtained. The middle 
curves (for 0.1 s-1) represent a verification of the pa-
rameter identification. They are obtained by intro-
ducing the calibrated parameters into (9). The mod-
el fits the experimental data well in most cases. It is 
worth noting that the model reflects both the initial 
phase of elastic deformation and the plastic phase 
of TMP processing.  To evaluate the model fit, both 
visual comparison and statistical regression metrics 

Figure 4. True stress–strain curves obtained from uniaxial compression tests of Grade 2 titanium at (a) 400 °C 
and (b) 600 °C for various strain rates (0.01–1 s⁻¹), used for constitutive model calibration and validation

Table 2. Identified parameters for the Anand model, obtained through nonlinear least squares fitting to experimental 
stress–strain data for the strain rate span 0.01÷1 s-1 and calculated model constants

Temp [°C] 400 600 Temp [°C] 400 600

0.01 s-1 1 s-1

Q [J/mol] 382444 300000 Q [J/mol] 382444 300000

s0 [MPa] 46.05 2.6 s0 [MPa] 46.05 2.6

A 2.33E+06 1.49E+05 A 2.33E+06 1.49E+05

ξ 50 29 ξ 50 29

m 0.846 0.973 m 0.846 0.973

h0 3605.8 13156.7 h0 3605.8 13156.7

  
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/ξ 1.492 1.541

c 0.844 1.036 c 0.922 1.190

a) b)
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were used: sum of squared errors (SSE), R-squared, 
adjusted R-squared, and root mean square error 
(RMSE) between experimental and predicted val-
ues [35–37]. The results, summarised in Table 3, 
indicate strong agreement. High R-squared values 
and low RMSE and SSE confirm a good fit overall. 
As expected, the model performed least accurate-
ly at 400 °C and a strain rate of 1 s-1 where fitting 
proved only partially successful.

Model validation through numerical analyses

To validate the predictive capability of the 
developed numerical model, simulations were 
conducted for the processing conditions not pre-
viously tested experimentally. Specifically, the 
model was used to predict the material response 

at 450 °C and 550 °C with a strain rate of 0.1 s-1,  
0.5 s-1 and 1 s-1. The corresponding stress-strain 
curves were generated numerically. Subsequently, 
physical compression tests were carried out under 
identical conditions to compare the experimental 
results with the model predictions. Additionally, 
the experiments for the 400 °C and 500 °C were 
conducted at the rate 0,5 s-1.In all cases the nu-
merical calculations values are comparatively 
similar with experimental results. The slope of 
the experimental stress-strain curves follows the 
slope of the experiment, especially in the plastic 
region. Unfortunately, due to phenomena taking 
place during the thermal processing (most likely 
due to dynamic recrystallisation) the stress in the 
experimental curve drops. The presented model is 
unable to follow this effect (Figure 6 a, b).

Figure 5. Curve fitting effects for (a) 400 °C set, (b) 600 °C. Experimental results are presented with continuous 
lines and fitted curves are visible as dashed lines

a)

b)
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DISCUSSION 

The implemented Anand model demonstrated 
a high degree of efficiency in predicting the ther-
moplastic deformation behaviour of commercially 
pure titanium across a wide range of processing 
conditions. Quantitatively, the model achieved 
excellent agreement with experimental data, as 

evidenced by high R-squared values (≥ 0.95 in 
most cases) and low RMSE values, particularly at 
elevated temperatures where thermally activated 
mechanisms dominate plastic flow. However, the 
model exhibits clear limitations in capturing the 
softening behaviour related to dynamic recrystal-
lisation, as evidenced by stress drops in the exper-
imental curves at lower temperatures (Figure 6a 

Table 3. Anand model parameters and statistical fit metrics for commercially pure titanium
Temp. 400 °C

𝜀𝜀̇  [1 s-1] 0.01 0.1 1

SSE 4525 1.21E+04 2.44E+04

R-square 0.9887 0.975 0.9582

Adjusted R-squared 0.9881 0.9737 0.9558

RMSE 9.07 14.86 21.87

Temp. 600 °C

𝜀𝜀̇  [1 s-1] 0.01 0.1 1

SSE 1582 3211 1819

R-squared 0.9884 0.9698 0.9815

Adjusted R-squared 0.988 0.9681 0.9808

RMSE 3.941 7.641 6.157

Figure 6. Comparison of FEM simulation results and experimental curves at (a) temperature of 400 °C, 
(b) temperature 450 °C, (c) temperature 500 °C, (d) temperature 550 °C
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and 6b). This limitation is inherent to the Anand 
model, which does not include recrystallisation 
kinetics or flow softening terms in its original for-
mulation [13]. As a result, the model maintains 
a strain-hardening response, even in conditions 
where dynamic recrystallisation leads to stress re-
duction. Nevertheless, the model performs consist-
ently well across higher temperatures and different 
strain rates, and it also demonstrates good predic-
tive capability when extrapolated to untested con-
ditions. The issue at 400 °C highlights a local limi-
tation rather than a fundamental flaw in the model, 
meaning it remains reliable for process optimisa-
tion and implant design within the broader temper-
ature range relevant to biomedical applications.

In Anand’s original work, the model was 
applied to lithium [15], yielding parameter val-
ues largely consistent with those obtained in the 
present study, with the exception of A = 4.25 × 
104  and h0 = 10. Cheng et al. [12], studying solder 
materials, reported a set of constants comparable 
in magnitude to those for commercially pure tita-
nium, except for a significantly different activa-
tion energy Q. Similarly, in the studies on sintered 
nanosilver [28] and SAC305 solder [26], most pa-
rameters aligned closely, with notable deviations 
again observed in A and Q/R.

Its computational performance was also note-
worthy: each full simulation completed with-
in 5–15 minutes using standard PCG solvers in 
ANSYS, making it suitable for iterative design 
workflows and real-time parameter optimisation. 
Importantly, the model retained its accuracy when 
extrapolated to untested conditions (e.g., 450 °C 
and 550 °C), with flow stress prediction errors re-
maining below 8%. This level of predictive relia-
bility confirms the model’s robustness and gener-
alisability, offering a powerful and time-efficient 
alternative to extensive experimental trials in the 
optimisation of thermomechanical processing pa-
rameters for biomedical titanium components.

A drawback of this model is its inability to 
describe the final phase of deformation—thermal 
softening. This is primarily because the model 
was originally developed for high-temperature 
viscoplastic deformation of metals where strain 
hardening and dynamic recovery dominate, but 
dynamic recrystallisation or flow softening mech-
anisms are not explicitly included.

One of the notable characteristics of the nu-
merical results is the distinctive wavy shape of 
the stress-stress curve. This behaviour may be at-
tributed either to the high deformation of some 

elements in the model, or numerical instability 
due too large time increments [38]. Wavy be-
haviour could also hint at a mismatch between 
strain-hardening and rate-dependence terms. 

Postprocessing and output settings may also 
play a role. In simulations where stress is record-
ed at every increment, minor oscillations—often 
a natural part of the numerical solution—can be-
come visually prominent. These fluctuations may 
not represent true physical behaviour but rather 
the discrete nature of the numerical integration. 
Smoothing techniques in postprocessing, or av-
eraging over slightly larger strain intervals, can 
help distinguish between numerical noise and 
meaningful material response [39].

In summary, the wavy shape of the numerical 
stress–strain curves can be attributed to a com-
bination of factors: time step sensitivity, material 
model parameter calibration, mesh resolution, and 
data sampling frequency. Addressing these issues 
through improved model tuning, mesh refine-
ment, and careful solver control can enhance the 
fidelity of the numerical simulation as well as im-
prove agreement with experimental observations.

Additionally, interpolation errors were ob-
served at intermediate temperatures, especially 
at 500 °C, where the model’s predictive accuracy 
decreased. This is due to the simplified approach 
of interpolating between parameters identified at 
400 °C and 600 °C without additional calibration 
at the intermediate temperature. The model incor-
rectly assumes that the material behaviour at 500 
°C closely follows the 400 °C trend, which results 
in an overestimation of flow stress. Incorporating 
more data points at finer temperature intervals or 
using temperature-dependent parameter functions 
could mitigate this issue in future studies.

Furthermore, the wavy shape of the simulated 
stress–strain curves (Figure 6) indicates the pres-
ence of numerical artefacts. These oscillations 
likely result from insufficient time step control, 
potentially combined with postprocessing set-
tings that overemphasise incremental stress fluc-
tuations. Mesh density and solver configuration 
may also contribute to this effect, particularly in 
the regions with large plastic deformation. Refin-
ing the time step strategy, improving mesh res-
olution, and applying smoothing techniques in 
postprocessing could reduce these artefacts and 
further improve the numerical stability and phys-
ical realism of the simulations [40].

Despite the model’s strong overall performance, 
the discrepancies observed at lower temperatures 
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and in the softening phase suggest areas for im-
provement. Incorporating dynamic recrystallisation 
kinetics into the saturation stress term or coupling 
the Anand model with microstructure-sensitive 
approaches (e.g., crystal plasticity) could enhance 
accuracy. Deviations may also stem from experi-
mental uncertainties, such as frictional variation or 
slight temperature gradients in the sample. More 
advanced calibration methods, including machine 
learning-assisted parameter optimisation, could 
further refine the model’s predictive robustness un-
der varied processing conditions [41].

The comparison between simulation and ex-
perimental results confirms that the Anand model 
provides a reliable and efficient tool for predict-
ing the thermoplastic deformation of commer-
cially pure titanium, particularly at elevated tem-
peratures (400–600 °C) and moderate strain rates. 
The model accurately captures the overall shape 
and slope of the stress–strain curves in the plastic 
regime and demonstrates strong agreement across 
most tested conditions. The deviations observed 
at lower temperatures, especially at 400 °C, are 
likely due to dynamic recrystallisation, which is 
not explicitly modelled. At 500 °C, mismatches 
are attributed to the model’s limited ability to 
capture transitional deformation mechanisms and 
possible interpolation errors between calibrat-
ed data points. Despite minor discrepancies, the 
model shows good predictive capability under 
untested conditions validating its application for 
process optimisation and implant design.

Future research should focus on enhancing 
the Anand model by incorporating mechanisms 
such as dynamic recrystallisation or coupling it 
with microstructure-sensitive models like crystal 
plasticity, especially to improve accuracy at low-
er and transitional temperatures [16, 42, 43]. Ex-
panding the experimental dataset to include finer 
temperature intervals (e.g., every 25 °C) could 
improve parameter fitting and reduce interpola-
tion errors. These developments would further in-
crease the model’s predictive precision and appli-
cability in complex, multi-axial loading scenarios 
relevant to biomedical implant manufacturing.

Another important factor which cannot be 
neglected in future research is the matter of the 
uniformity of temperature. While the uniform 
temperature assumption is sufficient for model 
calibration and initial process optimisation, future 
work should address this limitation by incorporat-
ing thermal gradients into the simulation frame-
work, possibly through coupled thermomechanical 

analysis. This would improve the model’s appli-
cability to industrial-scale processes where heat 
transfer, frictional heating, and temperature distri-
bution across the part cannot be neglected. 

Moreover, biomedical forming processes 
such as forging and extrusion involve complex, 
multiaxial stress states that can significantly af-
fect material flow and microstructural evolution. 
Future work should also focus on extending the 
model validation to multiaxial deformation sce-
narios, including upsetting, torsion, or combined 
loading tests, to ensure the model’s applicability 
to industrial-scale forming processes relevant to 
implant manufacturing. [44, 45].

This study demonstrated the successful ad-
aptation of the Anand constitutive model for pre-
dicting the thermoplastic deformation behaviour 
of commercially pure titanium, addressing a key 
challenge in the optimisation of manufacturing 
processes for biocompatible orthopaedic im-
plants. The model reliably captures the stress–
strain response across a wide temperature range 
(400–600 °C), particularly excelling in the later 
stages of deformation where material flow is dom-
inant. By eliminating the need for complex yield 
surface definitions, the model reduces experi-
mental data requirements while retaining robust 
predictive capabilities. The calibrated material 
constants are consistent with the values reported 
in the literature, yet tailored to reflect the specific 
thermomechanical response of pure titanium.

Implementation in ANSYS enabled rapid, 
full-process simulations with computation times 
under 15 minutes per case, significantly acceler-
ating parameter selection compared to traditional 
trial-and-error approaches. The model supports 
the design of implants with yield strengths up to 
800 MPa, while preserving the intrinsic biocom-
patibility of titanium. Although discrepancies 
were observed at 400 °C, likely due to incomplete 
dynamic recrystallisation, these limitations can 
be addressed by incorporating recrystallisation 
kinetics into the saturation stress term or coupling 
the model with crystal plasticity approaches, par-
ticularly for sub-500 °C applications. Further val-
idation under multiaxial loading, such as in forg-
ing or extrusion processes, is recommended.

The developed numerical framework enables 
detailed process planning and precise optimisa-
tion of deformation conditions, supporting the 
production of titanium implants with tailored me-
chanical properties and reliable performance in 
biomedical applications.
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