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INTRODUCTION

Steel bar covers are spatial structures consist-
ing of a system of interconnected steel bars, creat-
ing a rigid and durable geometric grid. Single-layer 
steel bar covers are widely used in industrial halls, 
warehouses or sports facilities [1-3]. In the design 
of bar coverings, an important parameter is their 
height, often defined as the ratio of height to span. 
The value of this parameter affects the distribution 
of internal forces generated in the structure. The 
article [4] emphasized that spatial bar structural 

coverings is a popular method of roofing large are-
as, enabling the use of a small number of intermedi-
ate supports, and their height affects the efficiency 
of the structure. The article [5] indicates that in the 
case of multi-layer structural roofs, the ratio of the 
structure’s height to its span is usually in the range 
of 1/60–1/100, and in the case of shell structures 
this ratio can be much smaller. Moreover, the arti-
cle [6] discusses various types of coverings, such 
as mesh domes and grates, which differ in their 
prominence and shape, which affects their struc-
tural properties. Single-layer bar coverings exhibit 
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complex responses to loads, which are reflected in 
the equilibrium paths. Analysis of static equilib-
rium paths allows determining the behaviour of 
these structures under various loading conditions. 
Nowadays, modern, numerical techniques provide 
a computational tools to study the behaviour of en-
gineering structures. In the paper [7] Authors show 
an experimental path-following method that uses 
Newton’s method, stiffness and residual forces to 
continue along unstable and stable equilibrium 
paths. The paper [8] describes experimental and 
numerical analysis of the post-buckling behaviour 
of geodesic lattice domes. The paper [9] describes a 
numerical methodology for the geometrically non-
linear analysis of structures under unilateral con-
tact constraints. The nonlinear problem contains 
two distinct types of variables: the length, position 
of the contact regions and the displacement field. 
To solve the system of nonlinear algebraic equa-
tions with contact constraints and determine the 
structural equilibrium configuration, the authors 
propose a two-level iterative solution strategy for 
each load increment. In the first stage, the contact 
problem is addressed as a linear complementarity 
problem using Lemke’s algorithm, followed by up-
dating the displacement field in the second stage. 
In paper [10], four reticulated shell models incor-
porating roofing systems are experimentally ana-
lysed to assess the influence of the roofing system. 
Finite element method (FEM) simulations were 
developed based on these experimental models to 
validate the numerical findings. The paper [11] ex-
amines how the buckling load of a single-layer cov-
ering stiffened with cables will change compared 
to a covering without cables. The following param-
eters were taken into account in the analysis: cable 
routing methods, types of connections, prestress in 
cables, and cable cross-sections. The results indi-
cate that the buckling load of single-layer gratings 
has been significantly improved by introducing ca-
bles. In the paper [12] nonlinear and linear seismic 
responses of single-layer Kiewitt dome are esti-
mated. Computations of the structural analysis are 
implemented in ANSYS. The authors demonstrate 
that relying on only seven ground motion record 
components in seismic design can result in either 
overestimation or underestimation of structural 
performance. They recommend using a greater 
number of ground motion records to reduce the rel-
ative differences observed in failure probabilities 
and improve the reliability of seismic design. In 
[13], both numerical and experimental studies are 
conducted on gear-bolt joints used in grid spatial 

structures. A series of monotonic loading tests are 
performed on the gear joints to evaluate their per-
formance. The experimental setup allows for direct 
assessment of the impact of several critical param-
eters, including ball thickness, gear bolt diameter, 
the ratio of tooth depth to bolt diameter, and the 
number of teeth. FEM model of the gear joints is 
verified by the experimental results. In the paper 
[14] is proposed a new parameter to assess global 
stability analysis of structures. This parameter is 
mathematically derived from the incremental equi-
librium equation of the nonlinear stability analysis. 
Equilibrium paths with detailed geometrically and 
materially nonlinear analysis for single-layer retic-
ulated domes are described. Interesting study on 
progressive collapse of single-layer latticed domes 
is described in [15]. Numerical simulations and ex-
perimental tests are carried out to understand the 
way of internal force redistribution during the col-
lapse of the Lamella and geodesic domes. Three 
effective methods to evaluate collapse resistance 
are described. Ensuring the overall stability of the 
structure is extremely important from the point of 
view of safety and reliability. Problems of stability 
loss are a common topic of research by scientists, 
including Silva and Ribeiro [16]. In the works 
[17, 18] the authors present numerical simulations 
along with detailed experimental studies of the col-
lapse resistance of single-layer lattice domes. The 
simulations of equilibrium paths taking into ac-
count the nonlinear finite element model were pre-
sented in [19]. The issues related to the response to 
dynamic actions of most designed structures are as 
important to consider during design as the stability 
analysis. In the works [20–22] the authors tried to 
present various aspects of the influence of dynamic 
analysis on the structure.

In the evaluation of the performance of steel 
bar coverings, an extremely important issue is 
the correct determination of the numerical model 
of the analysed structure. The accuracy of these 
models may differ from the actual behaviour of the 
structure. For this reason, it is necessary to verify 
and calibrate them using experimental tests. Ex-
perimental analysis involves physical testing of a 
structure to investigate its actual behaviour under 
load. To achieve this goal, we use static and dy-
namic tests, which are performed in laboratories 
or in the field. These tests involve applying loads 
and monitoring their effect on the structure. The 
advantage of experimental analysis is the direct 
consideration of the actual operating conditions 
of the structure, such as material imperfections or 
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manufacturing errors. Experimental results can 
reveal unexpected behaviours of the structure that 
were not included in the numerical models (e.g. 
the effect of material variability or manufactur-
ing errors). Results obtained by the experimen-
tal method increase confidence in the results ob-
tained using numerical simulations.

Numerical analysis, most often using the 
FEM, allows for modelling complex steel struc-
tures. This method allows for simulation of the 
behaviour of the structure in various conditions, 
taking into account the description of the com-
plex geometry of the structure, nonlinear mate-
rial properties, boundary conditions and load. 
Numerical analysis allows for quick changes in 
the structure model, e.g. modification of geome-
try or material, which in the case of experimental 
studies requires a lot of time and money. A major 
advantage of this method is the ability to perform 
simulations in many load variants and bounda-
ry conditions without the need to build physical 
models. At the stage of numerical simulations, it 
is also possible to optimize the structure. Con-
ducting an analysis for different variants of the 
geometry and load of the structure allows for 
optimizing the design in terms of strength, mass 
and costs. However, this method is not free from 
drawbacks. Errors in the numerical model can 
lead to incorrect interpretation of the behaviour 
of the structure in real conditions.

This article includes a series of experimental 
tests and numerical analyses for two types of steel 
bar domes. The structures differ in height. The aim 
of this study was to calibrate a numerical model 
of a dome structure by incorporating relevant 
geometric nonlinearities and fabrication imper-
fections, in order to match experimental results. 
In the numerical model of the dome structure, 
spatial frame elements were used. The numerical 
calculations were performed in the Abaqus envi-
ronment using a geometrically nonlinear analysis 
with the Riks method, which enables capturing 
buckling and snap-through phenomena as well 
as obtaining the full equilibrium path within the 
instability region.

At the initial stage of the study, the numerical 
results differed significantly from the experimen-
tal data. The discrepancies concerned both the 
displacement values of the keystone node and the 
shape of the load-displacement curve. To identify 
the sources of these differences, a detailed inspec-
tion of the test setup was carried out, focusing on:

 • the method of fixing the structure in the test 
stand,

 • possible deformations or manufacturing de-
viations of the structural elements,

 • the actual stiffness of the supports.

During testing, slight settlement was observed 
at the support location, likely resulting from mate-
rial deformation or deformation of the connection 
to the base. This indicated that the initially assumed 
perfectly rigid supports did not reflect the real be-
havior of the structure. Consequently, modifications 
were introduced to the numerical model by imple-
menting elastic supports, defined by an appropriate 
translational stiffness. This allowed the model to 
reflect the compliance of the support node to ver-
tical displacements, bringing the numerical results 
closer to the experimental measurements.

Another significant step involved the inclu-
sion of geometric imperfections. A characteristic 
imperfection shape in the form of the first buck-
ling mode was adopted, with a realistic amplitude 
consistent with design standards. The inclusion 
of these imperfections had a considerable effect 
on the structural response, particularly in terms 
of initial stiffness and the onset of geometric in-
stability. Only after accounting for both factors – 
elastic supports and real geometry with imperfec-
tions was satisfactory agreement between the ex-
periment and the numerical simulation achieved. 
This applied to both the keystone node displace-
ment values at various load levels and the overall 
shape of the load-displacement path. 

The structure of the paper is as follows. After 
a short introduction, the concept of equilibrium 
path is defined. Then, the tools necessary to per-
form numerical simulations are described. The 
next chapter concerns the detailed description of 
the measuring stand. Then, the results of experi-
mental and numerical studies are presented. The 
paper ends with a discussion of the obtained re-
sults and conclusions.

THE EQUILIBRIUM PATH

One of the important tasks in analysis of 
structure is the determination of the equilibrium 
path. An equilibrium path is a curve in the space 
of the generalized displacements and the load fac-
tor. Stability analysis of the equilibrium state can 
be described based on the stability condition at 
the stationary point of the total potential energy. 
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In this section we define nonlinear equilibrium 
equations using the potential energy of the struc-
ture V=V(q,Q) as a function of a load vector Q 
and a displacement vector q. We assume that vec-
tor Q is a proportional, one-parameter load:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (1) 

where: μ – load multiplier, P – comparative load 
vector.

Change of parameter μ leads to changes of the 
displacement vector q. The next solutions gener-
ate in an (N+1) dimensional space (q1,q2,…,qN, μ) 
a curve called an equilibrium path. We choose a 
point 𝐴𝐴(�̃�𝑞, �̃�𝜇)  

 
𝐵𝐵(�̃�𝑞 + Δ𝑞𝑞, �̃�𝜇 + Δ�̃�𝜇)  
 

 on the equilibrium path. The point 
𝐴𝐴(�̃�𝑞, �̃�𝜇)  
 
𝐵𝐵(�̃�𝑞 + Δ𝑞𝑞, �̃�𝜇 + Δ�̃�𝜇)  
 

 is not a singular point nor to its vicinity. 
We will describe the change of the system state 
by the change of m parameter. We will describe a 
new point 

𝐴𝐴(�̃�𝑞, �̃�𝜇)  
 
𝐵𝐵(�̃�𝑞 + Δ𝑞𝑞, �̃�𝜇 + Δ�̃�𝜇)  
 

 on the equilibrium 
path.The potential energy at B point close to A 
point we can write:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (2)

The first derivative of potential energy V in 
the vicinity of A point takes the form:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (3)

Assuming the configuration  (q̃+Δq)  
 
(μ̃+Δμ)  

 i 

 (q̃+Δq)  
 
(μ̃+Δμ)   

to be also an equilibrium state and neglecting the 
nonlinear term of the increments Dq and Dμ the lin-
earized incremental equations set takes the form:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (4)

According to Castigliano’s theorem, if an ex-
ternal load Q is conservative, we can write:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (5)

The set of nonlinear equations (4) in the ma-
trix version takes the form:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7) 

 (6)

where: 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
– tangent stiffness matrix 

of the structure.

The set of nonlinear algebraic equations, we 
can compute using incremental-iterative Newton-
Raphson methods. During iteration, at each incre-
mental step, we can write:

 

 
 

𝑄𝑄 = 𝜇𝜇 ⋅ 𝑃𝑃 
 

(1) 

 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇) = 𝑉𝑉(�̃�𝑞, �̃�𝜇) + 

+𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞 𝛥𝛥𝑞𝑞 + 𝜕𝜕𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇 + 

1
2!

[
 
 
 
 𝜕𝜕

2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2 + 2𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2

]
 
 
 
 
+ ⋯+ 

+ 1
𝑛𝑛! [∑(𝑛𝑛𝑘𝑘) 𝜕𝜕𝑛𝑛𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞𝑛𝑛−𝑘𝑘𝜕𝜕𝜇𝜇𝑘𝑘 (𝛥𝛥𝑞𝑞)𝑛𝑛−𝑘𝑘(𝛥𝛥𝜇𝜇𝑘𝑘)] 
 

(2) 

 
 

𝜕𝜕𝑉𝑉𝐵𝐵
𝜕𝜕𝑞𝑞 = 𝜕𝜕𝑉𝑉(�̃�𝑞 + 𝛥𝛥𝑞𝑞, �̃�𝜇 + 𝛥𝛥�̃�𝜇)

𝜕𝜕𝑞𝑞 = 

= [𝜕𝜕
2𝑉𝑉(�̃�𝑞,�̃�𝜇)
𝜕𝜕𝑞𝑞2 𝛥𝛥𝑞𝑞 + 𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇 𝛥𝛥𝜇𝜇] = 

+ 1
2!

[
 
 
 
 𝜕𝜕

3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇2 (𝛥𝛥𝜇𝜇)2 + 2𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)

𝜕𝜕𝑞𝑞2𝜕𝜕𝜇𝜇 𝛥𝛥𝑞𝑞𝛥𝛥𝜇𝜇 +

+𝜕𝜕3𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞2 (𝛥𝛥𝑞𝑞)2

]
 
 
 
 
+ ⋯  

 
 

(3) 

  
 
 
 

∂2V(q̃,μ̃)
∂q2

Δq+
∂2V(q̃,μ̃)
∂q∂μ

Δμ=0 

 

(4) 

 
 

−𝑃𝑃 = 𝜕𝜕2𝑉𝑉(�̃�𝑞, �̃�𝜇)
𝜕𝜕𝑞𝑞𝜕𝜕𝜇𝜇  

 

(5) 

 
 

𝐾𝐾𝑇𝑇(𝑞𝑞, 𝜇𝜇) ⋅ 𝛥𝛥𝑞𝑞 − 𝛥𝛥𝜇𝜇𝑃𝑃 = 0 
 

(6) 

 
𝜕𝜕2𝑉𝑉(�̃�𝑞,�̃�𝜇)

𝜕𝜕𝑞𝑞2 = 𝐾𝐾𝑇𝑇  
 
 

 
KT(q)⋅Δq=Δ𝜇𝜇 ⋅ 𝑃𝑃+R  

 
(7)  (7)

where: K
T
(q) – tangent stiffness matrix of the 

structure, R=P-F – vector of residual 
forces, F – vector of internal forces. 

In the equilibrium state R = 0, while in the it-
erative process the R standard defines the distance 
from the equilibrium state. The iterative process 
converges if R > 0.

The matrix K
T
 of the structure is   created as a 

result of aggregation stiffness matrix of the ele-
ments 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
 

(8) 

KT
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KL
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KG
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Ku1

e   
 
Ku2
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q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

:

 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
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Ku1
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q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
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√𝑛𝑛
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𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  
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U = k • 𝑢𝑢𝐶𝐶 
 
 

 (8)

where: 
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e +Ku2

e ) 
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q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

 is the tangent stiffness matrix of the 
element composed of linear stiffness ma-
trix 
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KT=∑ KT
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i=1  = ∑ (KL

e +KG
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i=1 +Ku1
e +Ku2

e ) 
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q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

, geometric stiffness matrix 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
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KT
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KL

e  
 
KG
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Ku1
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Ku2
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q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

 and 
nonlinear stiffness matrices: 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
 

(8) 

KT
e   

 
KL

e  
 
KG

e   
 
Ku1

e   
 
Ku2

e . 
 

 
q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

 and 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
 

(8) 

KT
e   

 
KL

e  
 
KG

e   
 
Ku1

e   
 
Ku2

e . 
 

 
q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

.

DESCRIPTION OF THE NUMERICAL 
TOOLS

The Equations 7 define a curve, called the 
equilibrium path, in N+1 dimensional space {q,  
μ}. The determination of the load-displacement 
relationship is closely related to the singularities 
along this curve. The singular points are defined 
as critical points, including the limit point (L), bi-
furcation point (B), turning point (R) (Figure 1).

In the case of a low-rise covering, the equi-
librium path often has a limit point. Unfortu-
nately, the load multiplier m is not a correct pa-
rameter for the curve with limit points. At the 
limit points this parameter attains the local ex-
tremum. In order to surmount effectively around 
the critical points, special computing techniques 
should be used. The most popular in practical 
applications is arc length method. The arc length 
method has been proposed by Riks [23, 24] and 
Wempner [25], who suggest, that arc length s 
can be a right choice: 
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𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
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{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

 (9)
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This parameter is used as a control param-
eter in the incremental-iterative process. In the 
arc length method an additional equation (10) is 
added to the basic set of Equations 7.
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𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 
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𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1
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√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

 (10)
Equation 10 defines the arc length increase. 

Different approximations can be used. For con-
stant Ds Equation 10 determines some hypersur-
face that intersects the equilibrium path at the 
next point. The difference between the standard 
incremental-iterative process and the constant 
arc-length method is illustrated in the Figure 2.

An initial point on the equilibrium path, we 
can find solving set of equations:
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The next points are computed using the fol-
lowing iteration scheme (for Δs = const):
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The quantities q, μ, Δq, Δμ are updated in 
each iteration:

 

𝑞𝑞(𝑖𝑖) = 𝑞𝑞(𝑖𝑖−1) + δq(i)

𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1) + δ𝜇𝜇(i)

∆𝑞𝑞(𝑖𝑖) = ∆𝑞𝑞(𝑖𝑖−1) + δq(i)

∆𝜇𝜇(𝑖𝑖) = ∆𝜇𝜇(𝑖𝑖−1) + δ𝜇𝜇(i)
   (13)

The arc length method was followed by many 
modifications. Batoz and Dhatt [26] developed a 
technique of solution of the extended system of 
equations, preserving the symmetry of the stiff-
ness matrix. This technique was used by Crisfield 
[27–29] in his spherical arc length method. Many 
of the later paper [30–33] concern the modifica-
tions of the control equation and an automatic 
governing of the incremental process. A modified 
Riks method by Crisfield, Ramm and Powell and 
Simons has been implemented in Abaqus soft-
ware. This software is used in our paper. 

The paper takes into account the influence 
of imperfections on the equilibrium path of the 
structure, which requires several stages in the Ab-
aqus environment. In the first stage, the Buckle 
analysis was run, which results in buckling modes 
of the structure and the value of the critical force 

Figure 1. The equilibrium path diagram

Figure 2. The incremental-iterative process: (a) standard, (b) constant arc-length method
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corresponding to each of them. In the next step, 
the ideal geometry of the members was disturbed 
by the displacements of the nodes calculated in 
the Buckle step using the *IMPERFECTION* 
command and *STATIC RIKS* calculations were 
performed. Several different combinations of tak-
ing into account the eigenvector value of the first 
buckling mode were performed, for which the 
most optimal version was presented. The nature 
of the obtained equilibrium path clearly indicates 
an improvement in the convergence of the results 
[34–35]. The problems of determining the equi-
librium path in deterministic and probabilistic de-
scription were also discussed in the articles [36].

Abaqus software also allows to include in the 
numerical model the flexibility of supports, using 
the *SPRING* option. The type of connection (e.g. 
as an elastic attachment to the substrate) is consid-
ered in the model, taking into account the spring 
coefficient. Spring elements are used to model real 
physical springs, as well as idealizations of axial 
or torsional elements. They can also model con-
straints preventing the movement of a rigid body. 
They are also used to represent structural damp-
ers by specifying structural damping coefficients 
to create the imaginary part of the spring stiffness.

DESCRIPTION OF THE EXPERIMENTAL 
RESEARCH STATION

Nowadays, nonlinear structural analysis 
seems to be essential for most structural engineer-
ing applications. Many engineers have started to 
lean towards more detailed structural analysis. 
However, creating numerical models that better 
describe the actual behavior of structures requires 
their validation through experimental studies. In 
this paper, we verify their numerical models by 
experimentally determining the equilibrium paths 
of two bar covers. In this section, we describe the 
experimental research station.

The test stand was constructed to test the 
displacement of the nodes of a steel rod-shaped 
roof structure (bar dome). Figure 3 shows the ap-
pearance of experimental models test stand (Fig-
ure 3a) and scheme (Figure 3b), respectively. It 
consists of two main parts: a stable base with a 
load module made of steel profiles (the structure 
consists of C-beams and I-beams) and a solid 
ring made of square tubes on which the tested 
structure is placed. Both parts are connected with 
clamps during the test. The load was applied to 

the keystone using a hydraulic actuator. The plate 
was attached to a hook scale using a steel sling. 
The hook scale, which is mounted in the key, en-
ables precise reading of the load that is currently 
applied using a ratchet hook. The displacements 
were read from electronic sensors (ES1). Laser 
levels were used to control the setting of the hy-
draulic actuator in two directions, which allow 
for precise determination of the position of the 
actuator during the test. Each of the models was 
attached to a steel ring using bolts, simulating ar-
ticulated supports.

Thanks to this method, the load control and 
its distribution on the tested structure is precise, 
which allows for precise verification of the struc-
ture’s response to the introduced load. PO10 and 
PO12 steel rods were used to make the tested 
structure (Figure 4). The structure has rigid con-
nections in the nodes (the rods are welded in the 
nodes). Additionally, nuts are welded in the sup-
port nodes, which are used to attach the structure 
to the circumferential ring (one M12 bolt was 
used in each node to screw the structure, which 
simulates an articulated support). In order to 
reproduce the actual structure as accurately as 
possible in the numerical analyses, the model 
was carefully measured after being mounted on 
the test stand. Measurements were made of the 
length of the rods, the distance between the sup-
ports, and, treating the plane of the laser level 
as a reference level, the height of the individual 
nodes. In the tests, measurements were made of 
both the displacement of the central node (key-
stone) and the node of support no. 1. The dis-
placements were measured using horizontal and 
vertical sensors. These sensors were placed at 
appropriate points of the structure to precisely 
monitor changes in displacements during loading. 
Five series of measurements allowed for accurate 
recording and analysis of deformations at differ-
ent stages of the test. All structural elements of 
the stand are designed with precise measurement 
methods in mind, which ensure high accuracy of 
experimental results. 

The tests used calibrated electronic sensors 
Mitutoyo Absolute ID-U with a measuring range 
of up to 25.4 mm and a resolution of 0.01 mm, 
measuring force < 1.8 N and a maximum permis-
sible error of 0.02 mm. The load applied to the 
keystone was controlled for axiality before and 
during the test. It was applied manually using a 
hydraulic actuator, while it was read from a hook 
scale with a resolution of 1 N. The tests were 
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Figure 3. Experimental models test stand: (a) real view, (b) scheme

Table 1. Node coordinates
Low-rise dome High-rise dome

No. of 
Node X [m] Y [m] Z [m] No. of 

Node X [m] Y [m] Z [m]

1 0.0000 -0.5280 - 0.0545 1 0.3090 -0.5270 - 0.1600

2 −0.5280 −0.3050 - 0.0560 2 -0.3090 -0.5270 - 0.1610

3 −0.5280 0.3050 - 0.0590 3 -0.6130 0.0057 - 0.1630

4 0.0000 0.5280 - 0.0565 4 -0.2980 0.5380 - 0.1630

5 0.5280 0.3050 - 0.0510 5 0.3070 0.5380 - 0.1580

6 0.5280 −0.3050 - 0.0505 6 0.6200 0.0030 - 0.1570

7 0.1480 −0.2560 - 0.0150 7 0.2600 -0.1420 - 0.0340

8 −0.1480 −0.2560 - 0.0155 8 0.0000 -0.2900 - 0.0390

9 −0.2960 0.0000 - 0.0190 9 -0.2530 -0.1470 - 0.0410

10 −0.1480 0.2560 - 0.0190 10 -0.2530 0.1530 - 0.0390

11 0.1480 0.2560 - 0.0150 11 0.0000 0.2900 - 0.0390

12 0.2960 0.0000 - 0.0160 12 0.2600 0.1530 - 0.0390

13 0.0000 0.0000 0.0000 13 0.0000 0.0000 0.0000

a)

b)
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conducted under the same conditions: tempera-
ture 22 ° C +/- 1 ° C, humidity 50% +/- 5 %, which 
allowed to eliminate the influence of temperature 
changes on the accuracy of the measurements.

All of the above methods and measurements 
allow for precise verification of numerical ana-
lytical models and precise determination of the 
characteristics of deformations and the response 
of the structure to the applied load. 

EXPERIMENTAL AND NUMERICAL 
RESULTS

Structure description

The article analyses the influence height to 
span ratio on the shape of the equilibrium path of 

the steel domes. Two types of steel domes con-
sisting of 13 nodes and 24 bars were considered 
(Table 1). The structures differ in the height to 
span ratio: structure 1 – low-rise with H/S = 0.05 
and structure 2 – high-rise with H/S = 0.13. The 
coordinates of the nodes were inventoried from 
the created models in order to compare the ex-
perimental results with the numerical results. The 
material parameters were verified in the experi-
mental tests and included in the publication [37], 
i.e. E = 214.5 GPa, fy = 640 MPa. In the exper-
imental model, individual steel bars were con-
nected to each other by welded nodes. In order to 
reflect the experimental model, spatial frame ele-
ments were used in the numerical model. Figure 4 
shows the appearance of experimental models for 
a low-rise dome (Figure 4a) and a high-rise dome 
(Figure 4b), respectively.

Figure 4. Experimental model: (a) low-rise dome, (b) high-rise dome

a)

b)
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First stage – experimental analysis

In the first stage, a series of experimental tests 
were performed. Figure 5 shows a comparison 
of the results for both types of structures: a low-
rise dome and a high-rise dome. The graph shows 
significant differences in the nature and behavior 
of both structures. The equilibrium path for the 
high-rise dome is linear, while in the case of the 
low-rise dome, the shape of the equilibrium path 
clearly suggests non-linear behavior. The equilib-
rium paths for both structures were presented in 
the measurement range of the available devices 
(force up to about 3500 N and displacements up 
to about 20 mm). The maximum force values   read 
for the high-rise dome are definitely higher than 
for the low-rise dome. They were: force 3419.83 
N for a displacement of 2.03 mm in the case of the 
high dome and force 2680 N for a displacement 
of 15.96 mm in the case of the low-rise dome. 
At the same time, the displacement value for the 
high-rise dome was read in relation to a similar 
load value as in the case of the maximum load of 
the low-rise dome. This value was about 1.5 mm, 
which gives a more than 10-fold difference in the 
displacement values   at the corresponding loads. 

In order to estimate the accuracy of the mea-
surements of the dome keystone displacements, 
the measurement uncertainty ranges were deter-
mined and the confidence intervals for the ob-
tained results were determined. Type A uncer-
tainty was determined based on repeated mea-
surements of the same displacement value. The 
standard deviation of the sample was calculated 
and then the following formula was applied:
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where: s – standard deviation of the measure-
ment series, n – number of repetitions 
performed.

The type B uncertainty was estimated based 
on the sensor manufacturer’s data, possible cali-
bration errors, nonlinearity of the measurement 
system and other systematic sources. The value 
of the maximum permissible error of the digital 
sensor was assumed: uB =0.02 mm.

The total uncertainty was calculated as the 
square root of the sum of the squares of the type 
A and B uncertainties:
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The expanded uncertainty and confidence 
interval were determined assuming a 95% confi-
dence level (coverage factor k = 2): 

 
KT

e : 
 

 
KT=∑ KT

ee
i=1  = ∑ (KL

e +KG
ee

i=1 +Ku1
e +Ku2

e ) 
 

(8) 

KT
e   

 
KL

e  
 
KG

e   
 
Ku1

e   
 
Ku2

e . 
 

 
q = q(s) =(s)  

 
(9) 

 
 

s=g(q, )  
 

(10) 

 
𝐾𝐾𝑇𝑇Δ𝑞𝑞(1) − Δ𝜇𝜇(1)𝑃𝑃 = 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 Δq

(1) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 Δ𝜇𝜇
(1) = Δ𝑠𝑠 (11) 

 
 

{ 
 
  
𝐾𝐾𝑇𝑇
(𝑖𝑖−1)δ𝑞𝑞(𝑖𝑖) − 𝑃𝑃δ𝜇𝜇(𝑖𝑖) = 𝜇𝜇(𝑖𝑖−1)𝑃𝑃 − 𝑅𝑅(𝑖𝑖−1),

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 δq

(𝑖𝑖) − 𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇 δ𝜇𝜇
(𝑖𝑖) = 0

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 1

 

 

(12) 

 
 
 

𝑢𝑢𝐴𝐴 =
𝑠𝑠
√𝑛𝑛

 

 

(14) 

 
 

𝑢𝑢𝐶𝐶 = √𝑢𝑢𝐴𝐴2 + 𝑢𝑢𝐵𝐵2  

 

(15) 

 
U = k • 𝑢𝑢𝐶𝐶 
 
 

.
The confidence interval for the measured dis-

placement at a 95% confidence level is: x ± U, 
where x is the mean value of the measured dis-
placement. The confidence interval results are 
presented in Tables 2 and 3.

Second stage – numerical analysis

Linear buckling analysis (LBA)

In the second stage, the results obtained from 
the experiment were compared with the results 
of the numerical analysis. The first step involved 
calculating the critical load multipliers using Lin-
ear Buckling Analysis. For the low-rise dome, the 
critical load factor was determined as Lcr,N=8.897 
(Figure 6a), while for the high-rise dome, it was 
Lcr,W=17.374 (Figure 6b). According to design 
code guidelines, for low-rise structures (Lcr,N 

Figure 5. Equilibrium path for the experimental analysis case
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<10), it is recommended to use nonlinear analysis 
in further investigations.

Nonlinear analysis – standard approach

In the next step, based on measurements of 
the actual structure’s geometry, node coordinates 
were entered into the SIMULIA Abaqus Learn-
ing Edition 2022 software. For both domes, non-
linear analyses were performed using the Riks 
arc-length method, which accounts for geometric 
nonlinearities and assumes linear elastic material 
behavior. Figure 7 presents graphs showing the 
relationship between the vertical displacement 
of the keystone and the applied load. Solid lines 

represent the experimental data, while dashed 
lines correspond to numerical results. Maximum 
values within the analysis range are indicated. 
The results reveal poor agreement between the 
numerical models and their experimental coun-
terparts. Significant discrepancies were observed 
in both displacement values and the general shape 
of the load-displacement curves. During physical 
testing, slight displacements at the supports were 
noticed as the applied load increased. This obser-
vation led to a re-evaluation of support behavior 
and its influence on the structural equilibrium 
path. As a result, support flexibility was incorpo-
rated in the next phase of the numerical model.

Figure 6. The first buckling mode of the LBA and the Eigenvalue: (a) low-rise dome, (b) high-rise dome

a)

b)
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 Figure 8. Comparison of equilibrium paths for the experimental, standard numerical, and flexible support cases

Figure 7. Comparison of equilibrium paths for the experimental and numerical analysis cases

Incorporating support flexibility

In the third step, support flexibility was intro-
duced into the numerical model. Elastic founda-
tion stiffness values were applied at each support: 
Kz = 1160 kN/m in the vertical (Z) direction and 
Kx = Ky = 35,000 kN/m in the horizontal (X and 
Y) directions. The results of this modification are 
shown in Figure 8. Although the new model cap-
tured some aspects of the observed behavior, the 
equilibrium path still differed considerably from 
the experimental results.

Incorporating support flexibility and geometric 
imperfections

In the final step of the analysis, both support 
flexibility and geometric imperfections were in-
cluded. The *Imperfection command was used in 

the *Static Riks analysis module of Abaqus. This 
allowed the model to include a fraction of the 
first buckling mode shape, based on eigenvalue 
analysis. Since actual imperfections could not be 
measured, several imperfection amplitudes were 
considered, and the best-fitting values were se-
lected:1% of the first mode for the low-rise dome 
and 0.5% for the high-rise dome. The results of 
these simulations are presented in Tables 2 and 3, 
and in Figure 9.

Based on the works [38, 39], it was observed 
that buckling of elements does not always lead to 
stability loss, and the phenomenon of node jump-
through may be a decisive form of stability loss. 
During the present experimental tests, the load-
ing time was short, and no time-dependent effects 
were observed. The values   of von Mises stresses 
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Table 2. Low-rise dome results
Low-rise dome
experimental

Low-rise dome
standard

Low-rise dome
flexible supports (FS)

Low-rise dome
FS + imperfection (IG) 1%

Displacement 
 [mm]

Force 
 [N]

Displacement 
 [mm]

Force 
 [N]

Displacement 
 [mm]

Force 
 [N]

Displacement 
 [mm]

Force 
 [N]

0.00 ± 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 ± 0.04 187.27 0.22 186.95 0.32 186.45 0.49 186.13

0.80 ± 0.05 276.85 0.32 273.38 0.47 276.54 0.73 276.27

1.47 ± 0.12 503.17 0.60 506.30 0.88 503.09 1.38 504.17

1.89 ± 0.16 636.75 0.76 632.14 1.12 636.44 1.79 638.67

2.15 ± 0.10 712.80 0.87 711.30 1.27 713.07 2.03 714.38

2.46 ± 0.08 812.25 1.00 814.74 1.45 812.02 2.35 812.61

2.80 ± 0.07 907.17 1.13 907.44 1.64 907.03 2.67 907.74

3.15 ± 0.08 1008.50 1.27 1006.28 1.84 1008.02 3.02 1007.32

3.52 ± 0.07 1099.60 1.39 1094.78 2.02 1099.65 3.36 1099.68

3.95 ± 0.10 1213.60 1.57 1212.24 2.26 1214.39 3.80 1213.11

4.33 ± 0.09 1306.40 1.70 1303.56 2.45 1306.58 4.17 1304.69

4.75 ± 0.09 1407.80 1.86 1407.12 2.67 1406.59 4.62 1408.39

5.15 ± 0.08 1502.40 2.01 1500.45 2.88 1502.34 5.04 1500.94

5.68 ± 0.11 1613.67 2.20 1611.59 3.13 1613.28 5.57 1611.83

6.15 ± 0.08 1709.80 2.36 1705.49 3.36 1709.05 6.08 1710.54

6.65 ± 0.09 1804.00 2.53 1802.67 3.59 1804.28 6.59 1803.27

7.22 ± 0.14 1910.80 2.73 1908.56 3.85 1910.06 7.24 1911.12

7.85 ± 0.15 2007.00 2.92 2010.01 4.10 2007.00 7.88 2008.33

8.45 ± 0.20 2106.20 3.12 2107.07 4.37 2106.10 8.58 2105.63

9.26 ± 0.29 2204.83 3.32 2205.12 4.64 2204.72 9.37 2204.97

10.17 ± 0.41 2312.17 3.56 2313.51 4.96 2312.21 10.33 2311.66

10.95 ± 0.47 2406.80 3.78 2406.09 5.25 2406.19 11.30 2405.90

12.09 ± 0.49 2494.67 4.00 2493.59 5.54 2494.21 12.34 2494.31

13.17 ± 0.59 2577.25 4.22 2576.09 5.83 2577.52 13.44 2577.14

14.53 ± 0.55 2626.80 4.36 2625.68 6.01 2626.68 14.17 2626.77

15.96 ± 0.40 2680.00 4.52 2681.11 6.21 2680.56 15.02 2680.92

Figure 9. Comparison of equilibrium paths for the cases of experimental analysis, standard numerical analysis, 
and with flexible supports and with support flexibility and geometric imperfections
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Table 3. High-rise dome results
High-rise dome
experimental

High-rise dome
standard

High-rise dome
flexible supports (FS)

High-rise dome
FS + imperfection (IG) 0.5%

Displacement  
[mm]

Force 
 [N]

Displacement  
[mm]

Force 
 [N]

Displacement  
[mm]

Force 
 [N]

Displacement  
[mm]

Force 
 [N]

0.00 ± 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.14 ± 0.04 278.83 0.14 496.75 0.14 339.52 0.14 278.06

0.41 ± 0.04 818.33 0.41 1470.73 0.41 995.76 0.41 793.49

0.45 ± 0.04 907.80 0.46 1662.40 0.45 1094.86 0.45 860.46

0.53 ± 0.04 1009.83 0.54 1947.97 0.53 1292.78 0.53 1012.57

0.57 ± 0.04 1108.60 0.57 2042.63 0.57 1381.73 0.57 1088.10

0.63 ± 0.04 1205.80 0.62 2231.19 0.63 1529.81 0.63 1191.39

0.68 ± 0.04 1313.40 0.68 2418.70 0.68 1648.13 0.68 1284.71

0.73 ± 0.04 1406.50 0.73 2605.18 0.73 1766.31 0.73 1377.47

0.82 ± 0.04 1511.00 0.81 2882.95 0.82 1982.62 0.82 1533.88

0.86 ± 0.04 1608.80 0.87 3066.83 0.86 2070.97 0.86 1606.92

0.92 ± 0.04 1712.50 0.92 3249.67 0.92 2218.06 0.92 1706.75

0.98 ± 0.04 1809.00 0.98 3431.47 0.98 2355.15 0.98 1814.87

1.04 ± 0.04 1915.00 1.03 3612.24 1.04 2492.04 1.04 1922.15

1.13 ± 0.04 2020.67 1.14 3970.66 1.13 2706.76 1.13 2072.68

1.15 ± 0.04 2100.50 1.16 4059.61 1.15 2755.49 1.15 2107.86

1.24 ± 0.04 2218.40 1.25 4324.93 1.24 2969.61 1.24 2264.95

1.30 ± 0.04 2313.60 1.30 4500.51 1.30 3105.61 1.30 2360.00

1.36 ± 0.04 2412.80 1.35 4675.06 1.36 3231.71 1.36 2462.86

1.45 ± 0.04 2512.17 1.46 5021.06 1.45 3444.70 1.45 2607.08

1.48 ± 0.04 2605.40 1.49 5106.91 1.48 3512.36 1.48 2657.56

1.62 ± 0.04 2813.00 1.62 5532.29 1.62 3840.25 1.62 2881.98

1.77 ± 0.05 3015.67 1.78 6034.24 1.77 4176.44 1.77 3117.98

1.87 ± 0.04 3215.80 1.86 6281.74 1.87 4406.17 1.87 3269.74

2.03 ± 0.06 3419.83 2.03 6769.79 2.03 4768.55 2.03 3512.45

for the low-rise dome in the most stressed bars 
for the last points on the equilibrium path (Figure 
9) with coordinates (15.93; 2735.59) were 139.5 
MPa. In the case of the high-rise dome for the point 
(1.97, 3411.41) (Figure 8) they were 86.35 MPa. 
The yield stress is fy = 235 MPa. The use of linear 

physical relations (taking into account the elastic 
work of the structure) was justified. Sensitivity 
analysis is extremely useful for assessing the im-
pact of variability of individual input parameters 
on the final outcome of the model or decision [40, 
41]. Additionally, a simplified sensitivity analysis 

Table 4. Low-rise dome sensitivity results
Reference values
Flexible support
Imperfection 1%

Taking into account the 
change of imperfections

Δδ = 0.1%

Sensitivity to 
change in % 
imperfection

Taking into account the change 
in support flexibility

 ΔKs = 10%

Sensitivity to 
change in % 

flexibility

Displacement 
[mm]

Force
[N]

Displacement 
[mm]

Force
[N]

 

 

𝑈𝑈𝛿𝛿+ − 𝑈𝑈0
Δ𝛿𝛿

 

 

𝑈𝑈𝐾𝐾+ − 𝑈𝑈0
Δ𝐾𝐾𝐾𝐾

 

Displacement 
[mm]

Force
[N]

3.01 1003.56 3.18 1003.08 166.21 2.96 1004.84 -0.047

5.02 1497.92 5.32 1498.2 294.57 4.94 1501.82 -0.067

7.80 1997.68 8.28 1998.38 472.72 7.67 1998.62 -0.119

12.42 2500.31 13.01 2499.3 598.7 12.19 2500.87 -0.197

15.93 2735.59 16.32 2734.76 390.6 15.63 2735.85 -0.262
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Table 5. High-rise dome sensitivity results
Reference values
Flexible support

Imperfection 0.5%

Taking into account the 
change of imperfections

Δδ = 0.1%

Sensitivity to 
change in % 
imperfection

Taking into account the change 
in support flexibility

 ΔKs = 10%

Sensitivity to 
change in % 

flexibility

Displacement 
[mm]

Force
[N]

Displacement 
[mm]

Force
[N]

 

 

𝑈𝑈𝛿𝛿+ − 𝑈𝑈0
Δ𝛿𝛿

 

 

𝑈𝑈𝐾𝐾+ − 𝑈𝑈0
Δ𝐾𝐾𝐾𝐾

 

Displacement 
[mm]

Force
[N]

 

 

𝑈𝑈𝛿𝛿+ − 𝑈𝑈0
Δ𝛿𝛿

 

 

𝑈𝑈𝐾𝐾+ − 𝑈𝑈0
Δ𝐾𝐾𝐾𝐾

 

0.53 1003.1 0.58 1006.97 50.241 0.51 1001.51 -0.0079

1.09 2002.05 1.19 1997.03 104.31 1.07 2004.48 -0.0140

1.39 2505.46 1.53 2503.27 141.92 1.36 2503.94 -0.0191

1.69 2996.56 1.88 3000.84 186.15 1.66 2998.49 -0.0216

1.97 3419.22 2.19 3420.42 222.45 1.93 3416.29 -0.0266

Table 6. Relative errors in case low-rise dome

Load
[N]

Relative Error

Experimental—Standard 
analysis [%]

Experimental—
Numerical analysis with 

flexible supports [%]

Experimental—
Numerical analysis with flexible supports taking 

into account 1% of imperfection [%]
0.00 0.0 0.0 0.0

187.27 56.4 36.0 1.9

276.85 59.9 40.3 7.9

503.17 58.9 40.2 5.8

636.75 59.6 40.6 5.1

712.80 59.7 41.1 5.5

812.25 59.2 40.9 4.4

907.17 59.6 41.5 4.5

1008.50 59.8 41.7 4.0

1099.60 60.4 42.6 4.5

1213.60 60.4 42.9 3.8

1306.40 60.7 43.4 3.6

1407.80 60.8 43.8 2.8

1502.40 60.9 44.1 2.3

1613.67 61.3 44.9 1.9

1709.80 61.7 45.4 1.2

1804.00 61.9 46.1 0.8

1910.80 62.3 46.7 0.3

2007.00 62.8 47.7 0.4

2106.20 63.1 48.3 1.5

2204.83 64.1 49.9 1.2

2312.17 64.9 51.2 1.6

2406.80 65.5 52.1 3.2

2494.67 66.9 54.2 2.1

2577.25 68.0 55.7 2.1

2626.80 70.0 58.7 2.5

2680.00 71.7 61.1 5.9

was performed. The vertical displacement of the 
keystone joint UZ was defined as a function of 
two variables UZ = f(δ, Ks). The first variable was 
the amplitude of the geometric imperfection δ. 

The second variable was the elasticity of the sup-
ports Ks. The reference point was the calculations 
for the situation in which the support flexibility 
and the imperfection values   of 0.5% for the high 
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Table 7. Relative errors in case high-rise dome

Load
[N]

Relative Error

Experimental —Standard 
analysis [%]

Experimental—
Numerical analysis with flexible 

supports [%]

Experimental—
Numerical analysis with flexible supports 

taking into account 0.5% of imperfection [%]
0.00 0.0 0.0 0.0

278.83 41.1 17.3 3.4

818.33 47.0 18.1 4.8

907.80 45.7 17.1 5.8

1009.83 43.8 22.1 0.2

1108.60 42.4 19.6 3.2

1205.80 43.6 20.7 2.3

1313.40 44.3 20.6 2.2

1406.50 44.4 21.0 2.2

1511.00 46.8 23.5 0.8

1608.80 46.3 22.6 0.2

1712.50 46.6 22.3 0.9

1809.00 47.3 23.5 0.3

1915.00 47.9 23.8 0.5

2020.67 49.5 25.6 2.6

2100.50 48.1 24.1 0.4

2218.40 49.6 25.4 1.6

2313.60 49.8 25.7 1.8

2412.80 50.0 25.8 1.8

2512.17 51.2 27.6 3.6

2605.40 50.5 26.4 2.0

2813.00 51.4 27.2 2.3

3015.67 50.9 28.5 3.6

3215.80 50.7 27.8 1.8

3419.83 52.0 29.3 3.1

structure and 1% for the low structure were as-
sumed: U0 = f(δ0,Ks0). Then, small parameter in-
crements equal to Δδ = 0.1% for the imperfection 
and ΔKs = 10% for the flexibility were determined. 
Numerical analyses were performed in Abaqus 
for the following cases: Uδ+ = f(δ0+Δδ, KS0) and 
UK+ = f(δ0, KS0+ΔKs). In the last step, partial de-
rivatives were calculated in an approximate way 
for five different points of the equilibrium path. 
Partial derivatives were determined using the 
approximation: ∂UZ

∂δ
≈ Uδ+−U0

Δδ
, ∂UZ

∂Ks
≈ UK+ − U0

ΔKs
 

 
 

. The 
sensitivity analysis helped to prioritize the mod-
elling efforts for practical applications. Geomet-
ric imperfections have a much greater impact on 
improving the results. The results are presented in 
Tables 4 and 5. In order to better illustrate the dif-
ferences between subsequent stages for both the 
low-rise and the high-rise dome, relative errors 
are presented in Table 6 and 7.

DISCUSSION 

Two types of domes were analyzed: a low-
rise dome and a high-rise dome. The experimen-
tal responses were compared with numerical 
simulation results for three variants: standard 
model (rigid supports, no imperfections), mod-
el with flexible supports (FS), model with flex-
ible supports and a geometric imperfection (FS 
+ IG). The difference in the node displacement 
for the standard approach between the ideal and 
experimental model of the structure was: for a 
load of 2680 N about 11.4 mm in the case of a 
low-rise structure and for a load of about 2600 N 
about 0.75 mm in the case of a high-rise struc-
ture. Consideration of the estimated support 
flexibility influenced the numerical results, re-
ducing the maximum displacement discrepancy 
in the keystone to approximately 10 mm for a 
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low-rise structure and about 0.39 mm for a high-
rise structure. The differences between the ex-
perimental and numerical results taking into ac-
count the support flexibility are still noticeable 
(relative errors for such a solution range from 
about 26% to about 61%). The next step was to 
consider the % eigenvalues of the first eigen-
value from the buckling analysis. This approach 
demonstrated that the numerical results closely 
matched the experimental data. The maximum 
displacement error between the experimental 
and numerical results, considering imperfec-
tions, was approximately 11.8% (load of about 
276 N) for the low-rise structure and about 15% 
for the high structure (load of about 500 N). The 
inclusion of flexible supports and imperfections 
in numerical models of bar domes was crucial to 
accurately represent the actual behavior of the 
structure under load. 

CONCLUSIONS

This article presents the results of experi-
mental tests and numerical analyses of two steel 
domes differing in height. The study aimed to cal-
ibrate a numerical model by including geometric 
nonlinearities and fabrication imperfections to 
match experimental results. The simulations were 
performed in the Abaqus environment using the 
Riks method, enabling the capture of buckling 
and snap-through behavior and the full equilibri-
um path in the instability region.

Initially, numerical results significantly dif-
fered from experimental measurements. After 
identifying the causes of these discrepancies, two 
key factors were addressed: the elastic behavior of 
supports and geometric imperfections. Including 
these aspects resulted in a high degree of agree-
ment between the simulation and test results. 

For the high-rise dome the equilibrium path 
is linear over the entire load range, whereas for 
the low-rise dome the course is clearly non-linear. 
Detailed engineering recommendations:
 • support modeling: numerical models should 

use elastic supports that reflect the real com-
pliance of the structure.

 • inclusion of imperfections: geometric imper-
fections should be introduced using the first 
buckling mode with an appropriate amplitude 
(e.g., 0.5–1%).

 • model validation: numerical models must be 
validated through physical testing, especially 
when dealing with instability phenomena.

 • use of Riks method: for nonlinear analysis of 
dome structures, the Riks method should be 
preferred over standard static analyses.

 • sensitivity analysis: even minor geometric im-
perfections significantly affect the global re-
sponse of structures, especially those suscep-
tible to buckling.

REFERENCES

1. Lan TT. Space frame structures. In: Chen W-F, Lui 
EM, editors. Handbook of Structural Engineering. 
2nd ed. Boca Raton (FL): CRC Press; 2005.

2. Makowski ZS. Analysis, Design and Construction 
of Braced Barrel Vaults. London (UK): Taylor & 
Francis; 2006.

3. Chilton J. Space Grid Structures. Oxford (UK): Ar-
chitectural Press; 2000.

4. Szmit R. Design and analysis of steel single-layer cy-
lindrical roofs. Przegląd Budowlany. 2021;92:73–6.

5. Steel structures with large spans [Inter-
net]. [Available online 2025 Mar 31].  
https: / /www.izbudujemy.pl/artykuly/452/
Konstrukcje-stalowe-o-duzych-rozpietosciach

6. Kowolik B. Steel structures of large-scale halls. No-
woczesne Hale. 2019;2:48–53.

7. Shen J, Groh RMJ, Schenk M, Pirrera A. Experi-
mental path-following of equilibria using Newton’s 
method. Part I: Theory, modelling, experiments. Int 
J Solids Struct. 2021;210–211:203–23.

8. Guan Y, Virgin LN, Helm D. Structural behavior of 
shallow geodesic lattice domes. Int J Solids Struct. 
2018;155:225–39.

9. Silveira RAM, Nogueira ChL, Gonçalves PB. A 
numerical approach for equilibrium and stability 
analysis of slender arches and rings under contact 
constraints. Int J Solids Struct. 2013;50:147–59.

10. Li W, Zhi X, Wang D, Fan F, Shen S. Static stability 
analysis of a reticulated shell with a roofing system. 
Eng Struct. 2019;185:315–31.

11. Li P, Wu M, Xing P. Novel cable-stiffened single-
layer latticed shells and their stabilities. J Constr 
Steel Res. 2014;92:114–21.

12. Li YG, Fan F, Hong HP. Reliability of lattice dome 
with and without the effect of using small number 
of ground motion records in seismic design. Eng 
Struct. 2017;151:381–90.

13. Ma H, Ma Y, Yu Z, Fan F. Experimental and nu-
merical research on gear-bolt joint for free-form grid 
spatial structures. Eng Struct. 2017;148:522–40.



409

Advances in Science and Technology Research Journal 2025, 19(9) 393–409

14. Zhu Z-C, Luo Y-F, Xiang Y. Global stability analy-
sis of spatial structures based on Eigen-stiffness 
and structural Eigen-curve. J Constr Steel Res. 
2018;141:226–40.

15. Xu Y, Han Q-H, Parke GAR, Liu Y-M. Experimental 
study and numerical simulation of the progressive 
collapse resistance of single-layer latticed domes. J 
Struct Eng. 2017;143(9):04017121.

16. Silva WTM, Ribeiro KQ. Spatial asymmetric/
symmetric buckling of Mises truss with out-of-
plane lateral linear spring. Int J Non-Linear Mech. 
2021;137:103810.

17. Yan S, Zhao X, Rasmussen KJR, Zhang H. Identifi-
cation of critical members for progressive collapse 
analysis of single-layer latticed domes. Eng Struct. 
2019;188:111–20.

18. Kala Z. Computation of equilibrium paths in non-
linear finite element models. MATEC Web Conf. 
2016;7:04026.

19. Hrinda GA. Snap-through instability patterns in 
truss structures. In: 51st AIAA/ASME/ASCE/AHS/
ASC Structures, Structural Dynamics, and Materi-
als Conference, 18th AIAA/ASME/AHS Adaptive 
Structures Conference, 12th. Orlando (FL), USA; 
2010 Apr 12–15.

20. Radoń U, Zabojszcza P, Sokol M. The influence of 
dome geometry on the results of modal and buck-
ling analysis. Appl Sci. 2023;13:2729. https://doi.
org/10.3390/app13042729

21. Hammar I, Djermane M, Amieur B. Dynamic buck-
ling analysis of ductile damage evolution for thin 
shell with Lemaitre’s model. Civ Eng J. 2024;10(3).

22. Shen L, Gao Y, He M, Du N. Finite element parameter 
analysis of bearing capacity and plastic deformation in 
two-segment replaceable link with a separated splic-
ing plate of LYP160 steel. Structures. 2025;73:108408. 
https://doi.org/10.1016/j.istruc.2025.108408

23. Riks E. An incremental approach to the solution of 
snapping and buckling problems. Int J Solids Struct. 
1979;15:529–51.

24. Riks E. The application of Newton’s method to 
the problem of elastic stability. J Appl Mech. 
1972;39:1060–5.

25. Wempner GA. Discrete approximation related to 
nonlinear theories of solids. Int J Solids Struct. 
1971;7:1581–99.

26. Batoz JL, Dhatt G. Incremental displacement algo-
rithm for nonlinear problems. Int J Numer Methods 
Eng. 1979;14:1262–7.

27. Crisfield MA. A fast incremental/iterative solution 

procedure that handles snap-through. Comput 
Struct. 1981;13:55–62.

28. Crisfield MA. Variable step-lengths for nonlinear 
structural analysis. TRR Lab Rep. 1982;1049.

29. Crisfield MA. Snap-through and snap-back response 
in concrete structures and the dangers of under inte-
gration. Int J Numer Methods Eng. 1986;22:751–67.

30. Ramm E. Strategies for tracing the non-linear re-
sponse near limit points. In: Nonlinear Finite El-
ement Analysis in Structural Mechanics. Berlin/
Heidelberg (Germany): Springer; 1981. p. 63–89.

31. Powell G, Simons J. Improved iterative strategy 
for nonlinear structures. Int J Numer Methods Eng. 
1981;17:1455–67.

32. Bathe KJ, Dvorkin EN. On the automatic solution of 
nonlinear finite element equations. Comput Struct. 
1983;17:871–9.

33. Park KC. A family of solution algorithms for non-
linear structural analysis. Int J Numer Methods Eng. 
1982;18:1337–47.

34. Giżejowski M, Szczerba R, Gajewski M. FEM mod-
els and simulation methods in the analysis of lateral-
torsional buckling of steel structural elements. J Civ 
Eng Environ Archit. 2016;33(63):339–46.

35. Zabojszcza P, Radoń U. Effect of increased density 
of nodes in geodesic dome on its critical load capac-
ity. In: 3rd WMCAUS 2018;471.

36. Radoń U. Numerical aspects of application of 
FORM in node snapping truss structures. Arch Civ 
Mech Eng. 2015;15(1):262–71.

37. Zabojszcza P, Radoń-Kobus K, Kossakowski PG. 
Verification of numerical models of steel bar cover-
ings using experimental tests—preliminary study. 
Metals. 2024;14:1319. https://doi.org/10.3390/
met14121319

38. Opatowicz D, Radoń U, Zabojszcza P. Assessment 
of the effect of wind load on the load capacity of 
a single-layer bar dome. Buildings. 2020;10:179.

39. Zabojszcza P, Radoń U. Optimization of steel roof 
framing taking into account the random nature of 
design parameters. Materials. 2022;15(14):5017 
https://doi.org/10.3390/ma15145017

40. Radoń U, Zabojszcza P. The application of struc-
tural reliability and sensitivity analysis in engineer-
ing practice. Appl Sci. 2025;15:342. https://doi.
org/10.3390/app15010342

41. Zhou Y, Tian H, Hu D, Hu H, Shen Q. Spatial-tem-
poral characteristics of green development level in 
river basin. HighTech Innov J. 2024;5(4):1068–84. 
https://doi.org/10.28991/HIJ-2024-05-04-014


