
281

INTRODUCTION

Computer-aided design (CAD) systems are 
a crucial component of modern manufactur-
ing. Their use contributes to improving product 
quality while reducing costs and time. With the 

increase in computing capacity, the fundamental 
task for the effective use of CAD is the develop-
ment of more advanced mathematical support for 
CAD/CAM/CAE systems. Methods for geomet-
ric modelling of curves with a given combination 
of properties interpolating point series of complex 
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ABSTRACT
Methods for geometric modelling of curves with a given set of properties interpolating point series of complex 
configuration form the foundation for developing computer-aided design systems for products bounded by func-
tional surfaces. The key characteristics of the interpolating curve, which ensure the necessary surface properties, 
include a regular change in curvature values and a minimum number of singular points. The article aims to develop 
a method for generating a sequence consisting of an arbitrarily large number of specified reference points and as-
signed intermediate points, which can be interpolated by a monotone curve. The positions of intermediate points 
are determined based on the pre-assigned properties of the interpolating curve, including the positions of normals 
and curvature values. The correctness of the solutions proposed in the article is validated through the resolution 
of a test example. The method developed in the paper is a crucial step towards solving the problem of forming 
a contour that represents, with given accuracy, a curve with specified properties, interpolating a point series of 
arbitrary configuration.
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configuration form the foundation for developing 
CAD systems for products bounded by functional 
surfaces [1, 2]. Geometric modelling of surfaces 
determines the functional qualities of numerous 
objects. They include, in particular, products with 
aerodynamic and hydrodynamic contours in in-
dustries like aerospace, automotive, shipbuilding, 
power, and chemical engineering [3–5]. Complex 
surfaces are often modelled on the basis of linear 
frameworks, where the elements are formed by 
interpolating series of points located on the sur-
face. At the same time, the geometric properties 
of the interpolating curve ensure product perfor-
mance. For the products mentioned, the primary 
functional characteristic is the specified flow of 
the surface with the environment. The key char-
acteristics of the interpolating curve which ensure 
the necessary surface properties are a regular 
change in curvature values and a minimal number 
of singular points [6, 7].

Interpolation methods can be divided into 
two groups depending on how the information 
is represented. The first group includes methods 
of continuous geometric modelling, where the 
result is a model represented by a function or a 
set of functions. In these methods, the problem 
of forming an interpolating curve is addressed by 
creating a contour—a curved line consisting of 
sections of analytically defined curves connected 
at the reference points.

When forming an interpolating curve from 
arcs of second-order curves [8, 9], the uncon-
trolled occurrence of inflection points is guaran-
teed to be avoided; however, it is impossible to 
eliminate points with extreme curvature values 
completely. The shape of the curve can be adjust-
ed by changing the positions of the tangents at the 
reference points. If the positions of the tangents at 
the reference points are fixed, local adjustments 
can be made using arcs of ellipses.

Using B-splines [10, 11] provides greater 
control over the shape of the contour. A B-spline 
is defined by a set of reference points, each cor-
responding to a conjugate function. The curve 
approximates a polygonal line connecting the ref-
erence points. The smoothness of the generated 
contour is determined by the degree of the con-
jugate functions. As smoothness increases, the 
degree of the conjugate functions and the number 
of vertices in the defining polygon also increases. 
This reduces the ability to adjust the curve shape 
locally. At the same time, the likelihood of oscil-
lations increases [12, 13].

Improving the junctions between contour 
segments requires increasing the spline degree, 
leading to more reference points. This com-
plicates the process of local adjustment of the 
spline shape and parameters. Additionally, when 
interpolating a large number of points, ensur-
ing a monotonic change in curvature along the 
B-spline becomes challenging.

The absence of oscillation in a B-spline-
based contour can be ensured by controlling the 
shape of the defining polygon. Modern CAD 
system packages allow controlling the shape of 
the defining polygon of the B-spline in interac-
tive mode [14, 15]. When the number of refer-
ence points is large, it becomes difficult, if not 
impossible, to ensure the absence of oscillation. 
Furthermore, when forming a curve using a 
B-spline, there is no mechanism to control the 
dynamics of curvature changes along the con-
tour. These peculiarities limit the ability to en-
sure the specified characteristics of the curves 
formed using B-splines.

The advantage of the continuous geometric 
modelling methods discussed is the analytical 
description of the curve sections, which enables 
the unambiguous definition of the formed con-
tour and its characteristics at the nodes. However, 
this also imposes the properties of the curves with 
sections modelled as a contour on the curve inter-
polating the point series.

An increase in the number of conditions im-
posed on the geometric image formed using such 
methods requires an increase in the parametric 
number of curves that make up its determinant. 
This leads to the uncontrolled occurrence of sin-
gular points on the curves, thus reducing the qual-
ity of the obtained solution. At present, no defini-
tive approach to addressing this issue exists.

The second group includes discrete geometric 
modelling, which provides a solution in the form 
of a structured set of points [16, 17]. This ap-
proach allows for controlling the characteristics 
of the interpolating curve by abandoning its an-
alytical representation and using algorithms that 
determine the positions of intermediate points of 
the curve as a shaping tool. However, to this day, 
this potential capability of discrete geometric 
modelling has largely remained unimplemented. 
The main challenges that need to be addressed to 
improve the efficiency of the discrete approach 
are controlling the geometric properties of the 
curve through the characteristics of the point se-
ries that belong to it and estimating the accuracy 
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of discrete interpolation. The purpose of the dis-
crete interpolation method developed by the au-
thors of this article is to form a series consisting 
of the original and newly assigned intermediate 
points, which can be interpolated by a curve with 
specified characteristics. The primary character-
istic of the curve interpolating the point series 
generated by our method is the minimum num-
ber of singular points determined based on the 
input data. The following discrete interpolation 
scheme is proposed:
1. The original point series is divided into seg-

ments that can be interpolated by a curve con-
taining no singular points. Such a curve is re-
ferred to as monotone because the curvature 
values change regularly and monotonically 
along the curve. Any curve can be regarded as 
a combination of monotone segments joined at 
singular points;

2. Sequences consisting of any number of points 
are formed, defining the monotone segments of 
the interpolating curve. These are the reference 
points and intermediate points assigned during 
the modelling process. The process of forming 
the specified point series will be called densifi-
cation. The newly assigned intermediate points 
will be termed densification points. Densi-
fication is carried out until the discrete inter-
polation error becomes less than the specified 
value. This error will be estimated by the size 
of the area of possible locations of monotone 
interpolating curve segments;

3. A contour composed of continuous line seg-
ments is formed, which interpolates the densifi-
cation point series and is located within the area 
of possible location of the monotone curve. Such 
a contour represents a curve with specified geo-
metric characteristics with required accuracy.

4. The problem of forming the area of possible 
location of a monotone interpolating curve 
as a sequence of closed contours joined at 
the reference points was solved in [18, 19]. 
The area of possible location of the curve 
segment i…i+1 is bounded by arcs of cir-
cles. These are the circles osculating to the 
curve at the reference points (OCi and OCi+1) 
and the circles that touch the osculating cir-
cle and the tangent line at another reference 
point (Figure 1).

The boundaries of the area of location of the 
section are unambiguously defined by the po-
sition of the curvature centres of the monotone 

curve, which correspond to the points that bound 
the section. The problem of determining the po-
sitions of the curvature centres corresponding to 
the reference points for the monotone curve in-
terpolating the range … i-1, i, i+1… is solved in 
the article [20]. Each curvature centre is assigned 
within an area, the boundaries of which are de-
fined based on the analysis of the mutual arrange-
ment of the adjacent, tangent and osculating cir-
cles defined by the points belonging to the mono-
tone curve.The osculating circle OCi touches the 
curve at point і, and its radius is the inverse of the 
curvature value of the curve at that point [21].

The tangent circle is defined by passing 
through point і, touching line ti (tangent to the 
curve at point і) and passing through some point 
that belongs to the curve (Figure 2).

The circle which is tangent to the curve at 
point i and passes through a point located outside 
OCi is labelled TC’i. The tangent circle passing 
through a point located inside OCi, is labelled 
‘TCi. In the figure, the centres of OCi and TC’i are 
marked as Сi and O’i, respectively.

By analysing the location and dimensions of 
the adjacent and tangent circles, which are defined 
by the point series assigned on the curve along 
which the values of the curvature radii increase 
monotonically, we obtained the following relation:
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where: Ri, R ‘TCi, R TC’i are the radii of OCi, 
‘TCi, TC’i, respectively.

Figure 1. Area of possible location of a segment of a 
monotone interpolating curve

Figure 2. Location of the osculating and tangent 
circles relative to the monotone curve
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The adjacent circle (AСi) passes through three 
consecutive points i-1, і, і+1, which are assigned 
on the curve (Figure 3). By analysing the loca-
tion and dimensions of the adjacent and tangent 
circles, the following relation is derived:
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where: R ACi is the radius of ACi.

The condition under which a monotone curve 
can interpolate the point series is derived from re-
lation (2): …<R ACi-1 <R ACi< <R ACi+1<…

Relations 1 and 2 define the ranges within 
which the normals and curvature centres of the 
monotone interpolating curve, corresponding to 
the reference points, must be located.

The positions of the centres of ACi-1, ACi, 
ACi+1 (points Si-1, Si, Si+1, respectively) determine 
the boundaries of the possible location of the 
normal ni of the curve at the reference point i. To 
fulfil (2), normal ni must intersect segments [Si-1, 
Si] and [Si, Si+1] simultaneously. Points Oi and O’I, 
where the normal intersects these segments, are 
the centres of ’TCi and TC’i, respectively. At the 
same time, to fulfil (1), normal ni-1 must intersect 
segment [Si, Si+1], and normal ni+1 must intersect 
segment [O’i, Si+1]. To achieve a uniform increase 
in curvature values along the formed curve, the 
optimal position of normals ni and ni+1 is where 
they divide segment [Si, Si+1] into equal parts: 
|Si, O’i| = |O’i, ’Oi +1| = |’Oi +1, Si+1|. Paper [20] sug-
gests an algorithm for the simultaneous assign-
ment of the positions of normals at all reference 
points, at which they divide the corresponding 
segments bounded by the centres of adjacent cir-
cles in a proportion close to the optimum.

The assigned position of the normal automat-
ically determines the area of possible locations 
of the curvature centre belonging to it. Accord-
ing to (1), for normal ni, this range corresponds to 
segment [’Oi, O’i]. The positions of the curvature 
centres are assigned within the specified ranges 
taking into account the properties of the evolute 
of the monotone curve [21]:
 • the evolute is a convex curve;
 • the normal of the curve are the tangents of its 

evolute at the corresponding curvature centres;
 • the length of any segment of the evolute is 

equal to the difference of the values of the cur-
vature radii at the points bounding the corre-
sponding segment of the original curve.

The normals of the interpolating curve, as-
signed at the reference points, and the curvature 
centres belonging to them define a sequence of 
basis triangles (ВТi) (Figure 4).

The method of assigning the positions of the 
curvature centres of the interpolating curve corre-
sponding to the reference points ensures that the 
relation for each of the triangles is fulfilled:
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Relation 3 is a necessary condition for forming 
a segment of the evolute of the monotone curve 
that interpolates the given reference points within 
each of the basis triangles. The resulting area of 
location of the evolute defines the interpolating 
curve with accuracy determined by the original 
point series. In practical applications, however, 
this level of accuracy may prove insufficient. The 
aim of this article is to develop and test a method 
for forming a new sequence consisting of an arbi-
trarily large number of reference and intermediate 
points, which represent a monotone curve, based 
on the original area of location of the evolute of 
the interpolating curve with a given accuracy. To 
achieve this aim, the following steps are required: 
 • Developing a method for assigning the positions 

of normals and curvature centres corresponding 
to the intermediate points of the curve;

 • Developing a method for determining the po-
sitions of intermediate points corresponding to 

Figure 3. Location of adjacent and tangent circles

Figure 4. Area of location of the evolute of the 
discretely presented curve
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the assigned characteristics of the interpolat-
ing curve;

 • Suggesting a method for determining the abso-
lute error with which the generated sequence 
of points represents a monotone curve;

 • Testing the suggested methods while deter-
mining the positions of intermediate points for 
the original point series assigned on the mono-
tone curve.

 • To develop the above methods, the following 
tasks need to be addressed:

 • Determining the area of possible location 
for the normal of the interpolating monotone 
curve at an intermediate point;

 • Identifying the area of possible location for 
the curvature centre corresponding to the in-
termediate point;

 • Defining the area of location for the intermedi-
ate point.

MATERIALS AND METHODS

After assigning the curvature centres for the 
reference points, densification can be performed 
locally on separate sections and in any order. The 
condition for assigning a densification point is 
the presence of an area within which a monotone 
curve interpolating the formed point series can 
exist. Each densification step involves sequential 
determination of the positions of the normal, the 
curvature centre, and the corresponding densifi-
cation point. Each of these elements is assigned 
within the area, the boundaries of which are 
defined by the characteristics of the interpolat-
ing curve. Having assigned the normal nсn corre-
sponding to the densification point of the i-th seg-
ment (iсn) and the curvature centre (Ссn) located 
on this normal, within the original ВТi, we obtain 
two new basis triangles – Сi,Ссn,T1 (ʹВТсn) and 
Ссn,Сi+1,T2 (ВТ ʹсn).  From the condition that the 
location of the evolute segment of the monotone 

curve within ʹВТсn and ВТ ʹсn, the following rela-
tionship is derived (Figure 5):
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Let us determine the boundaries of the area 
within which normal nсn must be located in accor-
dance with condition (4). Simultaneously, we will 
impose the requirement that nсn remains parallel 
to line (Сi,Сi+1). This restriction is correct because 
the evolute segment (Сi,Сi+1) is a convex curve. 
This guarantees the existence of a tangent line at 
some point of the evolute segment that is parallel 
to the chord [Сi,Сi+1].

The position of nсn, where the distance be-
tween the normal and the line (Сi,Сi+1) is mini-
mised, is determined by the following relations:
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Based on (5) and the similarity of triangles 
Сi,Сi+1,Ti and T1,T2,Ti, the minimum distance be-
tween nсn and the line (Сi,Сi+1) (hmin) can be ex-
pressed through the parameters of the original ВТi:
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where: S is the area of location of ВТi, a = |Сi,Ti |, 
b = |Сi+1,Ti|, c = |Сi,Сi+1|.

In the case when the distance between nсn and 
(Сi,Сi+1) is hmin, the polygonal line Сi – T1 – T2 – Сi+1 
represents the unique configuration of the evolute 
for the segment of the monotone curve (i, i+1), 
and this segment is composed of two smoothly 
connected arcs of circles with centres at points T1 
and T2. The maximum possible distance (hmах) be-
tween nсn and (Сi,Сi+1) is equal to the height of the 
triangle Сi,Сi+1,Ссn, the sides of the triangle are 
defined by the following relations:
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The distance between point Ссn and line 
(Сi,Сi+1) cannot exceed the value of hmах, which 
can be calculated by the formula:
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If the distance between point Ссn and line 
(Сi,Сi+1) is hmах, then the monotone curve segment 
(i, i+1) consists of three smoothly connected arcs 
of circles with centres at points Сi, Ссn, Сi+1.

Figure 5. Densification of a segment of the reference 
point series
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Assigning a nсn with a distance from (Сi,Сi+1) 
within the range hmin<hсг<hmax allows us to form 
a section of the evolute as a smooth convex line. 
Such an evolute defines the involute with a regu-
lar and monotonic change in curvature.

After assigning the position of the normal 
nсn, the area of possible location for the curvature 
centre Ссn is determined. This area is the segment 
[С1, С2], where С1 is the position of point Ссn at 
which the curvature radius (Rсn) at the densification 
point is minimum (of the possible positions of Ссn 
point, С1 is closest to point iсn); С2 is the position of 
the curvature centre at which Rсn is maximum. The 
position of points С1 and С2 is determined based on 
the condition that |Сi, Ссn| + |Ссn, Сi+1| = Ri+1 - Ri. The 
fulfilment of this condition means that in the case 
when Rсn is maximum or minimum, the evolute of 
the curve segment is a polygonal line Сi – Ссn – Сi+1, 
and the geometric location of the positions of point 
Ссn follows an ellipse with focal points at points 
Сi, Сi+1, with the length of the major axis equal to 
Ri+1 - Ri [22]. In a rectangular Cartesian coordinate 
system with the origin at the centre of the segment 
[Сi, Сi+1] and the positive direction of the abscissa 
axis coinciding with the vector 

→

+1ii Ñ,C , this ellipse 
is defined by the following equation:
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For different positions of the normal nсn, the 
boundaries of the range [С1, С2] are obtained at 
the intersection of the normal and the ellipse (Fig-
ure 6). If points С1 or С2 lie outside ВТi, then the 
boundary of the area of location of Ссn is point Т1 
or Т2, respectively.

The problem of generating a point series be-
longing to a monotone curve has a solution when 
the curvature centre is assigned at any point of 
the segment [С1, С2]. If this assignment does not 
contradict any additional conditions imposed on 
the generated curve, Ссn is assigned at the centre 

of [С1,С2]. The area of location for the densifica-
tion point iсn is defined on the normal nсn based 
on the assigned position of the curvature centre 
Ссn. This area is bounded by the maximum ( max

ñnR
) and minimum ( min

ñnR ) values that the curvature 
radius of the interpolating curve can take at the 
densification point:
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The location of the evolute of the monotone 
curve within ʹВТсn and ВТ ʹсn means that:
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Based on (11), the lower boundaries of 
area (10) min

ñãR  must be the larger of the values 
of Ri +|Сi, Ссn| or Ri+1 - ( |Сi+1,T2|+|Т2,Ссг| ). The 
upper boundary of the area max

ñnR  is equal to the 
smaller of the values of Ri + |Сi,Т1| + |Т1,Ссn| or 
Ri+1 - |Сi+1,Ссn|. Let us demonstrate that the pro-
posed scheme for determining the position of the 
normal nсn and defining the boundaries of the area 
of location of the curvature centre [С1, С2] guar-
antees the existence of the area (10) for any ratio 
of the values selected for min

ñnR  and max
ñnR .

If the curvature centre takes the extreme 
position Ссn ≡ С2, then the values of Ri + |Сi,Ссn| 
and Ri+1 - |Сi+1,Cсn| are equal. Clearly, in this 
case, |Сi+1,Ссn| < |Сi+1,Т2| + |Т2,Ссn| (Figure 5), and 
consequently,
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When Ссn is shifted from С2 towards С1, the 
distance of |Т2,Ссn| increases at a faster rate than 
|Сi,Ссn| decreases. This ensures that relation (12) 
remains valid, and the value of |Ñ ,Ñ |min

ñn i i cnR R= + . 
A similar line of reasoning proves the following:
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Based on the relations |Сi,Ссn| < |Сi,C2|, 
|Сi+1,Ссn| > |Сi+1,C2| and Ri + |Сi,С2| = Ri+1 - |Сi+1,C2|, it 
can be concluded that the location of the normal nсn 
within the range hmin<hсn<hmax, and of the curvature 
centre Ссn within the segment [С1, С2] guarantees 
the fulfilment of the condition that min max

ñn ñnR R≤ , and 
thus ensures the existence of the area of possible 
locations of the densification point. The value of 
the curvature radius at the densification point is 
set equal to ( )0 5 min max

ñn ñn ñnR . R R= + . The position of 
the densification point is determined by draw-
ing a segment from Ссn, whose length is equal to 
Rсn. Interpolating a point series consisting of an 

Figure 6. Determining the area of location of the 
curvature centre
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arbitrarily large number of points by a monotone 
curve is possible if the characteristics of the basis 
triangles defining its evolute satisfy the require-
ment (3). The proposed scheme of assigning the 
normal nсn and the curvature centre Ссn corre-
sponding to the densification point ensures the for-
mation of two new densification basis triangles in-
side the original basis triangle, the characteristics 
of which meet the requirement (3). Each basis tri-
angle, either original or one obtained as a result of 
densification, defines the area of possible location 
of the corresponding segment of the interpolating 
curve [18]. Preserving the specified characteristics 
of the basis triangles formed during any number 
of densifications allows us to assert that the con-
sistent assignment of normals, curvature centres 
and densification points within the ranges that take 
into account the area of possible solution of the 
problem guarantees the formation of a point series 
that can be interpolated by a monotone curve.

RESULTS AND DISCUSSIONS

Let us consider the solution to the problem 
of forming a point series that can be interpolated 

by a monotone curve, using the example of den-
sification of a point series assigned on a branch 
of a parabola defined by the equation 

300
xy

2
= . As 

a reference, we take the point series used in [20] 
to determine the area of location of the evolute 
of the monotone curve. The characteristics of the 
reference point series are provided in Table 1.

After assigning the normals and curvature 
centres of the monotone curve corresponding to 
the reference points, the area of location of the 
evolute of the monotone curve is obtained. The 
characteristics of the original area of location of 
the evolute are given in Table 2. The order of den-
sification of the point series will be demonstrated 
using the example of the third reference segment. 

The location range of the normal of the 
monotone curve at the densification point is 
determined by the minimum distance hmin= 
0.887 mm and the maximum distance hmax= 
1.258 mm between the normal and the base of 
ВТ3. After assigning the position of the normal at 
the centre of the specified range, the range of the 
curvature centre of the monotone curve at the 
point of densification is determined as |С1, С2| 
= 9.873 mm. The assigned positions of the nor-
mal and the curvature centre corresponding to 

Table 1. Characteristics of the reference point series

Point coordinates, mm Length of the chord of the 
supporting polygonal line, mm

The radius of the osculating 
circle, mm Sector of location of the normal, °

x y hi R АСi Δni

30 3 31.32 - -

60 12 33.54 188.58 1.074

90 27 36.62 238.73 1.074

120 48 84.85 348.37 1.386

180 108 103.23 570.09 2.727

240 192 123.55 1002.64 2.244

300 300 - - -

Table 2. Characteristics of the reference point series
Radius of the tangent 

circle, mm
Curvature radius of the 
monotone curve, mm

Location range of the 
normal, mm

Location range of the 
curvature centre, mm

Location range of the 
densification point, mm

RʹTCi R TCʹi Ri hmax - hmin
max min
ñn ñnR R−

- 166.74 155.10 0.274 6.782

176.10 201.94 184.56 0.312 7.895

218.66 260.65 239.79 0.371 9.873

319.22 384.88 350.61 0.428 38.581

468.62 693.55 569.53 0.527 52.231

837.83 1200.0 986.86 0.863 112.846

1422.14 - 1729.04 - -
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the densification point determine the area of its 
possible location, the value of which is equal to 

0.009max min
ñn ñnR R− =  mm.

After assigning the densification points of 
the other segments using a similar scheme, a 
point series was obtained, the characteristics of 
which are given in Table 3. As a result of densi-
fication, a new sequence of points has been gen-
erated. The values of the radii of the adjacent 
circles corresponding to these points increase 
steadily, satisfying the necessary condition for 
their subsequent interpolation by a monotone 
curve. The normals assigned at the reference 
points and densification points define a new se-
quence of tangent circles. The ratios of the radii 
values of the adjacent, tangent and osculating 
circles adhere to conditions (1) and (2), which 
validates the correctness of the assigned charac-
teristics of the interpolating curve.

The assignment of intermediate points results 
in localising the area of possible location of the 
curve interpolating the new sequence of points. 
Moreover, this new localised area of possible lo-
cation of the interpolating curve and the original 
curve are both located within the original area.

To estimate the absolute error with which the 
point series resulting from the densification de-
fines the interpolating curve, the location range 
of the densification point (10) can be utilised. 
Once the range length for each of the segments 
of the densified point series falls below the spec-
ified value, the sequence is considered complete. 

Depending on the task requirements, the interpo-
lating curve can be represented either by the area 
of possible location or as a contour. In the latter 
case, within the area of possible location of the 
interpolating curve, a smooth contour composed 
of arcs of circles [18], ellipses or a B-spline [19] 
is formed. The methodology proposed in [20] 
provides the highest accuracy in representing the 
interpolating curve. To model the curve using the 
developed method, any point series where the ra-
dii of adjacent circles increase or decrease mono-
tonically can be used as input data.

To demonstrate how the developed method 
works, the simplest way to generate a sequence of 
original points is to assign points along a mono-
tone section of any plane curve. This could be a 
second-order curve, an involute of a circle, or a 
cycloid. Alternatively, the original point series 
can be constructed without relying on a specific 
curve by defining a sequence of intersecting arcs 
of circles whose radii satisfy the given conditions 
of the problem.

The parabola was selected as the initial curve 
due to its widespread use in various calculations 
and constructions, as well as its well-known and 
extensively studied properties. The positions of 
the reference points assigned on the parabola 
demonstrate that there are no restrictions on the 
distance ratios between the points or on their 
alignment to a grid. As a result of the conduct-
ed research, the algorithm has been proposed for 
forming a smooth contour that represents a curve 

Table 3. Characteristics of the densification point series

i
Point coordinates,

mm

Length of the chord
of the supporting 

polygonal line, mm

Radius of the 
adjacent circle, mm

Radius of the 
tangent circle, mm

Curvature radius of 
the monotone curve, 

mm
x y hi R АСi RʹТСi Ri

1 30 3 14.62 - - 153.27

2 44.20 6.50 16.73 167.13 161.14 173.61

3 60.00 12.00 15.44 187.53 182.48 196.50

4 74.10 18.30 18.12 212.79 205.80 221.59

5 90.00 27.00 17.28 237.99 231.11 247.40

6 104.50 36.40 19.36 266.25 258.71 277.96

7 120.00 48.00 18.03 352.14 342.08 358.21

8 148.30 73.40 46.93 428.94 392.05 474.50

9 180.00 108.00 45.19 564.34 519.17 626.10

10 207.70 143.70 58.10 741.47 704.36 800.27

11 30.00 3.00 14.62 - - 153.27

12 44.20 6.50 16.73 167.13 161.14 173.61

13 60.00 12.00 15.44 187.53 182.48 196.50
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interpolating a point series of arbitrary configura-
tions with a specified accuracy.
1. The reference point series is divided into seg-

ments where the radii of osculating circles ei-
ther increase or decrease. Each such segment 
defines a monotone curve.

2. For each reference point, the location range of 
the normal of the monotone curve is determined, 
and the position of the normal is assigned within 
this range. The positions of the curvature cen-
tres are assigned within intervals belonging to 
the corresponding normals, the boundaries of 
which ensure that condition (3) is satisfied. The 
assigned normals and the curvature centres de-
fine a sequence of basis triangles, which serve as 
the reference area for the possible location of the 
evolute of the interpolating curve.

3. Local densification of the original point series 
is carried out. The densification point is as-
signed within the range, which is determined 
by the position of the normal and the curvature 
centre previously assigned to the densification 
point, as well as the normals and the curvature 
centres that define the corresponding original 
basis triangle. The point series is considered 
fully formed once the location areas of the den-
sification points across all segments fall below 
the specified interpolation accuracy.

4. The resulting sequence of basis triangles defines 
the area of possible location of the interpolating 
curve within which the contour is formed.

The developed method is based on analysing 
the configuration of the original point series and 
employs an algorithm for assigning intermediate 
points within the area of possible location of the 
curve with a monotonic change in curvature.

Through this analysis, the original point se-
ries is segmented into sections, each of which 
can be interpolated by monotone curves. These 
monotone segments are constructed indepen-
dently, and the method imposes no constraints on 
their quantity. Regardless of modifications to the 
input data, all curve segments remain confined to 
a bounded spatial region. The specified character-
istic of the method ensures its robustness against 
variations in the initial data. Increasing the num-
ber of original points and assigning intermediate 
points within the area of possible location of the 
interpolating curve leads to localisation of the re-
gion and its consistent convergence to a unique 
solution. These characteristics of the method en-
sure its stability and convergence.

 CONCLUSIONS

The paper introduces a method for construct-
ing a sequence consisting of specified reference 
points and assigned intermediate points, ensuring 
that the resulting sequence can be interpolated by 
a monotone curve. The initial data for determin-
ing the positions of the intermediate points in-
clude the coordinates of the reference points and 
the configuration of the area of possible location 
of the evolute of the interpolating curve. The area 
of the evolute is bounded by a sequence of basis 
triangles, which is defined by the characteristics 
of the interpolating curve – the normals assigned 
at the reference points and the curvature centres 
assigned on these normals.

The algorithm for assigning the position of an 
intermediate point is based on forming the area of 
the evolute of the monotone curve interpolating 
the obtained point series. The algorithm is based 
on the methods developed in this paper:
 • assigning the positions of the normals of the 

interpolating curve corresponding to the inter-
mediate points;

 • assigning the positions of the curvature cen-
tres belonging to these normals;

 • determining the positions of the intermediate 
points corresponding to the assigned normals 
and curvature centres.

For each intermediate point, the position of 
the normal is assigned within a range, the bound-
aries of which are unambiguously determined by 
the positions of the normals and the curvature 
centres assigned to the preceding and succeeding 
reference points. Assigning the normal within this 
defined range establishes the segment belonging 
to it, which is the area of possible location of the 
curvature centre of the monotone curve at the in-
termediate point.

As a result of assigning the normal and the 
curvature centre, two new basis triangles are 
formed within the original basis triangle, the con-
figuration of which establishes the boundaries for 
the area of possible location of the intermediate 
point. Each of the triangles restricts the area of 
location of the evolute of the curve interpolating 
the area bounded by the assigned intermediate 
point and one of the two reference points (either 
preceding or succeeding).

Assigning a normal, a curvature centre or an 
intermediate point at the extreme of their respec-
tive allowable ranges results in the corresponding 
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segment of the evolute being represented as a po-
lygonal line, while the segment of the interpolat-
ing curve will consist of smoothly connected arcs 
of circles. By assigning the specified elements 
within the corresponding ranges, a new sequence 
of points is formed, along with the characteris-
tics of a regular monotone curve that interpo-
lates these points. Once the intermediate point 
has been assigned, it is considered as the refer-
ence point for assigning the subsequent points. 
The intermediate points can be assigned in any 
sequence on the original segments, and their fi-
nal number can be arbitrarily large. All mono-
tone curves interpolating the generated sequence 
of points and having assigned features at these 
points, pass within the area of possible location 
of an intermediate point on each of the segments. 
The length of these ranges can be used to esti-
mate the absolute error with which the point 
series defines the interpolating curve. When the 
maximum absolute error falls below the specified 
value, the point series is considered to be formed.

The correctness of the proposed algorithm 
and its constituent methods have been examined 
by interpolating a point series assigned on the 
branches of a parabola. A sequence of 7 points 
was used as the reference, corresponding to the 
series utilised in [20] to establish the original area 
of location of the evolute of a monotone curve.

As a result of assigning an intermediate point, 
a new sequence of 13 points is formed within 
each of the segments bounded by the neighbour-
ing reference points. The configuration of the 
obtained point series and the characteristics of 
the interpolating curve assigned at these points 
align with the conditions required for the points 
to belong to a monotone curve. This alignment 
ensures a further increase in the number of inter-
mediate points while maintaining the ability to 
interpolate the formed point series by a mono-
tone curve. 

Assigning the positions of intermediate points 
and characteristics of the interpolating curve 
based on the area of possible location of its evo-
lutes streamlines the geometric framework of the 
problem solution, minimizes the computational 
effort required, and ensures the desired level of 
accuracy in discrete interpolation.

The findings presented in this paper build upon 
and complement the results outlined in [18-20]. 
Consequently, a method has been developed for 
forming a contour that, with specified accuracy, 
represents a regular curve containing a minimum 

number of singular points and effectively interpo-
lates a point series of arbitrary configuration.

The method provides a systematic approach 
to solving the following problems:
 • The original point series is segmented into 

parts, each of which can be interpolated by a 
curve containing no singular points;

 • Sequences consisting of reference and inter-
mediate points are formed, which define the 
monotone segments of the interpolating curve 
with specified accuracy. The configuration 
of the generated sequence, containing both 
source and assigned intermediate points, en-
sures that they can be interpolated by a mono-
tone curve and defines the area of possible lo-
cation for the interpolating curve. Moreover, 
the distance between any admissible curves 
within this area cannot exceed the specified 
interpolation error tolerance;

 • Areas of possible locations for the monotonic 
segments of the interpolating curve are formed;

 • A contour consisting of continuous line seg-
ments is formed, which interpolates the ob-
tained point series and lies within the area of 
possible location of the interpolating curve.

The method of interpolating a point series 
based on the area of possible location of the curve 
with monotonic change in curvature is universal. 
This approach guarantees interpolation with sec-
tions of monotone curves for any sequence of 
points located on the plane. The developed meth-
od proves most effective when applied to tasks re-
quiring monotonic and regular curvature variation 
along the interpolating curve with interpolation 
accuracy within 10-3 mm tolerance (maximum 
CNC machining precision). These tasks include 
functional surface modelling, where the input 
data is obtained by determining the positions of 
the original points on a physical prototype.
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