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INTRODUCTION

The concepts of additive manufacturing 
(AM), also referred to as 3D printing, are becom-
ing increasingly significant among researchers 
and industry partners [1, 2]. Throughout all pho-
tocuring 3D printing technologies, from the la-
ser-scanning of stereolithography (SLA), to digi-
tal projection of digital light processing (DLP), 
to the latest liquid crystal display (LCD) print-
ing technology, the main difference is the light 
source and imaging system [3], while, the con-
trol and stepping system have little difference as 
shown in Figure 1. The DLP and LCD technolo-
gies differ most in their imaging systems [4, 5]. 
The basis of LCD 3D printing is the employing 

of LCD screens as imaging system. The main 
feature of LCD technique is the way the light 
beams straight onto the uncured resin from the 
flat LCD panel [6, 7]. This enables light not to 
increase, so pixel distortion is less of a problem 
with LCD process as it occurs with DLP process. 
Furthermore, unlike in SLA, an entire layer can 
be exposed simultaneously and there is no ne-
cessity for scanning the photopolymer point by 
point. This benefited from a faster 3D printing 
speed [8]. Unfortunately, the mechanical issues 
of printed parts a considered one of the remark-
able challenges for the LCD technique specifi-
cally for the impact strength and hardness.

Numerous variables have a significant effect 
on the fabricated part quality, selecting the proper 
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parameters combination play an important role in 
producing the desired properties of the built parts. 
Selecting the appropriate materials also has a great 
impact in meeting the required functionality [10, 
11]. Some efforts have indicated according to the 
relevant publications that the mechanical strength 
is crucial aspect to the quality of the printed com-
ponents. Riyaz et al. [12] focused on producing 
3D printed PLA parts with improved strength and 
surface quality using LCD 3D printing. Tensile, 
impact, and flexural specimens with varying layer 
thicknesses were printed and post-cured to ex-
plore the mechanical properties. It was found that 
by increasing the layer thickness and minimizing 
the post-curing time, printed samples with maxi-
mum strength can be obtained. Al‐Dulaijan et al. 
[13] evaluated the effect of printing orientation 
combined with different post-curing times on the 
flexural strength of 3D-printed resins. Their result 
showed that the highest flexural strength values of 
3D-printed resin (NextDent, and ASIGA) were in 
0-degree groups. Also, the flexural strength values 
increased when post-curing time was increased, 
regardless of the printing orientation.

Seprianto et al. [14] determined the effect of 
the thickness of the layer and exposure time on 
the strength, impact toughness applied to the pro-
totype of the reduction gear post, test specimens 
made using SLA DLP 3D printing. Their results 
of the analysis revealed that the main factor that 
had the most influence on the impact strength of 
the test specimens was the layer Thickness fac-
tor with a percentage contribution of 52%, while 
the interaction between layer thickness and expo-
sure time contributed 6%. Yang et al. [15] inves-
tigated the effect of the exposure time of acrylate 
resin in DLP on the printability and the hardness. 

Concerning the mechanical properties, a strong in-
crease in hardness was observed, which went from 
0 to 107.2 N as the exposure was varied from 2 
to 8 s. Schittecatte et al. [16] reviewed the effect 
of printing variables, like exposure time and light 
power on the printed LCD parts hardness. Their 
study indicates that low exposure times leads to 
incomplete polymerization, that decreases the 
specimens’ hardness. Al-Wswasi et al. [17] built a 
neural-network model to predict the compressive 
strength by varying layer heights, filling pattern 
an densities. Their model confirmed high accuracy 
based on result of the regression coefficient.

Based on the previous efforts that investigat-
ed the effect of the LCD parameters on the print-
ed part strength and hardness. There are limited 
investigations that analyzed the impact strength 
and hardness of printed parts using photopoly-
merization processes, and these studies did not 
specifically utilize Art Engineering Resin or LCD 
printing technology. The presented study tries to 
tackle this matter. In this regard the article utilizes 
neural-network model for optimizing the impact 
strength and hardness of the LCD printed parts 
based on three critical process parameters: layer 
height, build orientation, and post-curing time us-
ing Art Engineering Resin material.

MATERIALS AND METHODS

In LCD process, as in many AM technologies, 
the printed parts characteristics are significantly in-
fluenced by a set of factors. To clarify the impact of 
the printing layer height, build orientation and the 
post-curing time on the impact strength and hard-
ness of the printed parts in LCD process, 3 lev-
els were assigned for the studied variables in this 

Figure 1. Schematic diagram of the different types of resin printing: SLA, DLP, LCD [9]
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work. The regarded printing parameters and the as-
signed value for each variable are shown in Table 
1. A full-factorial experimental design was adopted 
for conducting tests to obtain the responses’ values. 
A total of 27 combinations were assigned utilizing 
Minitab program for carrying out the experimental 
runs and obtaining the impact strength and hard-
ness measures for each corresponding test.

Specimens preparation and testing

The impact test specimen illustrated in Figure 
2a has been designed based on the (ASTM D256) 
standard, using SolidWorks program. Following 
the CAD models, the designed files were saved in 
STL format to enable the slicers to read and slice 
the models. Chitubox slicer program was utilized 
as the software to slice the model into subsequent 
layers, creates support structure, specify print 
variables and locates the parts within printing 
platform virtually. Exporting the sliced models 
as G-code files is essential to make files readable 
by the printing machine and building the required 
parts. Figure 2b illustrates the three build posi-
tions of the specimens in the slicer.

The samples have been fabricated on “Any-
cubic photon mono 6k” printing machine using 
Art-engineering resin material. After printing the 
specimens undergo UV light within various peri-
ods of time for post-curing process using GCB-1 
UV Resin Curing Light Box based on the proposed 

design of experiments. To ensure that the result 
subsequently consistent, a portion of the experi-
ments were replicated. Particularly, about ten of 
the twenty-seven experiments sets have been rep-
licated within the same combinations. Those ex-
periments were picked to reflect ranges of setting 
variables and to ensure measurement consistency. 
While complete replications didn’t occur for every 
set of parameters, the replicated experiments as-
sisted in evaluating experimenting variations and 
improve the validity of major results. The test 
specimens for impact strength and hardness test 
are illustrated Figure 3a, and the utilized LCD 
printing machine shown in Figure 3b.

For testing the impact strength, the test speci-
men in this work was a notched rectangular 
block. Izod impact testing machine was used for 
performing the impact tests. Figure 4 depicts the 
experimental setup utilized for conducting the im-
pact tests. The specimen remains a vertical canti-
lever beam and is broken by a single swing of the 
pendulum. The pendulum came into initial contact 
with the specimen on the same side of the notch as 
shown in Figure 4a. The energy used to break the 
specimen and depth under the notch in the speci-
men was used to calculate the impact strength.

Testing the hardness of the printed parts have 
been performed using Shore D hardness test. Af-
ter the post-curing process, the specimens were 
placed on a flat and stable surface. The test was 
achieved through pressing the digital Shore 

Table 1. Process variables and levels

No. Parameter Symbol
Level

Unit
(1) (2) (3)

1 Layer height h 0.05 0.075 0.1 mm

2 Build orientation O Flat (0°) Upright (90°) Angled (45°) degree

3 Post-curing time tc 2 4 6 min

Figure 2. Design of specimens, (a) impact test specimen, (b) the build positions in slicing
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Durometer against the samples surfaces with a 
consistent pressure for (1–3) seconds for each 
value. The average of five readings for each spec-
imen was taken. Figure 5 shows the Shore Du-
rometer and the test process.

Artificial neural network model

The feedforward network has layers are ar-
ranged sequentially and it consist of several layers 
of neurons [18]. The output of one layer serves as 
input to the neurons of the subsequent layer. Their 
activation function and neuron count define these 

layers [19]. Training the network is a procedure to 
modify the network weights to obtain the smallest 
possible deviation between the target of the exper-
imental data and the network output. Backpropa-
gation is the most often applied method for weight 
adjustment in neural network training [20, 21].

Based on the given values of the impact 
strength and Shore D hardness from the experi-
ments that carried out using full-factorial experi-
mental design, training the neural network models 
have been performed between the inputs and out-
puts. The inputs consist of 3 neurons: layer height 
(h), build orientation (O), and post-curing time (tc) 

Figure 3. Printed samples by LCD process: (a) impact test specimens, (b) printing machine

Figure 4. Izod impact testing: (a) Izod tester, (b) specimen held in the vise before striking
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added in 27×3 data matrix as illustrated in Figure 6. 
And 2 two neurons have been imported to outputs: 
impact strength (Is), and hardness (HD) in 27×2 
data matrix. The tangent sigmoid activation func-
tion has been used for each layer and feedforward 
backpropagation network has been created. 70% 
sample has been used for training, 15% sample 
for testing and 15% sample for cross-validation. 
These networks are trained using a back propaga-
tion technique that uses the Levenberg Marquardt 
method. For training moderate sized neural net-
works using feedforward learning up to several 
hundred weights, Marquardt algorithm appeared 
to be the most rapidly approach [22].

RESULT AND DISCUSSION

Effect of LCD parameters on impact strength 
and hardness

The purpose of performing the experiments 
was mainly for estimating the impact strength 
and Shore D hardness. The outcomes of the ex-
perimental tests are illustrated in Table 2 that is 
adopted by full factorial design. Based on the 
results of measuring the printed parts strength, it 
can be noted that higher impact strength 9.49 KJ/
m2 and hardness 77.92 HD are obtained at lower 
layer height, moderate post-curing time and flat 

position of build orientation. The impact of the 
individual variables clarified in Figure 7 for each 
of impact strength and hardness. The illustrated 
plots show the behavior of the individual param-
eters on the process outputs, which is knows as 
main effect plots.

The lower layers thickness increased the con-
tact regions among the adjacent layers, which en-
hanced the adhesion between them and improved 
the durability and strength of the fabricated parts, 
giving higher impact strength. Reducing the 
heights of layers minimizing the gap and voids 
in the interlayer structures that decreased the 
porosity, consequently increased the build parts 
hardness. Using moderate post curing time 4 min 
provides adequate polymer cross linking avoid-
ing the excessive curing for the printed samples 
contributing to higher impact strength. That level 
of post curing produces stable material character-
istics through eliminating the inner stresses and 
enhance the integrity of the build structure of the 
fabricated parts, and that stability providing opti-
mum polymer cross linking and it is important to 
achieve better parts hardness.

On other hand building the parts in flat ori-
entation making the layers in parallel alignment 
with the print platform. This is frequently the ori-
entation of the subjected loads in numerous ap-
plications, and that reduces the stresses concen-
tration and enhances the layers bonding, leading 

Figure 5. Shore D hardness test for samples: (a) shore durometer, (b) testing of samples

Figure 6. Neural network architecture
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Figure 7. Main effects plot for the parts strengths, (a) impact behavior (b) hardness behavior

Table 2. Experiments result of the impact and hardness tests
No. Layer height (mm) Build orientation (deg) Post-curing time (sec) Impact strengt (KJ/m2) Shore D hardness (HD)

1 0.050 0 4 9.49 77.92

2 0.075 90 2 8.24 63.48

3 0.075 0 2 8.86 72.22

4 0.050 45 2 7.89 73.21

5 0.075 0 6 7.81 66.81

6 0.100 0 4 8.35 72.79

7 0.050 90 4 8.87 69.18

8 0.050 90 6 7.46 61.49

9 0.050 0 2 9.14 75.63

10 0.075 0 4 9.21 74.51

11 0.050 90 2 8.52 66.89

12 0.100 0 2 8.01 70.50

13 0.100 90 6 6.33 56.36

14 0.075 45 6 6.56 64.39

15 0.050 0 6 8.09 70.23

16 0.075 90 6 7.18 58.07

17 0.075 45 4 7.96 72.09

18 0.075 90 4 8.58 65.77

19 0.050 45 6 6.84 67.80

20 0.100 0 6 6.95 65.09

21 0.100 45 6 5.70 62.67

22 0.100 90 4 7.73 64.05

23 0.075 45 2 7.61 69.79

24 0.100 45 2 6.75 68.08

25 0.100 45 4 7.10 70.37

26 0.050 45 4 8.24 75.50

27 0.100 90 2 7.38 61.76

to improve the impact strength of the parts. The 
anisotropic nature is reduced in the flat position 
which enhances the consistency and the unifor-
mity of the mechanical characteristics of the fab-
ricated parts and improves its hardness. The two 
responses surface plots corresponding to their 

effecting parameters illustrated in Figure 8 show-
ing the impact strengths and hardness performance 
that represented with different pairs of process pa-
rameters effect. It is noted that both characteristics 
increased in flat position, lower layer thickness, 
and the moderate post curing time.
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Figure 8. Surface plot of the outputs with respect to their inputs, (a) impact strength versus oreintation and post-
curing time (b) hardness versus layer height and post-curing time

Table 3. Analysis of variance result of impact strength
Source DOF Sum of squares Variance F-value Contribution %

Layer height 2 6.211 3.156 4.55 27.50

Build orientation 2 7.031 3.52 5.31 30.68

Post-curing time 2 9.50 4.80 8.63 41.83

Error 20 0.21 0.105

Total 26 22.952

The contribution weightiness for the input 
variables on the impact strength and hardness 
have been examined using ANOVA analysis for 
determining the significant degree of the investi-
gated variables on the process outcome. From the 
Tables 3, and 4 of ANOVA analysis, post curing 
time was the most effective variable on impact 
strength with 41.83% while build orientation was 
the most influential parameter on the part hard-
ness. Layer thickness has the lower effect on the 
two responses. 

Neural network results

To assess the extent to which the model outputs 
match the results of the experimental tests, correla-
tion coefficient was utilized for this purpose. This 
statistical measure can be formulated as [23]:

 

1 
 

𝑅𝑅 = ∑(𝑥𝑥𝑖𝑖− �̅�𝑥) (𝑦𝑦𝑖𝑖− �̅�𝑦 )
√∑(𝑥𝑥𝑖𝑖− �̅�𝑥)2  ∑(𝑦𝑦𝑖𝑖− �̅�𝑦)2    (1) 

 
 (1)

Table 5 reveals the agreements between ex-
perimental values for impact strength and hard-
ness with ANN model values for the two respons-
es to assess the significance of network topology, 
transfer functions at the hidden and output layer. 
The best value of overall R (0.998) has been ob-
tained by using the Levenberg-Marquardt algo-
rithm as shown in Figure 9. While training, the 
data reaches its maximum optimal solution at ep-
och 8 and when validation samples MSE start in-
creasing, the epochs automatically stop as shown 
in Figure 10. The responses’ outputs of the ANN 
developed models have coefficients of correla-
tion using Equation 1 equal to 0.989 for impact 
strength and 0.982 for hardness (Figure 11).

For validating the neural network (ANN) 
model, the mean absolute error between the mea-
surement results and the predicted outcomes was 
determined in statistical terms. The confidence in-
terval has been calculated for the responses based 
on the following formula [24]: 

Table 4. Analysis of variance result of shore D hardness
Source DOF Sum of squares Variance F-value Contribution %

Layer height 2 112.8 61.40 2.28 15.94

Build orientation 2 364.5 183.25 10.89 47.57

Post-curing time 2 271.1 140.55 6.89 36.49

Error 20 22.1 11.05

Total 26 770.5
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1 
 

𝐶𝐶𝐶𝐶 = ӯ ± z s
√𝑛𝑛 (2)  

 
 (2)

where: 

1 
 

𝐶𝐶𝐶𝐶 = ӯ ± z s
√𝑛𝑛 (2)  

 
 is the mean value, z is confidence level, 

s is standard deviation, and n is the sam-
ple size. 

The izod-impact strength has a mean error 
(1.13%) with a confidence interval (95%) of 

(0.55% to 1.71%), on the other hand the Shore-
D hardness has a mean error (0.82%) with a 
confidence interval (95%) of (0.32% to 1.31%). 
Both error rates for predictions are of statistical 
significance p < 0.05, demonstrating the neural 
network model’s consistency and predictabil-
ity. The neural network model was used also for 

Figure 9. Regression plot for ANN

Figure 10. Mean square error plot for ANN
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Table 5. Experimental data and predicted values
No. of 
Run

Experimental impact 
strength (kg/m2)

ANN Impact 
strength (kg/m2)

Error
(%)

Experimental 
hardness (HD)

ANN
hardness (HD)

Error
(%)

1 9.49 9.48 0.06 77.92 77.91 0.02

2 8.24 8.55 3.81 63.48 62.35 1.77

3 8.86 8.61 2.83 72.22 69.61 3.60

4 7.89 7.97 0.99 73.21 73.29 0.11

5 7.81 7.51 3.79 66.81 67.61 1.20

6 8.35 8.36 0.04 72.79 72.77 0.03

7 8.87 8.87 0.03 69.18 69.18 0.01

8 7.46 7.51 0.56 61.49 61.45 0.06

9 9.14 8.83 3.42 75.63 77.69 2.72

10 9.21 9.21 0.06 74.51 74.57 0.08

11 8.52 8.78 3.07 66.89 68.53 2.45

12 8.01 7.95 0.63 70.50 70.63 0.18

13 6.33 6.12 3.27 56.36 57.57 2.15

14 6.56 6.56 0.06 64.39 64.33 0.09

15 8.09 8.09 0.00 70.23 70.19 0.05

16 7.18 7.17 0.15 58.07 58.08 0.02

17 7.96 7.97 0.17 72.09 72.16 0.10

18 8.58 8.58 0.09 65.77 65.79 0.03

19 6.84 6.84 0.00 67.80 67.70 0.15

20 6.95 6.73 3.18 65.09 67.31 3.40

21 5.70 5.71 0.18 62.67 62.69 0.02

22 7.73 7.72 0.18 64.05 64.09 0.05

23 7.61 7.62 0.16 69.79 69.81 0.03

24 6.75 6.55 3.03 68.08 65.73 3.45

25 7.10 7.12 0.20 70.37 70.43 0.09

26 8.24 8.23 0.07 75.50 75.50 0.00

27 7.38 7.35 0.36 61.76 61.64 0.19

Figure 11. Comparison between experimental and ANN model data: (a) impact strength, (b) hardness
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optimizing the LCD parameters. An algorithm 
using MATLAB software was created for finding 
the optimum process parameters that give high-
est impact strength and hardness. The functions 
generate 3 vectors, each one of them save (100 
elements). The first-vector is for layer height with 
an interval of 0.05–0.1, the second vector repre-
sents the build orientation with interval of 0–90°, 
and the third vector is dedicated to the post-curing 
time with interval of 2–6. Furthermore, the algo-
rithm builds pair of three-dimensional array sizes 
(100 elements in each dimension). The calculated 
result of the four inputs vectors combination was 
saved in the first array at the same time for the 
impact strength. In addition to store the calcula-
tions of the hardness strength in the second array. 
The highest number in each array is the optimum 
value for the impact strength and hardness, and 
the corresponding parameters represent the opti-
mum condition of printing. Table 6 illustrates the 
optimum parameters combinations and their cor-
respondent impact strength and hardness. Clearly, 
it is observed that the optimal input parameters 
are almost similar for (Is) and (HD).

It is important to note that, although the 
complete replicates weren’t conducted on every 
experimental combination, a portion of the sam-
ples were replicated to assess the reliability of 
measurements, these selective replications vali-
date the reported variations and reinforce the ac-
curacy of the ANNs model’s prediction. Howev-
er, it is certainly preferable to do full repetitions. 

CONCLUSIONS 

In the present study, a neural-network model 
was developed for predicting and optimizing the 
impact strength, and hardness of the LCD printed 
parts. Fabricating the samples was performed ac-
cording to full factorial design of experiments for 
investigating the influence of layer height, build 
orientation, and post-curing time as the LCD input 
variables on part impact strength and parts hard-
ness. The results showed that maximum impact 
strength and hardness strength are obtained in 
lower layer height (0.05 mm), flat build position 

(0°), and moderate post-curing time (4 min) for 
impact strength and hardness. Based on the ANO-
VA analysis, it is found that post-curing time is 
the most influential variable on impact strength 
with 41.8%, on the other hand the build orienta-
tion has the highest effect on the parts hardness 
with 47.5%. The developed optimization algo-
rithm was built by incorporating the ANN model 
through creating three- dimensional array sizes 
(100 elements in each dimension) to obtain the 
highest values for the responses which were 9.48 
kJ/m2 and 77.91 HD   for the impact strength and 
hardness, respectively. The adopted model for the 
investigated mechanical properties showed good 
agreements with the experiments’ outcome with 
mean error percentage 1.13%, and 0.82% for the 
impact and hardness, respectively. And it dem-
onstrates outstanding precision for predictions 
with correlation coefficients 0.989 and 0.982 for 
the process outputs, respectively. The results re-
ported indicate that the model is capable not just 
of predicting accurately, but also of effectively 
optimizing printing variables for better compo-
nents qualities. Such model of prediction lowers 
the necessity for significant trial and error test-
ing. It can indicate that neural network models 
are efficient machine learning tools for predicting 
the mechanical properties of LCD-printed parts. 
Future research could extend the utilized method 
to different performance geometries, and materi-
als in addition to investigating hybrid-AI strate-
gies for multi objective optimizations.
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