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INTRODUCTION

Reducing the weight and material consump-
tion of vehicles and industrial products has 
consistently been a significant concern [1–3]. 
To solve it, structures made of aluminum al-
loys were used [4, 5]. These alloys, being light-
weight, strong, and corrosion-resistant, are 
widely used in the manufacture of welded prod-
ucts and structures [6, 7]. Welding aluminum 
alloys presents certain challenges due to their 
unique physical and chemical properties [8, 9]. 
Pulsed unipolar arc welding with a consumable 
electrode (hereinafter referred to as MIG weld-
ing) is one of the most promising methods for 

the high-performance welding of aluminum al-
loy structures [10, 11]. 

However, the MIG welding of aluminum al-
loys has specific characteristics that must be con-
sidered when designing welded structures and de-
veloping appropriate welding processes [12–14]. 
It is necessary to consider the specific thermal pro-
cesses that occur during MIG welding [15–17], as 
well as the characteristics of residual stress-strain 
state formation in welded structures [18–20]. 
To predict physical and metallurgical processes 
and thermal cycles in fusion welding and related 
technologies, mathematical modeling methods 
are used [21–23]. For the distribution of residual 
stresses and welding deformations, numerical 
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modeling using the finite element method is ad-
visable, as it correlates well with experimentally 
measured data [24–26]. Therefore, investigating 
the characteristics of structure formation and re-
sidual deformation in butt and T-joints is of ut-
most importance [27–29]. Indeed, defects such as 
hydrogen porosity can arise during MIG welding 
of these alloys, reducing joint strength [30, 31]. 
The influence of welding parameters on charac-
teristics such as hardness, tensile strength, impact 
toughness, and microstructure is also a significant 
consideration [32, 33]. Investigating this issue for 
relevant welded joint types will enable the opti-
mization of parameter refinement methods based 
on the characteristic criteria of the resulting joint 
qualities [34, 35].

Of all the characteristics of welded joints 
mentioned, microstructure is the most interesting, 
as the formation of all other characteristics de-
pends on it [36, 37]. Therefore, investigating the 
trends in structure formation during MIG welding 
of aluminum alloy butt joints at different speeds 
is a pertinent objective [38, 39]. Specifically, it is 
worthwhile to investigate the microstructure for-
mation of the 1561 alloy within the Al-Mg-Mn 
system, considering its widespread use in con-
struction and various industries [40, 41]. 

PURPOSE AND OBJECTIVES 		
OF THE STUDY

This study aims to determine the trends in 
structure formation within welded joints of the 
1561 aluminum alloy, as it is widely used for the 
fabrication of various domestic and industrial 
welded structures (e.g. marine and river vessel 
parts, aerospace vehicles, food and chemical in-
dustry, etc.). This will be achieved by analyzing 
the influence of varying MIG welding parameters, 
particularly welding speed and heat input, while 
prioritizing satisfactory seam formation. Ulti-
mately, the goal is to identify the optimal welding 
parameters that minimize porosity, refine grain 
structure, and enhance mechanical properties.

To achieve this goal, the following tasks are 
proposed:
1.	Conduct technological research to select MIG 

welding modes for butt joints of 1561 alloy on 
a steel backing plate. The criterion for selection 
is satisfactory seam formation in accordance 
with ISO 10042, aiming for a quality level of 
at least C and as close as possible to level B.

2.	Conduct metallographic studies to determine 
the structural formation characteristics of the 
obtained 1561 alloy butt joints.

3.	Conduct mechanical strength tests on the ob-
tained butt joints of the 1561 alloy.

4.	Establish general trends in the improvement of 
structure, quality, and strength of 1561 alloy 
joints based on the speed and heat input of the 
MIG welding process.

RESEARCH METHODS, MATERIALS	  
AND EQUIPMENT

To achieve the objective of this study, the 
following research methodology was employed: 
preparation of the experimental setup, technolog-
ical equipment, and welded samples. Conducting 
preliminary technological studies on MIG weld-
ing of 1561 aluminum alloy with a thickness of δ 
= 4 mm, using parameters selected from literature 
sources (specifically, [42–44]). Experimentally 
refining the process parameters to achieve satis-
factory seam formation as defined by the interna-
tional standard ISO 10042 [45]. Achieving a seam 
formation quality level of at least C, and ideally 
approaching level B (as per ISO 10042), by uti-
lizing various MIG welding speeds. Conducting 
metallographic and microhardness analyses of 
the butt joints produced from 1561 alloy (δ = 4 
mm) [46, 47]; Identifying the characteristic fea-
tures of weld structure formation as a function of 
MIG welding speed and heat input; Performing 
mechanical tests to determine the strength of the 
produced joints [48]; Analyzing the obtained re-
sults to establish characteristic trends in structure 
formation and the changes in mechanical prop-
erties of 1561 alloy joints as a function of MIG 
welding speed and heat input. 

A laboratory test bench was created based on 
a TPS 320i MIG/MAG welding source (Fronius 
International GmbH, Austria) to conduct techno-
logical research. The bench was equipped with a 
manipulator to move the welding torch relative to 
the welded samples clamped in the assembly and 
welding fixture (Figure 1). 

Technological research on MIG welding was 
conducted on flat specimens of 1561 aluminum 
alloy (Al-Mg-Mn system) with dimensions of 
300 × 100 × 4 mm (Table 1). This alloy exhib-
its a tensile strength of at least 360 MPa and an 
elongation of approximately 11%. ER5356 wire 
with a diameter of 1.2 mm was selected as the 
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electrode wire (Table 1). Metallographic studies 
revealed that the grain size in the 1561 base met-
al (Ds = h × l, where Ds is grain size, h is grain 
width, and l is grain length) ranged from 7–10 × 
20–100 µm, with a shape factor (æ = l / h) of 3–10 
(Figure 2). The microhardness of the base metal 
was in the range of 750–840 HV.

For welding, butt-jointed samples were 
clamped in appropriate assembly and weld-
ing equipment. This ensured the weld root was 
formed using a replaceable backing bar with a 
forming groove. The backing, made of austenitic 
stainless steel, featured a 4 mm wide and 2.5 mm 
deep groove for weld seam root metal formation. 
MIG welding was conducted using high-purity 
(99.993%) argon shielding gas.

Metallographic studies were performed us-
ing a NEOPHOT-32 optical microscope (CARL 

ZEISS, Jena, Germany) following the method-
ology outlined in [49, 50]. To reveal the sample 
structures, etching was performed using an aque-
ous NaOH solution followed by clarification with 
an aqueous HNO3 solution for macrostructure 
analysis. Microstructure analysis involved etch-
ing with an aqueous hydrofluoric acid solution 
[51, 52]. Microstructural studies were conducted 
following the recommendations and methodolo-
gies outlined in references [53, 54]. Vickers mi-
crohardness (HV) measurements were performed 
on the samples using a LECO M400 microhard-
ness tester (St. Joseph, MI, USA) with a 100 g 
load. The reported hardness values represent 
the average of three measurements [55]. Tensile 
tests were conducted on a universal servohydrau-
lic testing complex MTS 318.25 (MTS Systems 
Corporation, Eden Prairie, Minnesota, USA) with 

Figure 1. Appearance of the laboratory test bench for conducting technological research

Table 1. Chemical composition of the Al-Mg-Mn alloys used in the study

Material
Chemical element, wt.%

Al Mg Mn Si Fe Cu Zn Zr Cr Ti

Base metal 1561 Base 5.5–6.5 0.7–1.1 ≤ 0.4 ≤ 0.4 ≤ 0.1 ≤0.2 0.02–
0.12 – –

Welding wire 
ER5356 Base 4.5–5.5 0.1–0.2 – – – – – 0.05–

0.20
0.06–
0.20
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a maximum force of 250 kN to determine the 
strength of the samples. The tests were performed 
according to the standard method. Comprehen-
sive material research methods were employed 
for all other studies [22–28].

RESULTS OF THE TECHNOLOGICAL 
RESEARCH ON THE MIG WELDING 
PROCESS OF 1561 ALLOY BUTT JOINTS 

Welding parameters were selected for the 
study based on the recommendations of previous 
works [42, 43, 56, 57]. Following MIG welding 
experiments on butt joints of 1561 alloy speci-
mens (300 × 100 × 4 mm) using a specifically 
designed laboratory bench (Figure 1), the weld-
ing parameters outlined in Table 2 were selected. 
Macrographs of the 1561 alloy joints produced 
using these MIG welding parameters are also pre-
sented in Table 2. These ground sections demon-
strate satisfactory seam formation, corresponding 
to quality level C or B according to ISO 10042. A 
process efficiency of 0.8 was assumed when de-
termining the heat input [58]. 

RESULTS OF THE METALLOGRAPHIC 
STUDIES ON THE STRUCTURE 
FORMATION OF BUTT JOINTS IN THE 
1561 (AL-MG-MN) ALLOY

This section considers the structural forma-
tion characteristics of joints produced using three 
selected MIG welding modes (Table 1).

Metallographic studies of Specimen No. 1 
(Figure 3, 4) revealed that the weld metal is char-
acterized by a grain structure consisting of both 
equiaxed grains with sizes of Ds = 10–50 µm 
and elongated grains with sizes of Ds = 10–12 × 
30–100 µm and a grain shape factor of æ = 3–8.3 
(Table 3). The weld metal microhardness is HV 
64–68 (Table 3). The weld metal is characterized 
by the presence of relatively large pores, with 
sizes of Dp = 60–230 µm (Figure 3).

The fusion line (FL) zone and heat-affected 
zone (HAZ) primarily exhibit elongated crystal-
lites with sizes of Ds (h × l) = 10–30 × 30–50 
µm (FL) and Ds = 7–20 × 20–100 µm (HAZ), 
respectively (Figure 4). The grain shape coeffi-
cient is æ = 2.7–3 (FL) and æ = 2.9–5 (HAZ).

During the transition from the weld metal to 
the HAZ, the equiaxed grain structure coarsens 
slightly (on average by a factor of 1.17, Fig-
ure 5a), while the crystallite shape coefficient 
(æ) decreases by an average factor of 1.4 (Fig-
ure 5b). Simultaneously, the microhardness in-
creases by an average of 14%. The HV in the 
fusion line zone is practically identical to that 
of the weld metal.

Metallographic studies of specimen No. 2 
(Figure 6, 7) determined the weld metal to have 
an equiaxed grain structure with a grain size of Ds 
= 10–60 µm (Table 4, Figure 6). Elongated grains 
(crystallites) are also observed, exhibiting a size 
of Ds = 10–15 × 30–100 µm and a grain shape 
factor of æ = 3–6.7. The weld metal is charac-
terized by the presence of pores measuring Dp = 
20–120 µm (Figure 6, a) and isolated inclusions 
up to 50 µm in size (Figure 6, b). The weld metal 
microhardness is HV 70–77 (Table 4). 

Figure 2. Microstructure of the base metal (BM) - alloy 1561: (a) ×100; (b) ×400
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Crystallites with a predominantly elongated 
shape are formed in the fusion line (FL) zone and 
the heat-affected zone (HAZ). These crystallites 
have sizes of Ds = 20–30 × 40–60 µm (FL) and 
Ds = 10–20 × 20–100 µm (HAZ), as shown in 
Figure 7. The grain shape factor is æ = 2 in the 

FL and æ = 2–5 in the HAZ. A small number of 
equiaxed grains are also observed, with sizes of 
Ds = 20–50 µm in the FL and Ds = 20–40 µm 
in the HAZ. The microhardness of the metal in 
the fusion line zone is HV 67, while in the HAZ 
metal it is HV 79.

Table 2. Welding parameters for alloy 1561 (δ = 4 mm)

No.
Wire feed 

speed (Vw), 
m/min

Average 
current of 
puls-arc 

welding (I), A

Puls-arc 
voltage, (U), V

Welding 
speed (V), 
mm/min

Linear 
energy input 

(E), J/mm
Macrosection

1. 6.9 119 15.5 380 233

2. 8 137 18.2 500 240

3. 8.4 142 19.1 600 220

Note: The samples were welded in one pass.

Figure 3. Microstructure of the weld metal of specimen No. 1: (a) ×100; (b) ×400

Table 3. Structural parameters of the weld metal of aluminum alloy 1561 joints, specimen No. 1

Parameters
Zones

Weld seam FL HAZ OM

HV 64…68 66 77 74…84

Ds, µm 10…50 10…30 20…50 -

Ds (h × l), µm 10…12 × 30…100 10…30 × 30…50 7…20 × 20…100 7…10 × 20…100

æ (l / h) 3…8,3 2,7…3 2,9…5 3…10

Dp, µm 60…230 - - -

Note: Ds – grain size, h – crystallite width, l – crystallite length, æ – the crystallite shape factor, Dp – pore size.
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During the transition from the weld metal 
to the HAZ, the equiaxed grain structure refines 
slightly (on average by a factor of 1.17, Figure 8a) 
with a decrease in the crystallite shape coefficient 

(æ) by an average factor of 1.4 (Figure 8b). Si-
multaneously, the microhardness increases slight-
ly (by 7%); however, a decrease of 12% is ob-
served in the fusion line zone.

Figure 4. Metal microstructure of the fusion line (a) and HAZ (b) of the welded joint of specimen 
No. 1: (a) ×100; (b) ×400

Figure 5. Change in structural parameters: h – crystallite width, l – crystallite length, Ds – grain size (a) and 
crystallite shape coefficient æ (b) across the zones of welded joint (weld seam, FL – fusion line, HAZ – heat-

affected zone, BM – base metal) of specimen No. 1, aluminum alloy 1561.
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Metallographic studies of specimen No. 3 
(Figure 9, 10) established that the weld metal 
exhibited a predominantly equiaxed grain struc-
ture with a grain size (Ds) of 10–40 µm (Table 
5, Figure 9). Elongated grains with a size of Ds 
= 10–15 × 30–70 µm and a grain shape factor of 
æ = 3–4.7 are also observed. The weld metal is 
characterized by single inclusions up to 50 µm 

in size (Figure 9, b). The weld metal microhard-
ness is HV 66–78 (Table 5). 

Elongated crystallites form in the fusion line 
(FL) zone and the heat-affected zone (HAZ), with 
sizes of Ds = 10–15 × 30–40 µm (FL) and Ds = 
10–20 × 20–50 µm (HAZ), as shown in Figure 10. 
The grain shape factor is æ = 2.7–3 (FL) and æ = 
2–2.5 (HAZ). A small number of equiaxed grains 

Table 4. Structural parameters of the weld metal in specimen No. 2 of aluminum alloy 1561

Parameters
Zones

Weld seam FL HAZ BM

HV 70…77 67 79 75…84

Ds, µm 10…60 20…50 20…40 -

Ds (h × l), µm 10…15 × 30…100 20…30 × 40…60 10…20 × 20…100 7…10 × 20…100

æ (l / h) 3…6,7 2 2…5 3…10

Dp, µm 20…120 - - -

Figure 6. Microstructure of the weld metal in specimen No. 2: (a) ×100; (b) ×400

Figure 7. Microstructure of the fusion line metal (a) and HAZ (b) of the welded joint of specimen
No. 2: (a) ×100; (b) ×400



320

Advances in Science and Technology Research Journal 2025, 19(8), 313–331

are also observed, measuring Ds = 15–40 µm in 
the FL and Ds = 15–20 µm in the HAZ. The metal 
microhardness is HV 65 in the fusion line zone 
and HV 72 in the HAZ.

The equiaxed grain structure is refined dur-
ing the transition from the weld metal to the HAZ 
(on average by 1.4 times, Figure 11a) with a de-
crease in the crystallite shape coefficient (æ) by 

Figure 8. Changes in structural parameters: h – crystallite width, l – crystallite length, Ds – grain size (a) and 
crystallite shape coefficient æ (b) across the zones of the welded joint (weld seam, FL – fusion line, HAZ – heat-

affected zone, OM – base metal) of specimen No. 2, aluminum alloy 1561

Figure 9. Metal microstructure of the weld seam in specimen No. 3: (a) ×100; (b) ×400
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an average of 1.7 times (Figure 11b). While the 
microhardness changes insignificantly overall, a 
10% decrease is observed in the fusion line zone.

RESULTS OF MECHANICAL TESTS OF 
BUTT JOINTS OF ALLOY 1561

Flat specimens, shown in Figure 12, were 
extracted from the welded joints and base metal 
for mechanical testing. In the preparation of the 
welded joint specimens (Figure 12b), the lower 
surface of the specimen was made flat by remov-
ing the weld root reinforcement. In the prepara-
tion of the welded joint specimens (Figure 12c), 
both the lower and upper surfaces of the speci-
men were made flat by removing the lower and 
upper weld reinforcements. A series of standard 
static tensile tests were conducted using a uni-
versal servo-hydraulic testing machine (MTS 
318.25). The results of these tests are presented 
as diagrams in Figure 13. Each value on these di-
agrams is an average obtained from testing three 
specimens to failure

Mechanical testing yielded the following 
results. Specimen fracture occurred primar-
ily along the fusion line. The yield and tensile 
strengths of welded joint specimen No. 3 were 
equivalent to those of the base metal. Specimen 
No. 2 exhibited slightly lower strength (Figure 
13a). Specimen No. 1 demonstrated lower tensile 
strength than both specimen No. 2 and the base 
metal (300 MPa, Figure 13a), potentially attrib-
utable to overheating caused by the low welding 
speed (380 mm/min, Table 2), resulting in grain 
growth within the weld and HAZ. Specimen No. 
1 exhibited large-diameter pores, which reduced 
its mechanical properties. Pore size decreased 
with increasing speed (Tables 3–5), but pore 
quantity increased. 

The yield strength of the weld metal in all 
specimens was similar to that of the base met-
al. Specimen No. 1 exhibited the lowest ten-
sile strength in its weld metal. The weld metal 
of specimen No. 3, welded at the highest speed 
and lowest linear energy, exhibited the highest 
strength (Table 2). Specimens No. 2 and No. 3 
demonstrated the best relative elongation. The 

Table 5. Structural parameters of welded joints of specimen No. 3 of aluminum alloy 1561

Parameters
Zones

Weld seam FL HAZ OM

HV 66…78 65 72 74…80

Ds, µm 10…40 15…40 15…20 -

Ds (h × l), µm 10…15 × 30…70 10…15 × 30…40 10…20 ×20…50 7…10 × 20…100

æ (l / h) 3…4,7 2,7…3 2…2,5 3…10

Dp, µm 20…40 - - -

Figure 10. Microstructure of the welded joint of specimen No. 3: (a) fusion line metal at ×100 magnification;
(b) HAZ at ×400 magnification
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strength coefficient, defined as the ratio of σ0.2 and 
σВ to OM, respectively, was smallest for speci-
men No. 1. Specimen No. 3 exhibited the largest 
strength coefficient for the weld metal. Therefore, 
the conducted mechanical tests indicate that MIG 
welding achieves optimal mechanical joint prop-
erties by reducing heat input and employing high 
welding speeds.

DISCUSSION OF RESEARCH RESULTS 	
ON ALUMINUM ALLOY

The works [6-10, 15, 18, 21] show that in 
order to minimize welding deformations and 
residual stresses, as well as to improve the op-
erational characteristics of welded structures, 

it is advisable to strive to achieve the forma-
tion of fine-grained weld structures. Welding 
Analysis reveals that samples No. 2 and No. 3 
exhibit the finest grain structure (parameter Ds) 
within the weld metal and fusion zone. Nota-
bly, sample No. 3 displays the smallest crystal-
lite shape coefficient (æ), as depicted in Figures 
5, 8, and 11. Specimen No. 3, welded at the 
maximum speed and minimum linear energy of 
MIG welding, exhibited the largest number of 
pores, albeit with the smallest size (Dp) (Ta-
ble 5). Pore size decreased proportionally with 
increasing welding speed (Tables 3–5), while 
pore quantity demonstrated an inverse relation-
ship. The finest-grained weld metal structure 
appears in specimen No. 3. This is evident in 
Figure 14, which illustrates the structure and 

Figure 11. Change in structural parameters: h – crystallite width, l – crystallite length, Ds – grain size
(a) and crystallite shape coefficient æ (b) by zones of the welded joint (weld seam, FL – fusion line,

HAZ – heat-affected zone, OM – base metal) of specimen No. 3 of aluminum alloy 1561
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schematic representations of grains formed 
within the weld metal of the investigated 1561 
aluminum alloy specimens. Therefore, accord-
ing to the works [6–10, 15, 18, 21], mode No. 2 
(Table 2) is preferable.

According to the work [31], when study-
ing the microstructure of welds, it is necessary 
to take into account the changes in microhard-
ness and structure at the fusion line and in the 
HAZ. A comparative analysis of the structural 
parameters across different zones (weld seam, 
FL, HAZ, and OM) of the welded joints revealed 
the following (Figure 15). In specimen No. 2, 
compared to specimen No. 1, increasing the 
MIG welding speed (Table 2) from mode No. 1 
(specimen No. 1) to mode No. 2 (specimen No. 

2) resulted in the following changes in the size 
of the equiaxed grains (Ds):
	•  slightly increases (by a factor of 1.17 on aver-

age) in the weld metal (Figure 15a);
	• along the fusion line, Dₛ increases by a factor 

of 1.75 (Figure 15b).
	•  the grain structure in the HAZ metal is refined 

by a factor of 1.17 on average (Figure 15c).

The crystallite sizes in the weld metal, fusion 
lines, and HAZ are practically identical (Figure 
15), with a slight decrease in their shape fac-
tor. This is in good agreement with the data of 
the works [11, 21, 31, 36]. Additionally, the pore 
sizes in the weld metal decrease by a factor of 
2–3, from Dp = 60–230 µm (specimen No. 1) to 

Figure 12. Shape and dimensions of the specimens for static tensile testing: (a) base metal; (b) welded joint;
(c) weld metal
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Figure 13. Results of static tensile tests of 1561 alloy specimens: (a) yield strength (σ0.2)
and tensile strength (σВ) of welded joints; (b) yield strength (σ0.2) and tensile strength (σВ) of weld metal;

(c) elongation; (d) strength coefficient
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Dp = 20–120 µm (specimen No. 2), while their 
quantity increases.

A comparison of the microhardness (HV) 
between specimen No. 2 and specimen No. 1 re-
vealed an 11% increase in HV for the weld metal 
of specimen No. 2. The HAZ metal and the fu-
sion line exhibited approximately the same HV 
(Figure 16, a, b).

In sample No. 3, compared to sample No. 2, 
increasing the welding speed (Table 2) from mode 
No. 2 to mode No. 3 resulted in the following 
changes in the size of the equiaxed grains (Ds): 
	• The grain structure in the weld metal was re-

fined by an average of 1.4 times (Figure 15a).
	• The grain structure along the fusion line was re-

fined by an average of 1.75 times (Figure 15b).

Figure 14. Microstructure of the weld seams in samples No. 1 (a), No. 2 (b), and No. 3 (c) (×400)
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	• The grain structure in the HAZ metal is re-
fined by an average of 1.7 times (Figure 15, c).

Crystallite sizes in the weld and HAZ metals are 
significantly reduced (Figure 15) with a decrease in 

their shape factor. Specifically, the shape factor in 
the weld metal decreases from æ = 3–6.7 (specimen 
No. 2) to æ = 3–4.7 (specimen No. 3). in the HAZ 
metal, ranging from æ = 2–5 (specimen No. 2) to 
æ = 2–2.5 (specimen No. 3). Additionally, small 

Figure 15. Change in structural parameters: h – crystallite width, l – crystallite length, Dₛ – grain size in the 
zones of the welded joint: a) in the weld metal; b) along the fusion line (FL); c) in the heat-affected zone (HAZ) 

of specimens No. 1, No. 2, No. 3 of aluminum alloy 1561
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Figure 16. Change in microhardness (HV) across the cross-section of welded specimens: No. 1 (a), No. 2 (b), 
and No. 3 (c) of aluminum alloy 1561
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pores with a size of Dp = 20–40 µm are present in 
the weld metal of specimen No. 3, which correlates 
with the data of work [30]. 

A comparison of the microhardness (HV) 
between specimen No. 3 and specimen No. 2 
revealed that the HV values are approximately 
the same in the weld metal and along the fusion 
line. However, the HAZ metal of specimen No. 3 
exhibits a 9% decrease in HV (Figure 16b, 16c), 
which correlates with the data of work [21].

Therefore, increasing the welding speed 
while minimizing heat input refines the structure 
of the 1561 aluminum alloy joint welded in mode 
3 (specimen No. 3, Table 2). This refinement is 
characterized by a simultaneous decrease in pore 
size and an increase in pore quantity within the 
weld metal. According to work [21], such grind-
ing contributes to an increase in strength (Figure 
13). However, some fluctuations in the micro-
hardness (HV) of specimen No. 3’s weld (Figure 
16, c) may slightly reduce the overall mechani-
cal properties. Increasing the speed and minimiz-
ing the heat input is advisable for improving the 
joint’s mechanical properties (specimen No. 3, 
Table 2, Figure 13). According to work [30], the 
disadvantage of this approach is the risk of pore 
formation (Dp = 20–40 µm, Table 3). 

Recently, various specialized techniques have 
been proposed to improve the quality of welded 
joints of aluminum alloys obtained by MIG weld-
ing (e.g., welding in short-circuit mode [29, 40], 
specialized pulse modulation of the arc [39, 42], 
external magnetic fields [57], etc.). However, ac-
cording to the authors, the correct choice of the 
welding mode can significantly simplify the task 
of improving the quality of structures made of 
aluminum alloys welded in industrial conditions. 
This opinion is also confirmed by the authors of 
such works as [6, 15, 27, 43]. The correct choice 
of the welding mode allows obtaining better re-
sults without the need to use new equipment and 
additional technological techniques, which has a 
favorable effect on the economic factors of in-
dustrial production.

Therefore, when selecting the MIG welding 
mode for aluminum alloy, it is advisable to maxi-
mize speed and minimize heat input while ensur-
ing a satisfactory weld seam quality (specifically, 
in accordance with ISO 10042) and reliable gas 
shielding of the weld pool from atmospheric air. 
This approach can be recommended for the manu-
facture of welded structures from aluminum al-
loys used in vehicles, construction and industrial 

products, such as various household and industrial 
welded structures of sea and river vessels, aero-
space technology, food and chemical industry, etc. 

CONCLUSIONS

1.	Technological research on selecting MIG pro-
cess modes for welding butt joints of the Al-
Mg-Mn alloy system (grade 1561) on a steel 
backing plate showed that, for satisfactory 
seam formation with a quality level between C 
and B according to ISO 10042, it is advisable 
to choose a speed range of 380–600 mm/min 
with a linear energy range of 217–240 J/mm.

2.	Metallographic studies have shown that in-
creasing the MIG welding speed of 1561 al-
loy butt joints to 600 mm/min, while simul-
taneously decreasing the heat input to 217 J/
mm, contributes to weld grain refinement (Ds 
= 10–15 × 30–70 µm) and a decrease in the 
grain shape factor (æ = 3–4.7). However, this 
also increases the number of pores while de-
creasing their size (Dp = 20–40 µm). The mi-
crohardness (HV) of the weld metal increased 
from 640–680 MPa to 660–780 MPa when the 
welding speed was increased from 380 mm/
min to 600 mm/min.

3.	Mechanical tests conducted on butt joints of 
1561 alloy revealed that increasing the heat 
input to 233-240 J/mm led to a deterioration 
in the mechanical properties of the welds, in-
cluding a reduction in the weld metal strength 
coefficient to 70%. Increasing the MIG weld-
ing speed to 600 mm/min while simultaneous-
ly decreasing the heat input to 217 J/mm re-
sults in an observed increase in the weld metal 
strength coefficient to 86%. Therefore, when 
using MIG welding of aluminum alloys in in-
dustry, it is recommended to increase the speed 
to 600 mm/min and higher.
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