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INTRODUCTION

Actinidia arguta (Siebold et Zucc.) Planch. 
ex Miq. known as mini-kiwi, kiwiberry or hardy 
kiwi is a vine of the Actinidia genus that produc-
es grape-like fruits with edible green, brownish 
or purple skin [1]. Native to Northern China, Far 
Eastern Russia, Japan, and Korea, kiwiberry has 
become an alternative to brown-skin kiwifruit 
and has increased its popularity worldwide. In 
Poland, over 25 years of research have been fo-
cused on selecting varieties suitable for commer-
cial cultivation, with ‘Weiki,’ ‘Geneva,’ and the 
Polish-bred ‘Bingo’ [2] being the most important. 
Kiwiberry cultivation is concentrated mainly in 
the Grójecko-Warecki region and Greater Poland. 
Recognized in Poland as a superfruit, kiwiberry 

is valued for its health-promoting compounds, 
including high levels of vitamin C, B vitamins, 
vitamins A and E, carotenoids (beta-carotene, lu-
tein), polyphenols, and chlorophylls [3, 4]. It also 
contains minerals (potassium, magnesium, cal-
cium, and more), dietary fiber, and amino acids 
[1, 5]. These nutrients benefit the immune, me-
tabolism, and nervous systems, while phenols and 
carotenoids provide anti-allergic, anti-cancer, and 
anti-inflammatory effects [6, 7]. In Poland and 
the Central European region, A. arguta is highly 
seasonal and faces commercial challenges due to 
its climacteric nature and uneven ripening, which 
limit its shelf life [8,9]. In our region, fruits re-
quire optimal post-harvest handling to extend 
market availability and reduce waste. Since fruits 
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are collected at the harvest maturity stage when 
they are still hard, sour, and unsuitable for con-
sumption, technologies for proper storage and 
ripeness-based sorting are extremely needed but 
still underdeveloped. Kiwiberry ripeness, primar-
ily determined by the balance of sweetness and 
acidity, is measured by soluble solids content 
(SSC) that in fruits consists mainly of sucrose, 
glucose, and fructose [10, 11]. Growers common-
ly use handheld refractometers to determine the 
optimal harvest term, but this technique requires 
destroying a sample. Thus, it is not suitable for 
large-scale sorting. Hyperspectral imaging offers 
a non-invasive solution, combining imaging and 
spectroscopy to provide spatial and spectral data. 
Though less precise than traditional spectroscopy, 
it enables real-time quality control in sorting lines 
and production facilities. It is a practical tool for 
optimizing kiwiberry processing and extending 
its market supply. 

This study aimed to demonstrate the potential 
of hyperspectral imaging combined with three re-
gression techniques to predict the SSC of kiwiberry. 
The goal was to develop a non-invasive, automated 
method for real-time ripeness assessment during 
the post-harvest processing of kiwiberry, enabling 
precise control of a prototype sorting device.

MATERIALS AND METHODS

Collection of samples

A. arguta fruits (Weiki variety) were randomly 
collected from a commercial orchard in Bodzew, 
Poland (51°47’50’’N, 20°48’43’’E, USDA Zone 
6B) on 11 September 2021 at a ripeness stage 
corresponding to SSC of 6.5–7% (°Brix scale) 
[9, 12]. Stored at 1 °C and 90% relative humidi-
ty (RH), fruits were analyzed over two weeks to 
capture variations in ripeness, starting on the har-
vest day. A total of 1,770 samples were examined.

Hyperspectral imaging system

The hyperspectral imaging system (HIS) used 
the push-broom line scanning technique. It was 
composed of two hyperspectral cameras, FX10 
(CMOS detector) and FX17 (cooled InGaAs 
detector) from SPECIM Ltd. (Oulu, Finland), 
as well as a 250 W halogen lamp and an exter-
nal PC. The FX10 operated in the 400–1000 nm 
range (VNIR) with 448 bands, while the FX17 

covered 900–1700 nm (NIR) with 224 bands. 
FX10 and FX17 cameras featured standard lens-
es: 15 mm and 17.5 mm, respectively, with a 
38° field of view and an F-number of F/2.1. To 
minimize external light interference, HIS com-
ponents (excluding the PC) were enclosed in a 
vision chamber above a conveyor, moving ran-
domly placed fruits forward at 40 mm/s. The 
chamber was equipped with a forced air exhaust 
system (FAES) and four transducers (F&F, model 
MB-AHT-1) connected to a PLC (Siemens, S7-
1214C) to monitor and prevent temperature rise 
caused by the halogen lamp. The vision chamber 
was the key part of the prototype sorting device 
dedicated to kiwiberry. The FX10’s optical axis 
was perpendicular to the conveyor belt, while 
the FX17 was angled at ~12° to capture the same 
sample area. The halogen lamp was mounted at a 
45° angle. Cameras captured 12-bit images with a 
mean spectral resolution of 1.32 nm (VNIR) and 
3.57 nm (NIR). Additional parameters included 
lens-to-sample distances of 300 mm (FX10) and 
315 mm (FX17), a light-to-sample distance of 
250 mm, and an integration time of 2.5 ms.

Pre-processing of hyperspectral images

Both hyperspectral image acquisition and 
pre-processing were handled by a custom applica-
tion utilizing OpenCV and Silicon Software SDK 
libraries. Spectral ranges outside 490–921 nm 
(VNIR) and 970–1617 nm (NIR) were excluded 
due to high noise levels and low informativeness. 
The spectrum range below 490 nm probably re-
flected chlorophyll and beta-carotene absorption 
peaks (~430 nm for chlorophyll a, ~450 nm for 
chlorophyll b and beta-carotene). Overall, 317 
VNIR and 185 NIR wavebands were analyzed. 
Radiometric calibration, correcting for dark cur-
rent, spectral light variations, and sensor sensitiv-
ity, was performed using dark (0% reflectance) 
and white (99% reflectance) reference images ac-
cording to the formula [13]:
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where: IC and IO denote calibrated and original 
images, respectively, ID corresponds to 
the dark reference image obtained for a 
covered camera lens with the light source 
turned off, whereas IW corresponds to 
the image of white reference polytetra-
fluoroethylene tile captured before each 
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experimental cycle under the same light-
ing conditions as original images. Cali-
brated images were processed to collect 
spectral data by slicing each hypercube 
into 16-bit 2D images, representing re-
flectance in individual spectral bands. The 
mean spectral values were calculated for 
each sample in each band, resulting in a 
dataset of 1.770 cases and 502 reflectance 
variables. An automatic segmentation 
was applied to each hyperspectral image 
series to define a region of interest (ROI) 
corresponding only to the fruit area. The 
segmentation procedure was preceded by 
automatically selecting one image with 
the highest tonal range within the spec-
tral image series to maximize contrast 
between sample and background reflec-
tance. The IsoData algorithm was applied 
to this image, using the mean pixel inten-
sity as the initial threshold. The resulting 
binary mask was applied to all spectral 
bands representing the sample to extract 
the ROI corresponding only to the fruit 
area and eliminate the background from 
further analysis. Such a procedure was 
applied separately for VNIR and NIR 
images. For each waveband λ, the mean 
spectral value within the ROI was calcu-
lated according to the formula (2): 
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where: �̅�𝑅λ 

𝑦𝑦 

𝑊𝑊𝑎𝑎
2 

 is the mean reflectance within ROI 
in an image of an individual waveband λ, 
Rp corresponds to the nth pixel reflectance, 
and n is the number of pixels.

Spectral data processing

Even calibrated spectral data often exhib-
it variations from baseline drift, nonlinearity, or 
light scattering caused by the sample, necessitat-
ing corrections to remove irrelevant variability. 
In this study, we used spectral transformations, 
filter-based, and derivative-based methods to 
eliminate irrelevant information from spectral 
data and potentially improve the model’s ability 
for the prediction of kiwiberry ripeness. Calibrat-
ed spectra were transformed (separately within 
VNIR and NIR range) by multiplicative scatter 
correction (MSC), standard normal variate (SNV) 
algorithm, Savitzky-Golay (SG) filtering, as well 

as the first (FD) and the second (SD) derivative. 
The SG filter frame size was 15, corresponding 
to bandwidths of 18.56 nm (VNIR) and 48.52 nm 
(NIR). First and second derivatives were applied 
after SG smoothing using first- and second-order 
polynomials to correct baseline shifts and slope 
and enhance spectral resolution by distinguishing 
overlapping peaks. 

The MSC algorithm corrected offsets and 
scaled spectra to match a reference spectrum and 
reduce light scattering [14]. The SNV correction 
normalized spectra independently by calculating 
the difference from the mean and dividing by the 
standard deviation [15], making it unaffected by 
dataset size or variability. The Savitzky-Golay fil-
ter smoothed spectra by fitting low-order polyno-
mial curves using convolution [16]. Derivatives 
localized baseline shifts (FD) and correct shifts 
and slopes (SD) but required smoothing to miti-
gate noise amplification [17, 18]. 

Spectra transformations, filtering, and de-
rivatives were obtained using the ‘mdatools’ R 
package [19]. 

SSC for ripeness determination 

SSC was adopted as the reference ripeness 
index of kiwiberry. After capturing hyperspectral 
images, it was measured by squeezing fruit juice 
onto a refractometer (ATAGO, PAL-1, Tokyo, Ja-
pan) with ± 0.1% accuracy in the °Brix scale (0–
53%). SSC of fruits ranged from 4.4% to 16.6% 
(mean 8.91 ± 3.13%), covering a broad ripeness 
spectrum, including values beyond commercial 
recommendations.

Data analysis

SSC was the dependent variable for this exper-
iment, with 502 wavelength bands as predictors. 
The dataset (1,770 cases) was randomly split into 
training (1,509 cases) and test sets (261 cases) in a 
~6:1 ratio. We used a training set for model calibra-
tion (C) and evaluated a prediction performance (P) 
on the test set. Both sets had similar ranges, means, 
and standard deviations, presented in Table 1. 

Data splitting was done using the ‘sample’ 
function from the ‘R core package’ [20]. We ap-
plied three regression methods to predict kiwiberry 
ripeness: multivariate adaptive regression splines 
(MARS) with interaction degrees of 1 (M1) and 
2 (M2), partial least squares regression (PLSR) 
and principal component regression (PCR). These 
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methods have the enormous advantage of reducing 
data dimensionality by automatic variable selec-
tion (MARS) or projection (PLSR, PCR). Models 
were calibrated using random 10-fold cross-vali-
dation (CV) to prevent overfitting and developed 
for both uncorrected and corrected spectra to com-
pare the effects of different transformations on the 
accuracy of ripeness prediction. MARS models 
were calibrated and tested using the ‘earth’ R 
package [21], whereas the ‘pls’ R package [22] 
was used to calibrate and test the PLSR and PCR 
models. We specified the number of components 
to fit the PLSR and PCR models based on the 
standard error of cross-validation residuals, aka 
One SE rule [23]. Models were evaluated by the 
determination coefficient (R2), root mean square 
error (RMSE), and residual prediction deviation 
(RPD). The first two statistics were determined at 
the calibration (R2

C, RMSEC) and prediction (R2
P, 

RMSEP) stage, whereas RPD was calculated only 
for prediction data. In addition, adjusted R2 was 
calculated for both calibration and prediction da-
tasets (R2

adj,C, R2
adj,P) as a comprehensive measure 

of model complexity and capability of prediction. 
The formulae for calculating model evaluation 
measures were as follows:
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where: yi represents the i-th observed value of de-
pendent variable Y, fi represents the i-th 
value of dependent variable Y predicted 
by the model at calibration or prediction 
stage, 
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of Y prediction. The best model should 
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adj, low RMSEC 
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where: k is the number of terms in the PLS mod-
el, a = (1, 2, …, A) is the PLS model di-
mension, 

�̅�𝑅λ 

𝑦𝑦 

𝑊𝑊𝑎𝑎
2  stands for squared loading 

weight of the dimension a, SSYcomp,a is the 
sum of squares of dependent variable ex-
plained by the PLS model dimension a, 
whilst SSYcum corresponds to the total sum 
of squares explained by the PLS model. 
VIP describes how strong the relation-
ship between each variable included in the 
model and the model response is, while ac-
counting for all other predictors. Accord-
ing to [27], a variable should obtain a VIP 
index higher than 1 to be considered valid.

RESULTS AND DISCUSSION

Spectra pre-processing and its relevance  
for ripeness detection

Kiwiberry fruits exhibited a similar trend in 
spectral changes within the VNIR and NIR rang-
es. The overall shape of the raw kiwiberry spectra 

Table 1. SSC statistics in training and test datasets

Dataset Cardinality
SSC – summary statistics

Min [%] Max [%] Median [%] Mean [%] StDev [%]

Training 1509 4.400 16.600 7.600 8.960 3.143

Test 261 4.400 15.800 7.338 8.626 3.038

Note: Min, Max – minimum and maximum value, Median – second quartile, Mean – arithmetic mean,
StDev – standard deviation.

StDev
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mirrored that of kiwifruit reported by [28] and 
was characteristic for plants consisting of green 
pigments. Changes in tissue structure and chem-
ical composition during ripening affect reflec-
tance, as evidenced by the significant baseline 
variability observed among samples at different 
maturity stages (see Figure 1a, Figure 2a). 

Analyzing the raw VNIR spectral curves, the 
highest variability in reflectance occurred in the 
visible range of 530–630 nm, which, together 
with the characteristic valley between 630 and 

680 nm (with a global minimum at 680 nm), cor-
responds to sequential absorption bands of chlo-
rophyll a and b [28]. As fruit ripens, chlorophyll 
degradation and the emergence of pigments such 
as carotenoids and anthocyanins cause reflectance 
to increase across this range, particularly between 
530 and 630 nm. The distinct minimum near 660–
680 nm becomes shallower, reflecting a reduction 
in chlorophyll a absorption.

The raw spectra between 730–920 nm showed a 
similar baseline shift. However, this region was also 

Figure 1. Reflectance spectra of samples within the VNIR range (color scale related to SSC): a) uncorrected,
b) effect of MSC, c) effect of SNV, d) effect of SG filtering, e) first derivative, f) second derivative
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influenced by noise, which was not mitigated by the 
MSC or SNV algorithms since neither transforma-
tion is sensitive to local fluctuations in the adjacent 
spectral bands (see Figure 1b, Figure 1c). This noise 
is particularly concerning as it occurs within a spec-
tral range that is informatively linked to the absorp-
tion signatures of carbohydrates, water, and sugars 
in kiwiberry [29, 30]. The probable cause of these 
minor disturbances is the diffraction or micro-re-
flection effect caused by the irregular surface of the 
fruit, which results in signal local fluctuations. 

In spectra range 730–920 nm, light is not 
strongly absorbed by pigments but is intensively 
scattered in the fruit structure. As the fruit ripens, it 
softens because its cell walls become less rigid, pec-
tins depolymerize, and intercellular spaces enlarge. 
This leads to a decrease in the structural integrity of 
tissues and increased light scattering, which results 
in higher reflectance. This phenomenon is the basis 
for assessing fruit firmness in NIR systems. 

The NIR spectra showed similar shifts be-
tween samples, with three trough absorption peaks 

Figure 2. Reflectance spectra of samples within the NIR range (color scale related to SSC): a) uncorrected,
b) effect of MSC, c) effect of SNV, d) effect of SG filtering, e) first derivative, f) second derivative
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occurring at approximately 1000 nm, 1180 nm, 
and 1460 nm (Figure 2a). These absorption bands 
correspond to second overtones of C–H stretch-
ing and combination bands of O–H stretching and 
bending vibrations, which are typical for organic 
compounds present in fruits. They are directly re-
lated to the presence and accumulation of sugars 
(mainly glucose and fructose), water (affecting the 
firmness), and acidity of kiwifruit [31, 32]. 

Spectral pre-processing by transformations 
MSC and SNV had a notable impact on enhanc-
ing features relevant to ripeness detection. The 
MSC reduced baseline shifts and improved com-
parability between samples with uneven surface 
reflection by reducing additive and multiplica-
tive scattering effects. On the other hand, SNV 
minimized multiplicative effects related to sur-
face structure and improved spectral alignment 
by correcting for differences in path length and 
light scattering, which is especially important for 
improving model robustness in heterogeneous bi-
ological samples. Both corrections significantly 
reduced sample-to-sample variability, improving 
the comparability of spectra, especially in spec-
tral regions indicative of physicochemical chang-
es during fruit ripening (see Figure 1b-c, 2b-c). 

The smoothing effect was visible in spectra 
corrected by the SG filter, which improved signal 
quality and interpretability by effectively reduc-
ing high-frequency noise without distorting the 
spectral shape (Figure 1d, Figure 2d). 

This smoothing was especially beneficial for 
enhancing pigment-related features in the visible re-
gion and broad absorption bands in the NIR, which 
are associated with SSC and moisture. By improv-
ing the signal-to-noise ratio, SG filtering supported 
more robust detection of ripening indicators. 

Finally, the first and second derivatives high-
lighted distinctive extremes and changes in the 
spectra slopes (Figure 1e-f, Figure 2e-f). The FD 
transformation further improved the visibility of 
transitions in the spectral slopes. These transi-
tions often reflect changes in skin pigmentation, 

such as chlorophyll breakdown and anthocyanin 
synthesis or internal composition. In turn, the SD 
enhanced the resolution of overlapping absorp-
tion bands, particularly in the NIR range, ena-
bling more precise identification of weak yet in-
formative features associated with sugars, water, 
and organic acids.

Together, these spectral corrections and trans-
formations increased the interpretability of both 
external (pigmentation, gloss) and internal (SSC, 
water content, pectins) markers of ripeness. 

Minimizing artifacts and enhancing chemi-
cal features enabled more accurate monitoring of 
ripening progression based on hyperspectral data.

Modelling results for uncorrected data

The fit statistics for the models developed 
on raw data are summarized in Table 2, whereas 
scatter plots comparing measured and predicted 
SSC for both calibration and test data are pre-
sented in Figure 3. 

Models based on latent variables (PLSR and 
PCR) were the most suitable for SSC prediction, 
with R2

P of 0.95 and 0.9497, respectively. The 
prediction errors (RMSEP) were nearly identical 
in these models, with a value of approximately 
0.68. Although the PCR model had a more com-
plex structure than the PLSR model, it was not ac-
companied by higher predictive ability. This was 
evidenced by the R2

adj,P value, which was lower 
by 0.04 for the PCR model at the prediction stage 
compared to the PLSR model. In contrast, M2 
model produced prediction results comparable to 
the PCR model, with R2

adj,P = 0.9076 utilizing only 
half the variables. Nevertheless, the RMSEP of 
0.921 for the M2 model was significantly higher 
than that of the PLSR and PCR models. The M2 
model outperformed the PCR model in terms of 
RPD value, which was 0.06 higher than the PCR 
model. Although the M1 model was the simplest 
in structure, it yielded the poorest performance at 
both the calibration and prediction stages. 

Table 2. Prediction results of different models based on uncorrected spectra

Model No. of variables
Calibration Prediction

R2
C R2

adj,C RMSEC [%] R2
P R2

adj,P RMSEP [%] RPD

M1 21 0.8926 0.8911 1.0388 0.8836 0.8734 1.0787 2.83

M2 68 0.9571 0.9550 0.6676 0.9318 0.9076 0.9210 3.31

PLSR 35 0.9649 0.9640 0.5903 0.9500 0.9420 0.6778 4.18
PCR 123 0.9630 0.9597 0.6055 0.9497 0.9039 0.6796 3.25
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Its goodness-of-fit measures at the calibration 
(R2

adj,C = 0.8911) and prediction stages (R2
adj,P = 

0.8734) were the lowest among all models, and 
the errors in both stages exceeded the value of 1. 
This model also achieved the lowest RPD value 
of 2.83. Considering factors such as goodness-of-
fit, prediction ability, errors, and complexity, the 
model established using PLSR on raw data was 
superior, accounting for 6.97% of the extracted 
latent variables.

Prediction of ripeness by multivariate 
adaptive regression splines

Fit statistics for models obtained using MARS 
are presented in Table 3. Among the M1 models, 
the SNV+M1 was the simplest in structure but 
demonstrated the least favourable values of R2

adj,C 
and R2

adj,P, at 0.8293 and 0.8122, respectively. It 
also exhibited the highest RMSEC and RMSEP 
values, both exceeding one and achieved the low-
est RPD value of 2.32, indicating that the predic-
tion precision of this model was relatively coarse. 

In contrast, the SNV+M2 model was the most 
complex and achieved the best calibration statis-
tics with R2

adj,C of 0.9627 and RMSEC of 0.6080. 
Nonetheless, it performed markedly worse during 
the prediction stage, ranking third with an R2

adj,P 
of 0.8816 and RMSEP of 1.0421. Its RPD value 
was 0.61 higher than that of SNV+M1. Similar 
results were observed in the SG+M1 and FD+M1 
combinations, which recorded R2

adj,C values of 
0.9446 and 0.9440, while R2

adj,P accounted for 
0.8776 and 0.8887, respectively. The fitting er-
rors of these models were also comparable; un-
fortunately, during the prediction stage, both 
models had RMSEP values exceeding one. De-
spite incorporating additional variables, neither 
SG+M2 nor FD+M2 significantly outperformed 
their M1 counterparts. The M1 and M2 models 
established for MSC-corrected data exhibited 
similar complexity and fit statistics during cali-
bration. Moreover, the MSC+M1 model achieved 
the lowest RMSEC of 0.6796 and the highest 
R2

adj,C of 0.9534. This model ranked second in 
the prediction stage, following M1+SD, with an 

Figure 3. Prediction plots for SSC obtained using different regression methods on uncorrected calibration and 
test data: a) result for additive model – M1, b) result for the model with degree of interaction 2 – M2,

c) result for the PLS model, d) result for the PCR model
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R2
adj,P of 0.9071, RMSEP of 0.9233, and RPD of 

3.30. In contrast, the MSC+M2 model achieved 
an R2

adj,P of 0.8650, RMSEP of 1.1131, and RPD 
of 2.74, ranking it lowest regarding predictive 
ability among all M2 models. The final two com-
binations, SD+M1 and SD+M2, demonstrated the 
best predictive outcomes, with the highest R2

adj,P 
of 0.9112 and 0.9159, and the lowest RMSEPs of 
0.9031 and 0.8789. At the calibration stage, both 
models performed well and secured second place, 
trailing only the models built on MSC-corrected 
data. The two models also had minimal differ-
ences in complexity and predictive performance. 
Therefore, when considering adjusted coefficients 
of determination, error metrics, and the differenc-
es between calibration and prediction stages, the 
SD+M2 model emerged as the most favourable, 
with an RPD of 3.47, which indicates strong pre-
dictive capability. The prediction results for the 
SD+M1 and SD+M2 models during the calibra-
tion and prediction stages are illustrated in Figure 
4 for comparison.

Prediction of ripeness by partial   
least squares regression 

The modelling results obtained using PLSR 
on data subjected to various spectral corrections 
are summarized in Table 4. 

All PLSR models generally produced similar 
prediction outcomes despite variations in the num-
ber of variables used (Table 4). Moreover, these 
models demonstrated superior fit statistics com-
pared to those obtained using the MARS method.

Errors obtained on the calibration set did not 
exceed 0.63. The highest prediction error was 
achieved by the model created on SNV-corrected 

data and amounted to 0.7336. In contrast, the 
model created on data corrected by the MSC al-
gorithm had a slightly lower value of RMSEP 
value of 0.7110. Notably, both models utilized 
the same number of latent variables. Additional-
ly, applying the Savitzky-Golay filter resulted in 
a modest improvement in model goodness-of-fit, 
achieving an R2

adj,P of 0.9386 while also reduc-
ing the RMSEP to 0.6737, albeit at the cost of an 
increased number of variables compared to the 
two earlier models. The model developed using 
the first derivative spectra emerged as the most 
complex, comprising 61 variables. At the predic-
tion stage, it achieved a commendable R2

P value 
of 0.9485. However, its R2

adj,P = 0.9323 remained 
nearly on par with the SNV-PLSR model, which 
had twice as many variables while exhibiting 
only a marginally lower RMSEP at 0.6883. The 
second derivative spectra generated the most ef-
fective model, showcasing the best fit during cal-
ibration and prediction with R2

adj,C = 0.9634 and 
R2

adj,P = 0.9411. This model ranked among the top 
three PLSR models for prediction accuracy, se-
curing second place with an RMSEP of 0.6832. It 
consisted of the smallest number of components 
(just 35), accounting for only 6.97% of the ex-
tracted latent variables. Figure 5 illustrates the 
SSC prediction results for this model across both 
calibration and test datasets.

Prediction of ripeness by Principal 
Component Regression

Results for PCR models obtained for differ-
ent methods of data processing are shown in Ta-
ble 5. PCR models showed the highest complex-
ity among the three methods, with the simplest 

Table 3. Prediction results of MARS models based on different spectra corrections

Model No. of variables
Calibration Prediction

R2
C R2

adj,C RMSEC [%] R2
P R2

adj,P RMSEP [%] RPD

MSC+M1 65 0.9554 0.9534 0.6796 0.9304 0.9071 0.9233 3.30

SNV+M1 19 0.8315 0.8293 1.3008 0.8259 0.8122 1.3136 2.32

SG+M1 62 0.9469 0.9446 0.7408 0.9068 0.8776 1.0599 2.88

FD+M1 59 0.9462 0.9440 0.7450 0.9139 0.8887 1.0110 3.02

SD+M1 52 0.9520 0.9503 0.7019 0.9289 0.9112 0.9031 3.38
MSC+M2 66 0.9551 0.9530 0.6822 0.8993 0.8650 1.1131 2.74

SNV+M2 99 0.9651 0.9627 0.6080 0.9267 0.8816 1.0421 2.93

SG+M2 69 0.9491 0.9467 0.7270 0.9130 0.8816 1.0427 2.93

FD+M2 60 0.9494 0.9473 0.7229 0.9147 0.8891 1.0091 3.02

SD+M2 55 0.9564 0.9547 0.6699 0.9337 0.9159 0.8789 3.47



59

Advances in Science and Technology Research Journal 2025, 19(9) 50–64

requiring 114 latent variables. In contrast, the 
optimal PLSR model achieved better predictions 
with over three times fewer variables. Despite its 
complexity (132 components) and a decent R2

P 
value of 0.9469, the MSC-PCR model showed 
the weakest fit, with R2

adj,P and RMSEP values of 
0.8337 and 0.6985, respectively. 

Models based on SNV and SD process-
ing performed better, achieving R2

adj,P values 
of 0.8843 and 0.8867, respectively. The former 
model adopted 132 components, achieving RM-
SEC = 0.6275 and RMSEP = 0.7209, while the 
latter improved RMSEC to 0.6023 and RMSEP 
to 0.6846, albeit with 10 additional components. 
Models developed on SG and FD processed data 
delivered comparable calibration results, with 
SG-PCR model using 127 components, R2

adj,C 
of 0.9594 and RMSEC of 0.6070, and FD-PCR 
model requiring just 114 components to gain 
R2

adj,C of 0.96 and RMSEC of 0.6049. At the pre-
diction stage, SG-PCR and FD-PCR achieved 
RMSEP values of 0.6709 and 0.6916, with 
nearly identical R2

adj,P of 0.9035 and 0.9067, 

respectively. Balancing fit and complexity, the 
FD-PCR model emerged as the most effective, 
with an R2

adj,P of 0.9067. Figure 6 highlights its 
SSC prediction performance on calibration and 
prediction datasets.

The best prediction models and  
importance of variables

The results of SSC prediction achieved with 
various data correction and modelling methods 
highlighted the superiority of smoothing and 
derivation techniques, especially SD process-
ing. Among the best models built on corrected 
data, the SD-PLSR model demonstrated the best 
performance, balancing prediction accuracy, 
complexity, and error rate. Notably, the PLSR 
model built on raw spectral data achieved com-
parable prediction ability, a slightly higher RPD, 
and a lower RMSEP, using the same number of 
variables as the SD-PLSR model. Both models 
performed well but differed in their reliance on 
spectral features. Analysis of variable impor-
tance in projection (VIP) values revealed that 

Figure 4. Prediction plots for SSC obtained with MARS on calibration and test data subjected to SD processing: 
a) results for additive model – M1, b) results for the model with degree of interaction 2 – M2

Table 4. Prediction results of PLSR models based on different spectra corrections

Correction No. of variables
Calibration Prediction

R2
C R2

adj,C RMSEC [%] R2
P R2

adj,P RMSEP [%] RPD

MSC 32 0.9615 0.9607 0.6176 0.9450 0.9370 0.7110 4.01

SNV 32 0.9609 0.9601 0.6222 0.9414 0.9329 0.7336 3.89

SG 50 0.9635 0.9623 0.6013 0.9506 0.9386 0.6737 4.06

FD 61 0.9614 0.9597 0.6188 0.9485 0.9323 0.6883 3.87

SD 35 0.9643 0.9634 0.5949 0.9492 0.9411 0.6832 4.15
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data corrections altered the predictive power of 
specific wavebands, a phenomenon also noted 
by [33, 34]. Considering the number of original 
features to be the same as the number of model 
components, we identified 35 original features 
that affected the model’s performance the most. 
Those and all considered valid features are pre-
sented in Figure 7.

The raw-data model relied heavily on the 
NIR range 1396–1517 nm, which is beyond the 
729–975 nm region, considered the prime spec-
tra linked to sugar, carbohydrate, and water ab-
sorption. VNIR wavebands in 670–686 nm and 
704–823 nm ranges had VIP values above one 
but did not rank among the top 35 features. In 
contrast, the SD-PLSR model utilized a broad-
er spectrum, including visible and early NIR 

ranges (626–886 nm and 1102–1446 nm). Only 
four wavebands overlapped between the two 
models: 1421.39 nm, 1439.07 nm, 1442.6 nm, 
and 1446.14 nm, which suggests that spectral 
corrections influence the between-sample varia-
tion, though they may not be essential under 
consistent acquisition conditions with sufficient 
calibration samples.

Comparisons with previous studies under-
score the robustness of the presented models. 
Sarkar [30] reported weaker performance with 
PLSR species-dependent models developed for 
SSC prediction (range 5–27.2%) in South Kore-
an kiwifruits, achieving an R2

P of 0.775, RMSEP 
of 1.8775 and RPD of 2.14. Similarly, Moghi-
mi [35] obtained SSC prediction models with a 
maximum correlation of 0.93 using combined 

Figure 5. Prediction plot for SSC obtained for PLS regression on calibration and
test data subjected to SD processing

Table 5. Prediction results of PCR based on different spectra corrections

Correction No. of variables
Calibration Prediction

R2
C R2

adj,C RMSEC [%] R2
P R2

adj,P RMSEP [%] RPD

MSC 176 0.9632 0.9583 0.6040 0.9469 0.8337 0.6985 2.48

SNV 132 0.9603 0.9564 0.6275 0.9435 0.8843 0.7209 2.96

SG 127 0.9628 0.9594 0.6070 0.9510 0.9035 0.6709 3.25

FD 114 0.9631 0.9600 0.6049 0.9480 0.9067 0.6916 3.30
SD 142 0.9634 0.9596 0.6023 0.9490 0.8867 0.6846 3.00
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Figure 6. Prediction plots for SSC obtained for PCA regression on calibration and
test data subjected to FD processing

Figure 7. The 35 wavebands most contributing to response predicted by PLSR models developed on:
a) uncorrected VNIR spectra, b) uncorrected NIR spectra, c) second derivative VNIR spectra,

d) second derivative NIR spectra. Black horizontal lines correspond to cut-off points of considering a feature as 
valid (solid line) or as one of the 35 most important features (dashed line)
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correction methods (the best result obtained for 
the combination of SNV, median filter and first 
derivative). These models were restricted to ki-
wifruits with a narrow SSC range above 11%. 
Mumford [25] considered a wider range of SSC 
(from 4.7 to 27.3%) and achieved strong pre-
dictions for kiwiberries (‘Geneva 3’ variety), 
reporting an R2 of 0.96 as well as an RPD of 
5.08 with a PCR model using only five principal 
components. However, their results relied solely 
on cross-validation and a limited spectral range 
(729–975 nm). Lee [36] developed a model for 
‘Deliciosa’ kiwifruit with an SSC range of 5.30–
17.60%, achieving a validation correlation of 
0.98 using a broader NIR spectrum (408–2492 
nm with spectral sampling of 8 nm). In contrast, 
Lee [24] applied an orthogonal signal correction 
to spectra (730–2300 nm with a spectral sam-
pling of 1 nm) for the prediction of SSC in the 
range of 10.1–25.1% in hardy kiwi, obtaining an 
R2 of 0.86, RMSEP of 1.33 and RPD of 2.61. 
Zhu [37] improved upon this with a PLSR model 
using successive projections algorithm to predict 
the SSC of kiwifruit in the range 13.56–18.69%, 
reporting an R2

P of 0.9523, RMSEP of 0.4042, 
and RPD of 3.26, but their dataset was notably 
small (133 samples). Xu [28] compared hyper-
spectral and fluorescence spectral imaging to 
predict kiwifruit SSC (6.5–15.36%). Their best 
PLSR model, developed with boxing smoothing, 
achieved an R2 of 0.76, RMSEP of 0.6876 and 
RPD of 2.21. Feature selection techniques such 
as CARS, MASS, and IVISSA combined with 
the Boss strategy improved the results, yield-
ing an R2 of 0.87, RMSEP of 0.5661 and RPD 
of 2.89. Results obtained for other models were 
similar (ELM model) or slightly worse (PSO-
LSSVM combination). Similarly, Kim [29] 
predicted baby kiwifruit maturity using PLSR 
on NIR spectra (729–975 nm), obtaining an R2 
of 0.73 and RMSEP of 1.24, but based only on 
cross-validation procedure. Finally, Benelli [32] 
combined SNV, first derivative, and mean cen-
tering with genetic algorithms to develop mod-
els for SSC prediction of kiwifruit. Their best 
model achieved an R2 of 0.94 and RMSEP of 
0.73, underscoring the importance of optimal 
preprocessing and variable selection techniques. 

Our SD-PLSR and raw-data PLSR models 
surpass many of these benchmarks, providing 
promising tools for predicting kiwiberry ripe-
ness under practical conditions.

CONCLUSIONS

This study used hyperspectral imaging as 
the leading technology to predict the SSC of ki-
wiberry of the ‘Weiki’ variety in a non-invasive 
manner. A total of 1,770 research samples were 
collected for this experiment. Five different spec-
tra transformation techniques (SNV, MSC, SG, 
FD, and SD) in combination with three regres-
sion approaches (MARS, PLSR, and PCR) were 
investigated to find the best model for SSC pre-
diction. The findings of this study indicate that 
hyperspectral imaging, combined with effective 
acquisition technology, demonstrates signifi-
cant potential for predicting kiwiberry ripeness 
based on SSC. The most accurate prediction 
model was developed using the PLS regression 
technique and was based on uncorrected data. A 
second model, nearly identical in its predictive 
capability, was derived from data subjected to 
Savitzky-Golay smoothing and second deriva-
tive analysis. Both models demonstrate excel-
lent predictive capabilities, evidenced by their 
RPD values of 4.18 and 4.15, respectively, with 
goodness-of-fit exceeding 0.94. This is encour-
aging, as it paves the way for developing devices 
to sort kiwiberry fruits based on their ripeness. 
Such advancements are crucial for enhancing 
the previously developed technology for the 
commercial cultivation of A. arguta, thereby in-
creasing production profitability and facilitating 
the further development of this plant in Poland. 
However, the authors recognize that the mod-
els calibrated for one specific A. arguta variety 
may yield less accurate predictions for fruits 
of other varieties. Consequently, ongoing stud-
ies are being conducted with various kiwiberry 
varieties prevalent in Poland. Given the genetic, 
phenotypic, and inter-sample variances among 
kiwiberry varieties, it may not be realistic to 
expect the creation of a universal SSC predic-
tion model for this species without encountering 
Simpson’s paradox (Simpson, 1951). Therefore, 
calibrating models according to each variety and 
utilizing multi-seasonal observations appears 
more pragmatic.
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