
479

INTRODUCTION

Nowadays, the manufacturing enterprises 
to be competitive in the market should be more 
adaptable to meet the customer individualized and 
rapidly changing needs. This means that produc-
tion should be carried out according to mass cus-
tomization (MC) strategy, one of the challenges 
within the Industry 5.0 (I5.0) concept. Currently, 
the activities provided within industry according 
to concept I5.0 are moved to highlight the impor-
tance of social aspect in usage Industry 4.0 tech-
nologies. The large volume of data acquired by 
sensors and using internet of things (IoT) during 
the machining process results in the need to apply 

artificial intelligence (AI) to enhance user interac-
tion and safety [1, 2]. AI-driven IoT is transform-
ing manufacturing enterprises into smart factories 
[3]. IoT sensors located on machines and devices 
are used to collect data and next AI-based algo-
rithms are applied to develop the predictive mod-
els to monitor as well as improve the resource, 
quality and cost efficiency [4]. AI-based solutions 
applied to the systems supporting machining pro-
cess managing and providing facilitate e.g. real-
time monitoring, improve quality, transparency 
and flexibility of the process [5, 6].

According to the definition of the concept 
I5.0 provided by the European Commission, 
manufacturing processes should shift from smart 
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manufacturing to human-centric technology de-
velopment and adoption [7, 8]. Currently, solu-
tions are being sought enabling collaboration be-
tween humans and smart machines to improve the 
capability of humans [9]. Examples of a channel 
of communication between the human and ma-
chine include sensors as well as computer vision 
to natural language processing (NLP) and GUI 
commands [10]. Therefore, combining the sen-
sors usage and control with big data analysis and 
AI-based tools for improving the production ef-
ficiency is a need for manufacturing companies 
in the context of implementing the assumptions 
of I5.0 [11]. The literature analysis of applying 
AI to manufacturing process in the context of 
I5.0 indicates that effective exploration of the 
variable space in manufacturing systems guar-
antees the improvement of production planning 
and scheduling [12]. Next, precise modeling of 
process dynamics and optimization of production 
parameters through the use of the AI-based mod-
els to improve the quality of manufactured parts 
[13]. It solves also many challenges in sustainable 
production, such as optimizing energy resources, 
logistics, supply chain management and waste 
management [14, 15]. This trend provides a vi-
sion for the future of work in modeling AI-based 
solutions applied to the machining process in the 
light of I5.0. Early detection of faults and pre-
diction of future machine operation ensure their 
reliability and effective maintenance [15]. More-
over, automation of repetitive, time-consuming 
tasks by robots, as well as a study of harmonious 
cooperation between humans and machines can 
enhance the production quality [16]. To summa-
rize, the analysis of the scientific literature high-
lights, that the great challenges associated with 
AI adoption in manufacturing are issues related 
to data acquisition and management, human re-
sources, infrastructure, security risks, trust, and 
implementation difficulties [15]. Moreover, the 
scientific literature research analysis provided in 
[17] confirms that it is crucial to provide father 
research on AI utilization within the domain of 
molding processes.

This paper offers a novel AI-driven IoT moni-
toring system (AIMS) for controlling and pre-
dicting quality of manufactured parts based on 
the example of the mold manufacturing process. 
It explains how to integrate IoT-based sensors, 
data from ERP systems and AI-based algorithms 
to achieve a higher level of the quality of manu-
factured parts. It employs real life case study and 

expert knowledge to develop AIMS for enhanc-
ing the sustainable production level and predict-
ing forthcoming disruptions and proactive man-
agement. IoT-based sensors enable data acquisi-
tion, but the processing and understanding the 
collected data requires building new AI-based 
models [18] and applying to the production pro-
cess. To the best of the author’s knowledge, there 
is a limited research of real case studies explor-
ing IoT-based sensors adoption within the mold 
manufacturing process, next big data analysis and 
applying AI as the majority of studies in this area 
tend to be theoretical.

Secondly, based on the empirical research re-
sults, this study proposes a recommendation for 
overarching Industry 5.0 priorities: creating a 
sustainable, human-centric, and resilient industry 
owing to the integration to the production pro-
cess AIMS [19] This study pioneers by providing 
practical insights into how applying Industry 4.0 
technologies into manufacturing process achieve 
the I5.0 priorities. The developed insights guide 
managers in decision-making processes regard-
ing forthcoming disruptions.

Thus, there is still a research gap in the context 
of developing a generic tool for controlling and 
predicting quality of manufactured parts for the 
mold industry. The main objective of this study 
was to analyze the data concerning the quality 
level of manufactured highly technically demand-
ing products used for the air conditioning of the 
high-end cars, with a focus on the method and 
tools for achieving the I5.0 priorities. The follow-
ing research questions (RQ) are formulated thus:
 • RQ1: What are key parameters and how is 

the concept of data acquisition for improving 
the quality level of manufactured parts for the 
mold industry?

 • RQ2: How can the quality level of manufac-
turing of the die-casting mold be monitored 
and predicted?

 • RQ3: What challenges can be defined in the 
context of moving from smart manufactur-
ing and toward human-centric technology 
development?

The main contributions of this study in the con-
text of introducing changes in the mold industry to-
wards moving from smart manufacturing to raising 
an enterprise the I5.0 priorities are as follows: 
 • This study presents the AI-driven data analyt-

ics approach based on the 9919 real data of 
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mold manufacturing process to predict and 
monitor quality of manufactured product.

 • It applies first an artificial neural network 
(ANN) and next the set of unique feature val-
ues to determine the quality parameters of 
mold manufacturing process for enhancing 
quality of manufactured parts. 

 • It determines the tools supporting proactive 
quality management based on the case study 
from the mold industry.

 • It highlights the main challenges for smart 
manufacturing enterprises to move toward 
human-centric technology development.

MATERIALS AND METHODS

Methodology

This paper introduces AIMS for manufactur-
ing process and especially highlights the role of 
process data analytics in enhancing quality con-
trol in manufacturing based on a real-life case 
study. The proposed methodology combines a 
real-life case study, namely actual analysis of 
the physical process flow and I4.0 technologies, 
namely: IoT and neural networks for understand-
ing I5.0 priorities. 

In the first stage of the methodology (Fig-
ure 1), the research unit in the real-life manufac-
turing was constructed. According to the vision 
for next-generation I4.0 manufacturing machines, 

they should be equipped with external actuation 
and sensors [20] to develop the models for effi-
cient monitoring of quality parameters in the in-
dustrial environment [21]. The tools were located 
on the Buhler Diecasting Machine (Figure 2) and 
were designed to acquire process data during the 
manufacturing process. As presented in Figure 2, 
840T closing force Buhler Diecasting fully auto-
mated machine Cell, green arrow presents sen-
sor for resetting the plunger position, red arrow: 
sensor for calculating the plunger position, blue 
arrows: pressure sensor positions. The switching 
points of speed and pressure and the three casting 
phases are read from the piston position sensor. 

Next, the IoT sensors for measuring, real time 
actual pressure on the alloy, pressure on the hy-
draulic cylinder, actual switching points of the 
speed and pressure of the plunger of the three 
phases of casting, are installed on the die-casting 
machines. Piston position sensors to read the 
switching points are as explained below (Figure 
3a, Figure 3b). In Figure 3a, the green arrow pres-
ents a sensor for resetting the plunger position, 
the red arrow represents the sensor for calculating 
the plunger position. There is a scale (ruler) on 
the piston, based on which the piston position is 
calculated using the above sensors. The switching 
points of speed and pressure and the three cast-
ing phases are read from the piston position sen-
sor. In Figure 3b, pressure sensors are mounted 
on the compressed gas tanks. On the basis of the 

Figure 1. An approach to understanding the I5.0 priorities based on the example
of the mold manufacturing process
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readings of these sensors, the machine calculates 
the actual pressure in the casting chamber.

On the CNC machines (Figure 3), the select-
ed IoT sensors collect the power consumption 
on real time basis. In addition to this, the tem-
perature field of the molds is collected manually 
using thermal cameras periodically during the 
diecasting process (the same can be extended to 
be done by IoT-enabled thermal camera to take 
images after each shot of the mold). Additionally, 
data are acquired from an Enterprises Resource 
Planning (ERP) system SAP HANA such as the 
weight of the part both gross and net, alloy type, 
and standard cycle times assumed at the begin-
ning of the project by the technologists, manu-
ally. The information, such as production batch 

sizes, traceability data for raw materials, man-
power and time (shift) of production etc. is en-
tered in the ERP system manually, and shifted by 
shit by the planners and production employees. 
However, the number of total parts produced and 
the number of NG (not good) parts produced are 
collected in real time directly from the machine 
and such data is also integrated to be available in 
the ERP system.

In the second stage of our methodology, the 
data set is defined and analyzed based on the 
real case study. This case study uses realizing 
the mold manufacturing process of the com-
pressor which is a highly technically demanding 
product and is used for the air conditioning of 
the high-end cars.

Figure 2. Buhler Die-casting Machine – real photos within the factory

Figure 3. Plunger position measuring sensors: a) pressure measuring sensors,
b) located on the Diecasting machine
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Next (Stage 2, Figure 2) neural networks (NN) 
are applied to monitor the quality of the analyzed 
product by using processing parameters (Table 1) 
as input parameters. It is assumed that the analy-
sis of the life of the die-casting mold is based on 
defined parameters that influence the formation of 
defects during the die-casting process. This study 
used the multilayer perceptron (MLP) due its 
ability to solve any classification tasks, regardless 
of the distribution, features and complexity of the 
data [22]. Optimal combinations of data based on 
the neural network were identified, and the ef-
fectiveness of the model was validated using its 
ability to generalize to new, unseen data that was 
not used during training. The input data was di-
vided into three sets: training, validation, and test. 
The model was trained on the training set, and its 
performance was monitored on the validation set, 
which is not used during training itself. Validation 
consisted of comparing the validation data with 
the network predictions to calculate performance 
measures, such as accuracy, precision, and mean 
square error (MSE). On the basis of these results, 
the network is tuned to improve its performance 
(predictions). The final evaluation of the model is 
performed on the test set, which was also not used 
during training or validation.

Experiment design and data acquisition tools

The research was conducted on a real-life 
industrial case study of mold manufacturing pro-
cess. Real-time data is collected for two orders 
from a similar family of compressor parts namely 
Valeo_Renault CH. Answering the first research 
question, the analysis of the quality of manufac-
tured parts, based on the expert knowledge of the 
employees involved in dealing with the process is 
divided into four groups: 

1) Design of the mold: type of steel – main form-
ing elements, hardness – main forming ele-
ments (HRC), coating of forming elements 
(type] No/PVD/Nitr, stress relieving after mold 
test (y/n), stress relieving continuation (no of 
cycles), no of cavities (PCS), cooling system 
(oil, water – O/W), gate inlet area (mm2), over-
flows inlets area (mm2], venting channel area 
(mm2), vacuum system included (y/n). 

2) Design of the part/casting: average part wall 
thickness [mm], projected of the casting area 
onto the parting surface [mm2], share of part 
weight in the entire injection (%), maximum 
speed of alloy during cav, filling (m/s), fill-
ing time (ms), leak test pressure requirements 
(Pa) if no N, plunger diameter [mm], whole 
cast weight (g], part complexity (according as-
sumption from 1–5). 

3) Parameter alloy preparation: alloy type [name], 
alloy temperature (melting C, deg), type of 
melting furnace (shaft, crucible – S/H), density 
index of alloy (number), number of shots per 
batch (PCS), scrap ratio in the alloy composi-
tion (%).

4) Process parameters: alloy temperature (cast-
ing C, deg), first phase speed (m/s), second 
phase speed (m/s), third phase pressure in the 
alloy (bar), tablet height (mm), closing force 
(kN), cycle time (s), shot sleeve filling factor 
(%), automatic process (y/n), casting machine 
number (No), solidification time (s), vacuum 
level (mbar), type of spraying (micro/emul-
sion – M/E) [23]. 

On the basis of the real-life case study, Table 1 
illustrates the parameters of alloy preparation and 
Table 2 analyses process parameters.

Any leakage due to porosity in the part may 
result in leakage of the gases leading to potential 

Table 1. The parameters alloy preparation in the real-life die casting process
Parameters of alloy preparation

Parameter Measure Value

Alloy type
Numerical alloy designation ADC12

Chemical designation of the alloy (AlSi9Cu3(Fe))

Alloy temperature (melting C deg)
Actual material temperature 815 °C

Set material temperature 800 °C

Type of melting furnace Shaft furnace STRIKOMELTER MH II – T 2000 / 1500 G-eg

Density index of alloy Percentage 89%

Number of shots per batch (PCS) Per shift 500

Scrap ratio in the alloy composition Percentage max 40%
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fire hazards in the cars. Therefore, the tolerances 
are very tight for these parts after machining. One 
of the critical tolerances is +/- 3 µm on a diameter 
of about 100 mm for example. Therefore, the parts 
produced after diecasting are expected to have to 
be within the required tight physical dimensions 
and porosity levels. Every part undergoes a 100% 
leak test after machining. If the parts are not cast 
and machined within the required limits of toler-
ances the parts are scrapped. The quality of the 
parts coming out of the die casting machine is 
highly dependent on the quality of the mold itself 
and the defined quality parameters during the die 
casting manufacturing process. This is a two cav-
ity mold produced on 840T Buhler machine and 
subsequently machined on an Okuma and Fanuc 
four-axis CNC machines.

Next, as presented, the data is acquired ow-
ing to the installed IoT-based sensors (Figure 3, 
Table 1, Table 2) and from the ERP system SAP 
HANA (Table 1, Table 2). The values   of the thir-
ty-nine specified parameters that affect the qual-
ity level of the manufactured end products con-
cerned the execution of a precisely defined order 

executed in three shifts over the course of one 
month in 2024 with a deviation of one minute.

Dataset description and data pre-processing

As a sample to test the hypothesis, real time 
data is collected on the Valeo_Renault CH com-
pressor parts for over 3000 parts over the above-
mentioned parameters with 3 days of production. 
In total, 9919 items of data relating to the die cast-
ings process for the selected product was received. 
The data were imported directly into MATLAB. A 
matrix with dimensions of 9919×40 was created, 
representing the entire dataset from the spread-
sheet. The information about the data categories 
was located in the last column, so the data was di-
vided into an input set (a 9919 × 39 matrix) and an 
output set (a 9919 × 1 matrix containing the classi-
fication information). The data was divided into a 
part to be analyzed and a set containing categories 
for the analyzed data. Table 3 shows sample input 
data as the values of data for analysis the quality 
of the parts during the mold manufacturing pro-
cess, where output data is quality attribute: 1 to 
BAD, 2 – LOK, 3 – LOT, 4 – OK, 5 – OUT. 

Table 2. The parameters of the real-life die casting process
Parameters of alloy preparation

Parameter Measure Value

Alloy temperature  (casting C, deg) Actual material temperature 694 °C

First phase speed [m/s] Temperature range;
from the sensors as explained before (m/s) 680 ÷ 700 °C; 0.30

Parameters Measure Value

Alloy temperature  (casting C, deg) Actual material temperature 694 °C

Second phase speed [m/s] From the sensors as explained before (m/s) 4.20

Third phase pressure in  the alloy [bar] From the sensors as explained before (bar) 730

Tablet high [mm] mm 15

Closing force [kN] kN 8330

Cycle time [s] s 51.8

Shot sleeve filling factory [%] Percentage 48%

Automatic process [y/n] yes

Casting machine number [No] Description PH156 - Buhler 84D 
Compact

Solidification time [s] Sec 9.0

Vacuum level [mbar]
A 69

B 295

Mold temperature fixed side [°C] °C Max 222.8–232.1 °C
Min 115.6–123.5 °C

Mold temperature moving side [°C] °C Max 276.8–284.7 °C
Min 168.2–184.3 °C

Delta of temperature fixed side [°C] °C 101 ÷ 117 °C

Delta of temperature moving side [°C] °C 100 ÷ 108 °C
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Both the data for analysis and the classifica-
tion information contained columns of text, so 
they had to be appropriately transformed to be 
used by machine learning algorithms. Each col-
umn of data can have different data types, and 
the goal was to unify this data into a numerical 
form that is needed to train the model. This was 
converted into a format that can be used by the 
neural network. 

Since the data for analysis, as well as the clas-
sification information, contained columns with 
text and mixed types, they had to be appropriately 
transformed to be utilized by machine learning al-
gorithms. Each data column might have different 
data types, and the goal was to standardize these 
data into a numerical form, which is necessary for 
training the model. The data was converted into 
a format that can be used by the neural network. 
This conversion applied to both the input and out-
put data (which is why there are 40 columns). The 
data in each column is checked. If a column con-
tains numeric values (e.g., int or double), the code 
leaves them unchanged. If a column contains logi-
cal values (true/false), they are converted to num-
bers 0 (false) and 1 (true). If a column is already 
of the categorical type, the code converts it into 
numbers representing the individual categories. 
If a column contains text (e.g., string or cellstr), 
it is converted to a categorical variable and then 
encoded as integers representing the different cat-
egories. If a column contains dates/times, they are 
converted into numbers corresponding to, for ex-
ample, the number of days from a starting point 
(in MATLAB, the epoch is January 0, 0000 in the 
Gregorian calendar, so the date is transformed 
into numbers representing the number of days 
since that day). If a column contains mixed val-
ues, such as ADC12, 46000, ADC13, 92000, each 

Table 3. Sample input data

Type of steel - main forming elements 

Hardness - main forming elements 
[Hrc] 

Coating of forming elements [type] 
No/PVD/Nitr 

Stress relieving after mold test [y/n] 

Stress relieving continuation (no of 
cycles) 

No of Cavities [pcs] 

Cooling system (oil, water) [O/W] 

Gate inlet area [mm2] 

Overflows inlets area [mm2] 

Ventings chanels area [mm2] 

Vacumm system included [y/n] 

Average part wall thickness [mm] 

Projected of the casting area onto the 
parting surface [mm2] 

Share of part weight in the entire 
injection (%) 

Maximum speed of alloy during cav. 
Filling [m/s] 

Filling time [ms] 

Leak test preasure requirements [Pa] 
if no N 

Plunger Diammeter [mm] 

Whole cast weight [g] 

Part complexity (according 
assumption from 1-5) 

Alloy type [name] 

Alloy temparature (melting C deg) 

Type of melting furnace (shaft, 
crucible S/H) 

Density index of alloy [number] 

Number of shots per batch [pcs] 

% of scrap ratio in the alloy 
composition [%] 

Alloy temparature (casting C deg) 

First phase speed [m/s] 

Second phase speed [m/s] 

Third phase pressure in the alloy 
[bar] 

Tablet hight (mm) 

Closing force [kN] 

Cycle time [s] 

Shot sleeve filling factor [%] 

Automatic process [y/n] 

Casting machine number [No] 

Solidification time [s] 

Vacuum level [mbar] 

Type of spraying (Micro/emulsion) 
[M/E] 

Quality atribute 

Dievar 

46 

No 

Y 

0 

2 

W 

390 

224 

87.6 

Y 

3.7 

61946 

47.4 

45 

44 

N 

80 

3165 

3 

ADC12 

730 

S 

1 

7218 

60 

690 

0.15 

4.32 

875 

20 

8444 

47.1 

61 

Y 

ph156 

8 

250 

M 

OK 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

 

Type of steel - main forming elements 

Hardness - main forming elements 
[Hrc] 

Coating of forming elements [type] 
No/PVD/Nitr 

Stress relieving after mold test [y/n] 

Stress relieving continuation (no of 
cycles) 

No of Cavities [pcs] 

Cooling system (oil, water) [O/W] 

Gate inlet area [mm2] 

Overflows inlets area [mm2] 

Ventings chanels area [mm2] 

Vacumm system included [y/n] 

Average part wall thickness [mm] 

Projected of the casting area onto the 
parting surface [mm2] 

Share of part weight in the entire 
injection (%) 

Maximum speed of alloy during cav. 
Filling [m/s] 

Filling time [ms] 

Leak test preasure requirements [Pa] 
if no N 

Plunger Diammeter [mm] 

Whole cast weight [g] 

Part complexity (according 
assumption from 1-5) 

Alloy type [name] 

Alloy temparature (melting C deg) 

Type of melting furnace (shaft, 
crucible S/H) 

Density index of alloy [number] 

Number of shots per batch [pcs] 

% of scrap ratio in the alloy 
composition [%] 

Alloy temparature (casting C deg) 

First phase speed [m/s] 

Second phase speed [m/s] 

Third phase pressure in the alloy 
[bar] 

Tablet hight (mm) 

Closing force [kN] 

Cycle time [s] 

Shot sleeve filling factor [%] 

Automatic process [y/n] 

Casting machine number [No] 

Solidification time [s] 

Vacuum level [mbar] 

Type of spraying (Micro/emulsion) 
[M/E] 

Quality atribute 

Dievar 

46 

No 

Y 

0 

2 

W 

390 

224 

87.6 

Y 

3.7 

61946 

47.4 

45 

44 

N 

80 

3165 

3 

ADC12 

730 

S 

1 

7218 

60 

690 

0.15 

4.32 

875 

20 

8444 

47.1 

61 

Y 

ph156 

8 

250 

M 

OK 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 
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value will be assigned a unique number, e.g., 1, 2, 
3, 4. In any other case, a message ‘Unsupported 
column type’ will be displayed. Preparing the out-
put data additionally requires the use of the one-
hot encoding technique. This encoding is widely 
used in machine learning and data processing, 
especially in the context of classification. Its pur-
pose is to represent data categories in a numerical 
form that is easy for machine learning algorithms 
to process (e.g., for classification options (essen-
tially classes) 1 represents BAD, 2 – LOK, 3 – 
LOT, 4 – OK, 5 – OUT). This was necessary for 
the network to classify correctly. 

Applied neutral network 

Multi-layer perceptron (MLP) is a type of 
neural network that is widely used as a classifier. 
MLP is one of the simplest and most versatile 
neural network architectures and is used for many 
tasks, including classification and regression. Var-
ious configurations of neural networks (in terms 
of the number of layers, the number of neurons) 
were analyzed, but the best results were obtained 
for the architecture with one input layer, one hid-
den layer (20 neurons) and one output layer [24].

The use of MLP instead of deep learning is 
due to several factors related to the characteristics 
of the data and the computational requirements. 
First, the data in this case is probably relatively 
simple and does not require advanced architec-
tures that are characteristic of Deep Learning, 
such as convolutional neural networks (CNN) or 
recurrent neural networks (RNN). The program 
uses MLP with one hidden layer, which is suffi-
cient to solve the classification task in this case, 
because the input data has a simple structure 
(data table). Deep Learning usually requires larg-
er data sets to obtain an adequate model quality. 
For smaller data sets, such as those used in this 
program, MLP may be more effective, because a 
more complex model may lead to overfitting and 
not bring significant performance improvement.

RESEARCH RESULTS

Research experiments

According to RQ2 the experimental part of 
the research, based on the literature research re-
sults was provided. MLP classifier for predicting 
the life of the die casting mold is applied. The 

number of hidden layers was determined as a re-
sult of experiments, conducted in Matlab 2023b 
environment. The number of inputs results from 
the number of variables obtained in the prepro-
cessing process, and the number of outputs cor-
responds to the parameters determined in Table 
3. The training parameters of the network were 
as follows: net.trainParam.goal = 1e-9; net.train-
Param.epochs = 1000; net.trainParam.min_grad 
= 1e-7; net.trainParam.max_fail = 6;

The study involved changing the number of 
layers in the network and the number of neurons 
in the network. The network effectiveness was 
calculated using the formula (1):
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  – is 

the sum of cases where the predicted la-
bels are equal to the test labels; N – is the 
total number of samples.

The script calculated accuracy, which mea-
sures how well the model predicted the correct 
labels relative to the number of test samples. 
Accuracy is not an error measure (like MSE or 
RMSE) but rather an indicator of classification 
correctness. The percentage of correctly classified 
samples out of all samples allows for an intuitive 
interpretation of the results. This method of cal-
culating accuracy is commonly used in classifica-
tion tasks. As for MSE and RMSE (in a retrained 
network, as I did not save the previous process), 
the results are as follows:
 • Test MSE: 0.038992,
 • Test RMSE: 0.19746.

Therefore, the results were as follows: 
1layer with 5 neurons – 97.98%, 1 layer with 
10 neurons – 96.30%, 1 layer with 20 neurons 
– 98.94%, 1layer with 25 neurons – 98.45%, 
1 layer with 30 neurons – 97.89%, 2 layers with 
5 neurons – 98.75%, 2 layers with 10 neurons 
– 98.52%, 2layers with 20 neurons – 98.37%, 
2 layers with 25 neurons – 98.69% and 2 layers 
with 30 neurons – 98.79%.

For training data, the network (1 layer with 
20 neurons) efficiency was ~98.62% (98.94% for 
the test data). The number of neurons in this in-
put layer corresponds to the number of features 
in the input data (39). The number of neurons in 
the output layer depends on the number of classes 
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that can be obtained (in this case it is 5). The ac-
tivation function for the hidden layer is ‘tansig’ 
(hyperbolic tangent) and for the output layer it is 
‘purelin’ (linear function) – Figure 4, where:
 • Input – this is the first layer (39 neurons) of 

the neural network that receives the input data,
 • Hidden – this is the hidden layer,
 • Output – this is the final layer (5 neurons) of 

the neural network that generates the model’s 
results,

 • W (weights) – these are the values assigned to 
the connections between neurons in different 
layers.

 • b (bias) – this is an additional parameter added 
to the weighted sum of inputs before applying 
the activation function.

The prepared MLP network was imple-
mented and run in the MATLAB R2023b en-
vironment using the Deep Learning Toolbox. 
The data to be processed (a 9919×39 matrix 
after import) was divided into training, vali-
dation, and test datasets in a 0.7/0.1/0.2 ratio. 
The training data formed a 6943×39 matrix, the 
validation data formed a 992×39 matrix, and the 
test data formed a 1984×39 matrix. The train-
ing data was used to train the network, and the 
test data was used to verify the classification 
accuracy of the network. The training process 
continued until the validation error failed to im-
prove (decrease) for 6 consecutive epochs. At 
that point, the training process was terminated. 
The value of 0.003702 for MSE means that the 
model achieved its best performance in terms 
of mean square error on the validation set in 
the 139th training epoch. This means that at this 
stage the model predicted values   close to the 
true values   with minimum mean square error 
(Figure 5). Classification errors are visualized 

in a confusion matrix, which is used to evaluate 
the model performance (Figure 6).

As it can be seen in the obtained results, the 
model performs well in most classes, with par-
ticularly high accuracy in classes 1, 4, and 5. For 
class 1, it achieves 99.6% accuracy, correctly 
classifying 454 instances with only 2 errors mis-
classified as class 3. Class 2 is also well classi-
fied with 96% accuracy, though it misclassifies 3 
cases as class 1 and 5 cases as class 3, which ac-
counts for 4% errors. The performance for class 
3 is concerning, as the model fails to classify any 
instances correctly, with NaN values in the con-
fusion matrix, possibly indicating a data issue or 
lack of training examples for this class. For class 
4, the model performs excellently with 98.9% 
accuracy, correctly classifying 9129 instances, 
with 30 misclassified as class 1 and 69 misclas-
sified as class 5. Similarly, class 5 has 98.9% ac-
curacy, with 31 correctly classified instances and 
2 misclassified instances. Overall, the model is 
highly accurate for most classes.

Next, the experiments were conducted to 
evaluate the performance of different activation 
functions applied to the last layer of a network. 
The activation functions tested include ‘pure-
lin’, ‘softmax’, and ‘logsig’. The results show 
that the purelin function generally provides the 
highest accuracy, with test accuracies ranging 
from 96.72% to 98.94%. ‘Softmax’ performs 
well, with test accuracies between 96.12% and 
96.98%, while ‘logsig’ also delivers competi-
tive results, with test accuracies ranging from 
96.57% to 97.03%. These findings (Table 4) 
highlight the variation in performance across 
different activation functions when used in the 
last layer of an MLP model.

Figure 4. Architecture of the neural network
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Model for predicting the quality of 
manufactured parts

Answering RQ2, this study developed the ap-
proach to predict the expected values   of param-
eters influencing the improvement of the quality 
level of manufactured parts.

The analysis of the sample features raised the 
question of whether it is possible to change the 
values of the sample features in such a way that 
the sample is correctly classified, i.e., assigned 
to class 4. Such an approach would enable the 
analysis of the impact of features on the classi-
fication process by iteratively changing feature 
values until the sample is correctly assigned to 
the appropriate category. The proposed approach 

is based on creating a set of unique feature val-
ues (uniqueValues) for the test samples, which 
includes all values actually occurring in the data 
for each feature. Instead of using aggregated mea-
sures such as averages or extreme values, which 
may not reflect actual characteristics (e.g., sen-
sor readings), this set relies exclusively on actual 
data, ensuring a more accurate representation of 
the real behavior of the analyzed parameters. For 
each feature in the dataset, all unique values pres-
ent in the test data are collected. This makes it pos-
sible to reference actual readings and parameters 

Figure 5. Best validation performance

Figure 6. Confusion matrix

Table 4. Performance of a network with different activation functions in the last layer of an MLP
Activation function Test accuracy [%] Train accuracy [%] Validation accuracy [%]

PURELIN

98.94 98.62 98.59

98.75 98.74 98.69

98.59 98.88 98.79

97.23 98.24 97.98

96.72 97.82 97.68

SOFTMAX

96.97 96.40 96.97

96.87 96.53 95.86

96.72 96.57 96.27

96.62 96.57 96.47

96.12 96.64 96.57

LOGSIG

97.03 96.37 97.58

96.77 96.49 97.17

96.72 96.57 96.57

96.67 96.46 97.48

96.57 96.79 95.46
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that have been measured, eliminating the risk of 
errors associated with improper data aggregation.

In the next stage of the process, the samples 
misclassified by the model are analyzed. In mis-
classified samples, the values of individual fea-
tures are iteratively changed to all available op-
tions from the created uniqueValues set. After 
each change, a new class prediction is made for 
the sample. The process is repeated until the de-
sired classification is achieved (e.g., assignment 
to class 4). However, if, after testing all values 
for a given feature, the correct classification is 
not obtained, the checking process continues with 
other features in the sample. The process ends 
when the correct classification for a given sample 
is achieved or after all features have been tested. 
In this way, each feature in the sample is analyzed 
for its impact on the classification result, and by 
changing its value to all possible options, the 
modification that leads to correct classification 
can be identified.

This approach allows for a more detailed iden-
tification of key features influencing the model’s 
decisions, as it is based on actual data rather than 
theoretical average values. Testing all options for 
a given feature ensures a more accurate fit to real-
world conditions, which in turn can lead to a bet-
ter understanding of which feature values are im-
portant in the classification process and how they 
can be modified to achieve the desired outcome.

As a result of the conducted experiments, 
the classification of samples to class 4 was suc-
cessively modified for 128 out of 130 samples. 
In this experiment, the following features were 
modified to achieve assignment to the correct 
class: feature 10 – 8 times, feature 17 – 7 times, 
feature 29 – 19 times, feature 3 – 13 times, feature 
30 – 11 times, feature 31 – 8 times, feature 32 – 
39 times, feature 8 – 23 times. Next, the following 
features were modified to achieve assignment to 
the correct class (132 out of 167 samples): feature 
29: 40 times, feature 30: 36 times, feature 3: 23 
times, feature 8: 16 times, feature 12: 9 times, fea-
ture 10: 2 times, feature 16: 2 times, feature 31: 
2 times, feature 15: 1 time, feature 9: 1 time. The 
varying number of samples analyzed results from 
the different splitting of the dataset into training, 
validation, and test sets in MATLAB. 

Therefore, the developed model enables the 
simulation of process parameter value changes 
in order to obtain the belonging of the output pa-
rameter to the best class. In practice, this means 
that it is possible to predict the quality of the 

manufactured product by changing the input pa-
rameters. Knowing that the data is obtained dur-
ing the implementation of the process, it is pos-
sible to use the developed model as a tool sup-
porting proactive product quality management.

DISCUSSION

As the results of the provided research experi-
ments show, the applied approach allows for de-
signing a classifier to determine the level of qual-
ity of manufactured product. Applying ANN AI-
driven data analytics, the model was developed 
and verified. This developed approach enables 
the definition of a set of parameters describing the 
process at that quality level. This means that the 
characteristics of the new order can be classified 
into a specific group indicating the quality level 
(from 1 to 4 and 5 – OUT). Next, a novel method-
ology addresses misclassified samples, particular-
ly those incorrectly excluded from Class 4 (OK), 
representing acceptable product quality. For such 
cases, systematic modifications of individual fea-
ture values were conducted using actual dataset 
values instead of statistical approximations. Itera-
tive reclassification by ANN identified the feature 
adjustments that enabled proper classification 
into Class 4. This approach not only improved 
classification accuracy but also highlighted criti-
cal features influencing quality outcomes.

This is particularly important for supporting 
decision-making regarding the realization of the 
new order and understanding how I4.0 technolo-
gies can influence quality production level im-
provement and next can provide to achieve the 
I5.0 priorities.

Therefore, this study proposes a universal 
AIMS for industry supporting proactive manage-
ment (Figure 7).

Therefore, to monitor the quality level of 
manufactured products in real time using AIMS 
(Figure 7), the parameters that affect the quality 
of manufactured products should be defined in 
the first stage. In our case, 39 features were de-
fined based on expert knowledge, the values   of 
which affect the quality level of manufactured el-
ements. Then, the values   of this data are obtained 
from sensors and the ERP system. IoT-based sen-
sor for measuring, real time, actual pressure on 
the alloy, pressure on the hydraulic cylinder, ac-
tual switching points of the speed and pressure 
of the plunger at the three phases of casting and 
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are installed on the die casting machines. On the 
basis of the acquired data on the reference order, 
it is possible, using in this case the verified neural 
network architecture with the best efficiency (the 
accuracy was achieved in the training and testing 
phases 98.62% and 98.94% respectively), to pre-
dict the quality level of manufactured elements 
for the next order, with similar parameters to the 
reference. The advantage of this approach is that 
the knowledge base is constantly being expanded, 
and therefore it should be expected that the pre-
dictive model will, with the acquisition of further 
data, achieve even better efficiency. Moreover, in 
the proposed AIMS it is possible to simulate the 
values   of parameters, the change of which will af-
fect the quality level of manufactured products.

It was noticed there are examples of AI-driven 
IoT Monitoring Systems for industry, but no solu-
tions were found working at mold industry and 
concerning modeling and forecasting the quality 
of manufactured highly technically demanding 
product used for the air conditioning of the high-
end cars (Table 5).

Table 5 presents literature results in the space 
of AI-driven IoT monitoring systems for indus-
tries in research and summarizes the main fea-
tures that distinguish proposed study from those 
related research already existing. It enriches with 
a rapid overview of the main outcome of the pre-
sented work with respect to the state of the art 
analyzed. Going into more detail, Table 5 reports 
information on the related works about: exploi-
tation and achieved accuracy of the proposed 
AI-based model for AI-driven IoT monitoring 
system, applying the model in industry and usage 
of the system. To the best of knowledge- and as 

already highlighted in the state-of-the-art analysis 
(Table 5) this is a new approach in the area of 
supporting decisions regarding production, espe-
cially quality of manufactured highly technically 
demanding product used for the air conditioning 
of the high-end cars in the mold industry. Thus, 
this research proposed a new AIMS for mold in-
dustry supporting proactive management, which 
consists of: set of indicators of the quality of the 
parts during mold manufacturing process, real 
data: indicators values, acquired form IoT-based 
sensors located on the casting machine and form 
ERP system - based on empirical research results, 
applying AN. The strict collaboration between 
the Universities and company enabled to develop, 
verify and validate the proposed AIMS in a real 
industrial use case.

This practical model tested with one project 
and with one manufacturing process, is very ge-
neric. It concludes that the same can be used with 
any manufacturing process in which the real time 
data of critical process/quality parameters are 
monitored through IoT enabled sensors during 
manufacturing, layered over the set of important 
parameters specific to the project either established 
at the beginning of such manufacturing project 
(or process) by the technologist in the ERP sys-
tem, manually. Empirical results demonstrate that 
AIMS improves quality control, minimizes waste, 
and supports sustainable manufacturing by op-
timizing energy use and supply chain efficiency. 
The steep machine learning and validation curve 
and its ability to predict the future performance in 
real time is of paramount use for manufacturing 
companies to avoid the production of scrap and 
ensure production of quality parts by either doing 

Figure 7. AIMS for mold industry supporting proactive management
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course correction of the production process param-
eters manually or even by adjusting them through 
a closed loop directly to the manufacturing ma-
chines. This will help the industries to increase the 
OEE (Overall Equipment Efficiency), quality of 
production, longer life of the production machin-
ery by avoiding production of bad quality parts. 
This is possible by knowing and correcting such 
events before occurrence of them.

However, the main limitation of the research 
is that the data was acquired from the limited case 
study. This approach made it possible to build a 
universal approach to support proactive quality 
management in production. In the further work, 
data from other orders realized within a company 
from each cluster, will be acquired from sensors 
and ERP systems implemented within a company. 
In addition to this, data collection process during 
the die-casting process can be extended to be done 
by an IoT-enabled thermal camera to take images 

after each shot of the mold. This research will al-
low for the verification of the proposed approach 
and the extension of the database. The next limita-
tion is related to the changes in the parameters of 
the features of individual samples. Here, the corre-
lation of data, the combination of feature changes 
(group change of features and their influence on 
classification) can be analyzed.

In order to expand the scope of this research, 
the following further study has to be carried out to 
determine, how the additional parameters defined 
for monitoring product quality will have influence 
on the different sets of parts with different num-
bers of cavities, different alloys, different materi-
als treatment of mold forming elements (machin-
ing / coating, etc). Furthermore, the interactions 
with experts revealed that the thermal shocks 
(variations in temperature from ~600 degrees to 
~200 degrees) when the Aluminum changes from 
liquid form to solid within t~ 40 s has a great 

Table 5. State-of-the-art analysis of SP in research
AI-driven IoT monitoring 

system AI-based model accuracy Industry/ manufacturing 
process Application Ref.

Real-time IoT-powered 
AI system for air quality 
monitoring

Long short-term memory 
(LSTM) model: 99 % R² and 
0.33 MAE

Chrome plating industry Supporting decision about 
improving  air quality

[25]

(IoT)-based and cloud-assisted 
monitoring architecture

Autoencoders (AE) long 
short-term memory (LSTM) 
AE-LSTM: testing:  93.5% and 
recall 88.77%

Production of a solar 
thermal high-vacuum flat 
panel

Detect eventual anomalies 
occurring into the 
production

[26]

AI-Driven Intelligent IoT 
Systems

Convolutional Neural Network 
(CNN): 95.2%, recall 94.5%

Food supply chain
Monitor and analyze food 
quality

[27]

AIDA – a holistic AI-driven 
networking and processing 
framework

XGBoost: 61.70%, random 
forest (RF):  40.40%

Steel industry, which is a 
long-lasting process

Forecast the minimum 
pressure and detection of 
pumping issues

[28]

Approach to fault detection Deep belief network

Manufacturing High 
Intensity Discharge 
(HID) car headlight 
module

Supporting multi-sites 
and multi-products 
manufacturing

[29]

Decision-making tool for the 
automotive industry

K-means, hierarchical 
clustering

Waterjet cutting
Continuous monitoring 
of machines in order to 
anticipate failures

[30]

IoT and ML-based decision 
support system for predictive 
maintenance

Random forest: MAE: 0.089; 
MSE: 0.018, R2:0.868

Advanced processing 
and measuring 
machines

Solving the machining 
quality and predictive 
maintenance task in a real 
industrial use case

[31]

predictive maintenance system 
for manufacturing production 
lines

Random forest:
Xgboost:

A consumer goods 
manufacturing plant

Predictions of potential 
failures for production line

[32]

AI-driven IoT Monitoring 
System (AIMS)

Multi-Layer Perceptron (MLP): 
in the training and testing 
phases 98.62% and 98.94% 
respectively

Mold industry

Forecasting the quality 
of manufactured highly 
technically demanding 
product used for the air 
conditioning of the high-
end cars

This 
paper
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influence on the life of the mold. Therefore, to 
further refine the research on this subject, it was 
decided to have the IOT-enabled sensors (thermal 
cameras to take the images) installed to measure 
temperature of the molds on various points of the 
mold, after every cycle to record the real time 
data to carry out deep learning and build AI to 
accurately predict the life of the mold. 

Overarching industry 5.0 priorities

According to RQ3, the first challenge is find-
ing the balance between providing (1) sustainable 
industry, (2) human-centric industry and (3) re-
silient industry. The close relationship between 
human-centric technology development and sus-
tainable production (SP) is clearly visible. The 
idea behind SP is to reduce energy and resource 
consumption, improve the well-being of commu-
nities and employees as well as maintain safety. 
SP plays an important role in the context of ensur-
ing the economic properties of products, improv-
ing the production system, promoting innovation, 
and creating new space for economic growth. 
Industry needs to be sustainable [33] as well as 
flexible, adaptable, agile and resilient [34]. The 
industry should adapt its production in an agile 
way to the forthcoming disruptions. Therefore, it 
is a need to build the data-based approach as a 
universal framework but also highly tailored to 
meet industrial requirements [1]. However, fur-
ther research is needed to explore the relationship 
between the implementation of I4.0 technologies 
in the mold industry and the increase in the level 
of SP, the level of human-centric technologies 
implementation and the level of the solutions ad-
aptation, that enable the industry to operate even 
under the conditions of unexpected disruptions 
and to respond very quickly to emerging changes. 
In that context, the proposed AIMS can be ex-
panded with parameters related to monitoring the 
SP level (e.g. SDGs) and extended to HRC work-
station in the mold manufacturing process. HRC 
plays a key role in increasing employee produc-
tivity, which is the main goal of any company in 
terms of creating a production system. The sec-
ond major challenge is related to the competence 
and knowledge of employees within the produc-
tion company. Employees need to enhance their 
skills focused on the cooperation with the smart 
devices. Further research should be undertaken 
to develop solutions that facilitate employee ad-
aptation to working conditions with I4.0/I5.0 

technologies in manufacturing and to create bet-
ter worker safety and well-being.

Finally, the third challenge concerns the adop-
tion of generative artificial intelligence (GAI) into 
production. The usage of GAI enables enhancing 
the efficiency of manufacturing processes and im-
proving the SP level [35]. Therefore, the research 
question that remains open is modeling the effects 
of implementing I4.0 and I5.0 technologies, es-
pecially the adaptation of AI-based tools in the 
context of increasing the quality level of manu-
factured highly technically demanding product. 
This is particularly important for further research 
focused on finding a model that supports deci-
sion-making regarding proactive management in 
the mold industry. 

CONCLUSIONS

This study examines a universal tool to sup-
port supporting proactive quality management 
based on the case study from for the mold indus-
try. Using the 9919 real data of mold manufac-
turing process the AI-driven data analytics model 
to predict and monitor quality of manufactured 
products was developed. The AIMS is designed 
for mold manufacturing, showcasing its applica-
tion in producing high-end automotive air con-
ditioning compressor molds. By leveraging IoT 
sensors, ERP data, and MLP models, AIMS en-
sures real-time monitoring, defect prediction, and 
mold life estimation, thereby enhancing process 
transparency, flexibility, and sustainability. Fur-
thermore, the main challenges are identified in 
shifting from smart manufacturing enterprises 
toward human-centric technology development. 
The findings emphasize the potential of integrat-
ing IoT, AI, and machine learning in driving In-
dustry 5.0 principles for production excellence.
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