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INTRODUCTION

Active vibration control is applied to vari-
ous structural elements, including beams, shells, 
plates, shafts and trusses. To improve the efficien-
cy of this process, different types of controllers 
can be investigated the actuator used also plays a 
significant role. Piezoelectric actuators (PZT) are 
commonly used in active vibration control. The 
effectiveness of vibration reduction process is in-
fluenced by geometric parameters and location of 
the actuator on the structure.

PZT consists of two electrodes with a layer of 
piezoelectric material between them. The optimi-
sation of PZT geometrical parameters can be di-
vided into two approaches. The first approach that 
optimises the PZT geometry deals with optimisa-
tion of the electrode material distribution [1, 2], 
while the second approach deals with optimisation 

of the piezoelectric material distribution (or the 
whole actuator) [3, 4]. Aridogan and Basdogan 
[5] provide a thorough review of the problem of
active vibration and noise control in two-dimen-
sional structures using piezoelectric elements.
The articles classifies controllers and evaluates
their performance in reducing vibration of plates
with varying boundary conditions. Another review
paper dealing with piezoelectrics as such is that
published by Al-Obiedy and Al-Helli [6], which
presented a collection of research in the field of
enhanced piezoelectric properties. Liu and Xiao
[7] determined the optimum shape of PZT for two-
dimensional structures. In this work, the research-
ers identified the areas covered with the piezoelec-
tric material in a laminated rectangular cantilever
plate. The resulting areas of the piezoelectric mate-
rial coverage were replaced by regular shapes in
the form of a finite number of square PZT patches.
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The problem of the placement of actuators and 
their shape is important from the point of view of 
reducing vibrations of a given mode shape. In [8], 
a thin rectangular plate was studied in the context 
of active vibration control, using a disc-shaped ac-
tuator. Its position resulted in a zero effect for the 
second mode shape. Different shapes of PZT ac-
tuators were investigated to determine their effect 
on a sensor-actuator hybrid in [9]. The examined 
actuators were square or disc-shaped with a hole 
cut out for the sensor part.

This paper is an experimental work (first of 
all), so important issues are those related to the 
experiment itself. The implementation of sim-
ply supported boundary condition for the plate 
was similar to [9], except that in addition to the 
V-groove, a chamfer was also made on the plate 
– so that the entire edge of the plate lay on one 
line in the V-groove. Another difference is that 
heat-shrinkable sleeves were used around the 
edge of the plate instead of universal sealant. A 
plate with a simply supported boundary condi-
tion was also tested in [11], where two opposite 
boundaries were simply supported. A comprehen-
sive work covering both theory and experiment 
is [12], in which a simply supported plate was in-
vestigated and the optimal placement of actuators 
was determined; rectangular actuators were used. 
The plate was supported on the frame to mimic 
the simply supported boundary condition. Rah-
man and Darus [13] proposed the AVC-P control-
ler, which had the ability to reduce vibrations of 
flexible structures. The controller was a classical 
proportional-gain controller. In this paper, a PID 
controller was also used, but the integral tuning 
parameter was kept at a relatively low level and 
not completely eliminated.

The optimisation of the actuator shape can be 
performed under different optimisation criteria. 
For example, the objective function can be the 
minimisation of the control energy required to 
reach the desired state [14]. The objective func-
tion can also be derived from the theory of me-
chanical vibrations and the PZT-plate interaction. 
Before solving the problem of determining the op-
timal shape of PZT for 2D structures, it was neces-
sary to start from the one-dimensional case, which 
was presented in [15, 16]. The objective function 
was to minimise a mathematical expression that 
depends on the bonded place of the PZT and the 
length of fibres that PZT consist of. For the plate, 
this means first finding a common point for all 
PZT fibres and then optimising the arm lengths of 

each force pair [17]. In this way the contour of 
an a-PZT was obtained. Using the derived formu-
lae for the beam and analogous ones for the plate, 
it has been shown that the common point for all 
PZT fibres should be the point where the bending 
moment of the plate reaches its absolute extreme. 
This is due to the fact that an effect of PZT is pro-
portional to the value of the plate bending mo-
ment at this point. Hence, if one needs this effect 
to reach its maximum value, the bending moment 
should be maximised. A simply supported triangu-
lar plate has only one such point and this point was 
designated as the common point of all PZT fibres.

The aim of the article was to experimentally 
verify the research presented in [17]. In the cited 
article, optimal shape of the PZT (a-PZT) was 
obtained for triangular plate. This shape ensured 
maximum efficiency for the steady state. A natu-
ral consequence of the research carried out was 
to perform an experiment that would confirm or 
refute the obtained conclusions. This paper com-
pared regular PZT shapes (circular c-PZT, square 
s-PZT) with a-PZT in active vibration reduction of 
triangular plates. To achieve this aim, a test rig was 
set up with a PI controller implemented on ESP32 
development board. The controller tuning pa-
rameters were selected experimentally and three 
identical simply supported triangular plates with 
actuators glued to them were tested. The results 
were compared with those obtained by steady-
state analytical and numerical calculations.

MODEL OF THE PLATE

The governing equation of transverse vibra-
tion of triangular plate is based on Kirchhoff-Love 
theory for thin plates [18],
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In the steady state the equation takes the form,
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For the triangular plate under study, simply 
supported boundary conditions were assumed as 
a boundary condition on all three edges [19], Fig-
ure 1,

 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀ℎ(𝑥𝑥, 𝑦𝑦) = 0 

 

for 
for 
for 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑦𝑦 = 𝑎𝑎 − 𝑥𝑥 

(3) 

 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕ℎ2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑛𝑛2)  
 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓0𝛿𝛿(𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0) 
 

(4) 

 

 

 
𝐽𝐽 =

𝑤𝑤0 − 𝑤𝑤𝑓𝑓
𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 

 (3)

where: 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀ℎ(𝑥𝑥, 𝑦𝑦) = 0 

 

for 
for 
for 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑦𝑦 = 𝑎𝑎 − 𝑥𝑥 

(3) 

 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕ℎ2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑛𝑛2)  
 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓0𝛿𝛿(𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0) 
 

(4) 

 

 

 
𝐽𝐽 =

𝑤𝑤0 − 𝑤𝑤𝑓𝑓
𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 

 – bending mo-

ment along x axis, 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀ℎ(𝑥𝑥, 𝑦𝑦) = 0 

 

for 
for 
for 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑦𝑦 = 𝑎𝑎 − 𝑥𝑥 

(3) 

 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕ℎ2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑛𝑛2)  
 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓0𝛿𝛿(𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0) 
 

(4) 

 

 

 
𝐽𝐽 =

𝑤𝑤0 − 𝑤𝑤𝑓𝑓
𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 

 
– bending moment along y axis, 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀ℎ(𝑥𝑥, 𝑦𝑦) = 0 

 

for 
for 
for 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑦𝑦 = 𝑎𝑎 − 𝑥𝑥 

(3) 

 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕ℎ2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑛𝑛2)  
 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓0𝛿𝛿(𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0) 
 

(4) 

 

 

 
𝐽𝐽 =

𝑤𝑤0 − 𝑤𝑤𝑓𝑓
𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 

 – bending mo-
ment along the hypotenuse of the right 
triangular plate, h – axis lying on the hy-
potenuse of the triangle, n – axis perpen-
dicular to the hypotenuse, a – side length 
of the triangle.

External forcing was in the following distribu-
tion form,

 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀ℎ(𝑥𝑥, 𝑦𝑦) = 0 

 

for 
for 
for 

𝑥𝑥 = 0 
𝑦𝑦 = 0 
𝑦𝑦 = 𝑎𝑎 − 𝑥𝑥 

(3) 

 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑦𝑦2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑦𝑦2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑥𝑥2)  
 
𝑀𝑀𝑥𝑥 = −𝐷𝐷 (𝜕𝜕

2𝑤𝑤
𝜕𝜕ℎ2 + 𝜈𝜈 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑛𝑛2)  
 

 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓0𝛿𝛿(𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0) 
 

(4) 

 

 

 
𝐽𝐽 =

𝑤𝑤0 − 𝑤𝑤𝑓𝑓
𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 

 (4)

where: f0 – amplitude of the force, (x0, y0) – coor-
dinates of the point force application.

The free vibration problem was solved using 
the superposition method for triangular plates, 
presented in [20, 21]. Applying this method to the 
problem involves forcing a given boundary con-
dition on a given edge (e.g. regarding transver-
sal displacement), then through the next building 

block another boundary condition is forced (e.g. 
regarding bending moment). The solution used 
two blocks, one forcing zero transversal displace-
ment and the other forcing zero bending moment 
on a given axis. A simply supported boundary 
condition was forced e.g. on the x = 0 axis by 
overlapping these two blocks. This procedure 
was also applied to the y = 0 axis and by rotating 
the blocks by an angle of 45 degrees, to force a 
simply support on the hypotenuse of the right tri-
angular plate. The calculated eigenvalues were in 
line with [21].

OPTIMISATION PROCEDURE

Before discussing the experiment, it should 
be noted that the shape of the optimal PZT was 
determined by mathematical modelling. In gen-
eral, the optimisation was aimed at reducing vi-
bration, so the main objective function was trivial 
and can be defined by:

 

1  

 

 

 

𝐷𝐷𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜌𝜌ℎ𝑝𝑝
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 
 

(1) 

 

 

 

𝛻𝛻4𝑤𝑤(𝑥𝑥, 𝑦𝑦) −
𝜌𝜌ℎ𝑝𝑝𝜔𝜔𝑓𝑓2
𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
 

(2) 

 
 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2)  
 
𝛻𝛻  
 
 

 

 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0 
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 (5)

where: w0 – transverse displacement of the plate 
without PZT action, vibration is excited 
by dis- turbance, [m]; wf – transverse dis-
placement of the plate with PZT action, 
vibration is excited by disturbance and 
reduced by PZT, [m].

Figure 1. A simply supported right triangular plate
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Mathematical modelling of PZT-plate interac-
tion and introduction the new PZT model make it 
possible to formulate special forms of the objec-
tive function, which are given in [17]. The new 
model includes the possibility of adjusting the arm 
lengths of force pairs (which is not included in the 
classical PZT model [22, 23]). The results of the 
optimisation procedure for the first mode shape 
are shown in Figure 2. The location of all three 
actuators and the shape of the optimal PZT were 
determined. See [17] for figures of higher mode 
shapes.

EXPERIMENTAL SETUP

To experimentally verify the effectiveness of 
various PZT shapes, three actuators were ordered: 
s- PZT, c-PZT and a-PZT, Figure 3. Figure 4 shows 

the location of actuators on the plate surface and 
shapes of the compared PZTs for the first mode 
shape. To permanently fix the piezoelectric to the 
structure, a two-component adhesive was used.

Three identical triangular plates, each 1 mm 
thick, side length 0.2a and chamfered at 30 de-
grees along each edge, were fabricated. A dif-
ferent shaped PZT (square, circular, and asym-
metrical) was glued to separate plate. The simply 
supported boundary condition was achieved on 
the basis of [9]. V-shaped groove with an angle 
of 90 degrees was milled into the designed plate 
mounting. The plate was chamfered at the edges 
at an angle of 30 degrees so that the edge of the 
plate lay in the milled groove, Figure 5. The joint 
between the plate and the frame had to be sealed, 
a universal silicone sealant was suggested in [10]. 
In the present work, the joint between the plate and 
the frame was sealed by means of heat-shrinkable 

Figure 2. Location of symmetric actuators on surface of the triangular plate ((a) s-PZT, (b) c-PZT), 
location and shape of the a-PZT (c) [16]

Figure 3. Shapes of actuators: s-PZT (a), c-PZT (b), a-PZT (c) 

a) b) c)

a) b) c)
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Figure 4. Placement of piezoelectric actuators on the surface of a triangular plate

sleeves placed on the edges of the plate. The first 
form of natural vibration of the plate was taken 
into account in the experiment.

The laboratory setup comprised a laptop com-
puter, a 900 W Beyma 18G550 loudspeaker, an 
optoNCDT laser sensor, an MCP3008 external 
A/D converter, an ESP32 Dev Kit V1 develop-
ment board, Korad KD3305P symmetrical power 
supply, a circuit consisting of operational ampli-
fiers, EPA-104 power amplifier, PZTs and trian-
gular plates. The vibration signal was measured 
over a range of 2 mm with a readout frequency of 
up to 20 kS/S. The NI USB-6212 Multifunctional 

I/O Device with BNC connectors was used to 
read the data, Figure 6.

The plates were mounted in steel frame 
screwed to a structure, inside which the loudspeak-
er was located. Beyma loudspeaker was mounted 
halfway up the steel structure, approximately 50 
cm below the plate. An acoustic signal of given 
frequency was generated by loudspeaker to excite 
the plate to vibrate. This signal was sinusoidal 
signal fed to loudspeaker input via analog output 
channel of NI USB-6212. The amplitude of the 
plate vibrations was measured using optoNCDT 
optoelectronic sensor. The signal measured by 

Figure 5. V-groove milled in the plate mounting (a), plate in the mounting (b)

Figure 6. Laboratory setup

a) b)
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sensor was the input to active vibration reduction 
algorithm implemented on ESP32-DevKit V1 
development board. However, before the analog 
signal from the sensor was processed by AVC al-
gorithm, it is read by external ADC (MCP 3008) 
connected to ESP32 via SPI interface. This trans-
ducer reads the signal in differential mode [24]. 
In next step, the signal was processed by AVC 
algorithm and directed from the ESP32 board to 
amplifier circuit via an internal digital-to-analog 
converter. The circuit composed of operational 
amplifiers provides the first level of amplification 
for the output signal. The diagram of the designed 
circuit is illustrated in Figure 7. 

The second important function of this circuit, 
apart from amplification, was to provide negative 
offset for output signal. Since the ESP32 board 
does not allow generating bipolar signal for built-
in DAC, it was necessary to generate an unipolar 
signal and add negative DC component. The cir-
cuit was built using NE5532 operational amplifi-
ers [25] and designed in PSIM software [26]. In 
order to create negative DC component, it was 
necessary to supply the amplifier circuit with sym-
metrical power supply. The Korad KD3305P pow-
er supply was used for this purpose. An EPA-104 

power amplifier, designed as PZT amplifier, was 
placed after amplifier circuit. The prepared and 
amplified signal was used to power the PZT. Data 
acquisition was performed using NI USB-6212 
connected to computer with MATLAB software.

The experiment involved implementing a 
feedback system with a PI controller. The system 
responded to a disturbance in the form of an acous-
tic wave, which was generated by a loudspeaker, 
Figure 8. The controller was implemented using 
C language on ESP32 development board. The 
program calculated the output to the PZT actuator 
based on the reading and the applied PI tuning 
parameters [27].

RESULTS

Analytical and numerical calculations were 
conducted to determine the most efficient shape 
under steady-state conditions [17]. It turned out 
that the most effective PZT was a-PZT and its 
advantage over regular shapes was up to several 
percent, depending on the mode shape. For ex-
ample, the results obtained in [17] for first mode 

Figure 7. Signal amplification circuit designed in PSIM software

Figure 8. Feedback control system used in the experiment
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shape were: for s-PZT – 97.43%, for c-PZT – 
97.70%, and for a-PZT – 99.96%.

In the cited work, a relative vibration reduc-
tion coefficient was used, hence it was expressed 
as a percentage. To confirm these results, an active 
vibration control algorithm was implemented and 
experimentally verified.

This paper also verified the implementation of 
the simply supported boundary condition for trian-
gular plate. To achieve this, the values of the nat-
ural frequencies of the plate were compared. The 
eigenvalue λ2 expressed in the Gorman superpo-
sition method does not depend on the thickness of 
the plate. To verify the values obtained for a plate 
of given dimensions, the thickness of the plate 
should be taken into account in the eigenvalue 
expression: 

1  

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 . Using this expres-
sion, one can calculate the eigenfrequencies ω, 
Table 1. The Gorman method does not take into 
account the modification of the geometry of the 
triangular plate in the form of a 30 degree cham-
fer. For this purpose, a 3D model of the plate was 
created taking into account a 30 degree chamfer 
on all edges and calculations were performed 
in ANSYS environment for simply supported 
boundary conditions on all edges of the plate, 
Table 1. 7201 second order tetrahedral elements 
were used in the FEM analysis, for a total of 
44455 degrees of freedom.

Experimental results

The scope of the experiment was to deter-
mine the frequency response of the plates: with 
the disturbance from the loudspeaker and with 
the active vibration reduction system switched 
on. The active vibration reduction system 

included three types of PZT: s-PZT, c-PZT and 
a-PZT. Each actuator operated at a constant hard-
ware gain, while the software gain was adjusted 
to keep the system stable. Hardware gain was the 
gain included in circuit consisting of operational 
amplifiers and the maximum gain provided by 
the EPA-104 power amplifier. The first test was 
to see if three identical plates gave the same fre-
quency response to loudspeaker excitation. Fig-
ure 9 shows the results. Although all the plates 
have the same dimensions and are manufactured 
in the same way, there are slight differences in 
the characteristics obtained [28]. The first eigen-
frequency of the plate with s-PZT was 279 Hz, 
for a-PZT it is 280 Hz and for c-PZT it was 281 
Hz. By averaging the results obtained, the value 
of 280 Hz was taken as the first natural frequency 
of the plate, see Table 2.

The next step was to investigate the effec-
tiveness of active vibration reduction at constant 
hard- ware and software gain for the tested ac-
tuators. For this purpose, the gain of the propor-
tional term of the PI controller was set to 1.2 
(this value was chosen experimentally). The 
gain of the integrating term was set to 0.01 for 
all actuators. The hardware gain of the EPA-
104 amplifier was the same for all experiments 
performed and was 20. Figure 10 shows the fre-
quency response results of a feedback system 
with a PI controller for s-PZT.

Figures 11–12 show the frequency response 
of the closed loop control signal for c-PZT and 
a- PZT respectively. All three figures show ef-
fective vibration reduction and a significant re-
duction in amplitude at the resonant frequency. 
However, comparing the three frequency re-
sponses confirms that a-PZT was characterised 

Table 1. Natural frequencies for the first six mode shapes calculated by Gorman method and using the ANSYS 
environment

Parameter
Mode shape

1 2 3 4 5
ων;Gorman [Hz] 296.78 593.57 771.64 1009.07 1187.14
ων;ANSYS [Hz] 295.31 592.17 770.43 1010.40 1189.20

Table 2. Relative errors in the value of the first natural frequency of the triangular plate

Parameter
First natural frequency of the plate

Analytically ANSYS Experiment

ων [Hz] 296.78 295.31 280.00

Relative error [%] – 0.4953 5.6540



212

Advances in Science and Technology Research Journal 2025, 19(8), 205–216

by the highest efficiency over almost the entire 
range tested, Figure 13.

The time courses for resonant frequency is 
presented in Figures 14–16. The time at which 
active vibration reduction system was switched 
on was set to tON = 5 s.

The last point of experiment was to adjust 
the software gain level to the stability limit. For 
this purpose, the gain values of the proportion-
al part of the PI controller were experimentally 

set to obtain a critical gain. This experiment was 
carried out to justify that any type of actuator is 
capable of reducing vibrations to a relatively low 
level. The difference is that a higher signal gain 
is required and therefore the control signal has 
a higher energy, so a higher energy supply must 
also be provided to achieve a given level of re-
duction, Figure 17. Thus, for s-PZT the gain level 
was 

1  
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𝑤𝑤0

∙ 100% 

 

(5) 

𝜆𝜆2 = 𝜔𝜔𝑎𝑎2√𝜌𝜌ℎ𝑝𝑝/𝐷𝐷 

 
𝐾𝐾𝑃𝑃;𝑠𝑠−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 𝐾𝐾𝑃𝑃;𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  
 
 𝐾𝐾𝑃𝑃;𝑎𝑎−𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐  

 
 = 1.22.

Figure 9. Frequency response to loudspeaker disturbance for three plates with three different PZTs: 
s-PZT, c-PZT and a-PZT

Figure 11. Frequency response of open-loop (black) and closed-loop (blue) signals for c-PZT with Kp = 1.2

Figure 10. Frequency response of open-loop (black) and closed-loop (red) signals for s-PZT with KP = 1.2
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Figure 12. Frequency response of open-loop (black) and closed-loop (green) signals for a-PZT with Kp = 1.2

Figure 13. Closed-loop frequency responses for three actuators with gain Kp = 1.2: s-PZT, c-PZT and a-PZT

Figure 14. Time course of s-PZT with KP = 1.2 (a). Close-up of part of the graph (marked with black dashed 
frame) showing the moment of AVC activation (b)

Figure 15. Time course of c-PZT with KP = 1.2 (a). Close-up of part of the graph (marked with black dashed 
frame) showing the moment of AVC activation (b)

a) b)

a) b)
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Figure 16. Time course of a-PZT with KP = 1.2 (a). Close-up of part of the graph (marked with black dashed 
frame) showing the moment of AVC activation (b)

a) b)

CONCLUSIONS

The article examined the use of different 
shapes of piezoelectric actuators in active vi-
bration control of triangular plates. The study 
compared three types of actuators: circular and 
square, which are commonly used shapes, and an 
asymmetric actuator, which provided the highest 
vibration reduction efficiency. The shape of the 
a-PZT was determined through analytical and nu-
merical calculations [17].

On the basis of the analytical, numerical and 
experimental studies conducted, following con-
clusions can be made. First, the most important 
conclusion is that for the same energy applied to 
the system with different types of PZT, the system 
with a-PZT was the most effective in reducing the 
vibrations of the triangular plate. The amplitude 
of the vibrations generated by the excitation of 
the acoustic wave from the loudspeaker was ap-
proximately 0.35 mm and was reduced to approx-
imately 0.02 mm. By adjusting the proportional 
gain level within the stability criterion, even better 

results can be achieved. It is worth noting that the 
experimental results are consistent with the analyt-
ical and numerical results, i.e. the plate with a-PZT 
was characterised by the highest efficiency both in 
the steady state and taking into account the dy-
namics of active vibration reduction.

Second, the plate with s-PZT installed had 
better results than the plate with c-PZT in almost 
the whole range tested. The results presented in 
Figure 13 show that at the beginning of test-
ed range, i.e. from 240 Hz to 260 Hz, better 
results are obtained by using c-PZT. However, 
first natural frequency of the plate and frequen-
cies close to it are the more important part of 
frequencies tested. In this range there is a clear 
drop in c-PZT efficiency, which includes fre-
quencies from 260 Hz to 308 Hz, followed by a 
short period of slight advantage for the c-PZT 
and again a drop in efficiency in favour of s-PZT. 
For first natural frequency, f = 280 Hz, we have  
c-PZT efficiency of 79.42%, with s-PZT effi-
ciency of 88.71% and an a-PZT efficiency of 
92.74%. Thus, the experimental results do not 

Figure 17. Closed-loop frequency responses for three actuators with critical gain level
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coincide with the numerical results for this 
range. This may be due to imperfections in the 
manufacture of the plate or in the bonding of the 
actuators, or in the realisation of simply support-
ed boundary condition for the plate with c-PZT. 
However, c-PZT was less effective than a-PZT, 
which confirms the first conclusion.

Another conclusion relates to the critical 
damping experiments. The research confirms that 
a-PZT requires less amplification of input signal 
to achieve relatively similar level of vibration re-
duction. It is therefore the most efficient in terms 
of energy consumption.

This paper presents a feasible approach for 
designing piezoelectric actuators to reduce vibra-
tions in plates of various shapes. The study on this 
topic is still developing and many other issues de-
serve further investigation. For example, finding 
the optimal shape of a piezoelectric actuator for 
solid structures or other three-dimensional ones 
such as trusses, shells.
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