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INTRODUCTION

The rapid digitization of global networks 
has transformed information into digital bits and 
bytes, making it an integral part of computer 
systems and communication channels. Critical 
information is now stored, processed, and trans-
mitted digitally, exposing it to significant risks. 
Malicious actors target these systems to steal sen-
sitive information or disrupt critical operations. 
To counteract these threats, cryptography, and 
steganography have emerged as pivotal tools in 
information security.

Modern cryptography offers a robust suite of 
techniques that ensure data confidentiality, integ-
rity, and access control for legitimate users. De-
spite its strengths, cryptography faces challenges 
in real-world scenarios. Encrypted, authenticated, 
and digitally signed data can be cumbersome to 
access during critical decision-making moments. 
Furthermore, cryptographic methods cannot in-
herently ensure selective access control and en-
crypted messages can attract unwanted attention 

in environments where cryptographic practices 
are restricted [1]. 

Unlike cryptography, steganography address-
es these limitations by concealing the very exis-
tence of secret messages. It embeds sensitive in-
formation into digital objects – such as text files, 
license keys, or media files – without arousing 
suspicion. Media files, including images, audio, 
and video, serve as particularly effective carriers 
due to their large data capacity and widespread 
usage. Advanced steganographic techniques can 
even embed messages so deeply that they remain 
intact after editing, resizing, printing, or scan-
ning. These capabilities make image steganogra-
phy a versatile and reliable approach for securing 
confidential information [2, 3]. 

With the integration of modern technologies, 
such as artificial intelligence, the field of stegan-
ography has witnessed significant advancements. 
In particular, deep-learning models like trans-
formers, originally designed for natural language 
processing (NLP), have demonstrated exception-
al performance in computer vision (CV) tasks [4]. 
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This paper explores the potential of transformers 
for reversible image steganography, presenting a 
novel approach that leverages their ability to en-
code global dependencies and capture contextual 
relationships. 

The reversible steganography method pro-
posed in this paper embeds secret messages into 
media files while preserving their original quality, 
allowing for lossless recovery of both the hidden 
information and the original content. The integra-
tion of transformers into image steganography 
marks a step forward in achieving high-capacity, 
robust, and imperceptible data embedding. By 
addressing the limitations of traditional methods, 
this approach opens new avenues for secure com-
munication and information protection in a vari-
ety of applications.

RELATED WORK

Traditional methods

Traditional steganography methods primar-
ily utilize techniques such as least significant bit 
(LSB) embedding and frequency domain trans-
formations. These methods aim to balance capac-
ity, robustness, and imperceptibility, but often 
struggle to achieve all three simultaneously. The 
following is an analysis of the main approaches, 
their characteristics and limitations. 

LSB-based methods embed secret data by 
altering the least significant bits of pixel values, 
typically within RGB or grayscale channels. 
These techniques are straightforward to imple-
ment and allow for embedding a large amount of 
data. However, they are highly sensitive to image 
manipulations such as compression, cropping, or 
noise, which can corrupt the embedded message. 
While LSB embedding may allow partial revers-
ibility depending on the implementation, it is not 
inherently designed for full recovery. Additional-
ly, slight pixel modifications can become notice-
able in high-resolution or uniform-colored image 
regions. LSB techniques include methods such as 
simple LSB substitution, which directly modifies 
the least significant bits to embed data. Another 
approach is pseudorandomized LSB embedding, 
which enhances security by randomly selecting 
pixel positions for data embedding [5].

Frequency domain methods, such as those us-
ing the discrete cosine transform (DCT) and dis-
crete wavelet transform (DWT), embed data into 

transformed coefficients of the image [6]. These 
methods are advantageous for their resistance to 
common image manipulations, including lossy 
compression (e.g., JPEG), as they modify less 
perceptible areas of the image. While frequency 
domain techniques improve robustness, they are 
not inherently reversible, as the original coeffi-
cients are typically altered irreversibly. Modifi-
cations are usually applied to frequency compo-
nents that are less noticeable to the human visual 
system, such as high-frequency regions.

Generative adversarial networks (GANs) 
have emerged as powerful tools for steganogra-
phy, enabling the embedding of large amounts of 
data without compromising perceptual quality. 
GANs excel in producing robust stego-images, as 
their adversarial training helps them adapt to per-
turbations or image manipulations. While GAN-
based methods can achieve partial reversibility 
under specific conditions, full reversibility is not 
guaranteed by default. The generative capabili-
ties of GANs ensure excellent visual quality, pro-
ducing images that are nearly indistinguishable 
from natural ones. GAN-based methods utilize 
techniques such as modifying GAN-generated 
features to embed hidden messages. Addition-
ally, adversarial training is employed to improve 
both robustness and imperceptibility, ensuring 
the stego-images remain indistinguishable from 
natural images [7]. The evaluation of traditional 
steganography methods is presented in Table 1.

Neural network-based steganography

Recent advancements in neural networks 
have led to the use of CNNs and RNNs for steg-
anography. For example, hide and seek employs 
CNNs for robust image steganography. However, 
their temporal modeling capabilities in video re-
main limited. Deep neural networks (DNNs) offer 
remarkable capabilities in embedding informa-
tion with high imperceptibility and robustness. 
However, many methods do not prioritize revers-
ibility, which limits their applicability in sensi-
tive domains such as medical imaging or digital 
watermarking. 

CNN-based methods have become a corner-
stone of modern steganography due to their abil-
ity to encode secret data into images with high 
imperceptibility. These approaches typically uti-
lize encoder-decoder architectures, where the en-
coder embeds the secret data into a cover image, 
and the decoder retrieves it. By optimizing for 
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imperceptibility, these models achieve robust and 
visually seamless data embedding [8]. 

GANs have been employed in steganography 
to enhance imperceptibility through an adver-
sarial framework. In these methods, the generator 
embeds the secret message, while the discrimi-
nator evaluates the quality of the stego-image, 
pushing the generator toward producing highly 
realistic outputs. This dynamic ensures that the 
embedded information remains concealed from 
human perception while maintaining robustness 
to distortions [9]. 

Hybrid deep learning methods combine neu-
ral networks’ strengths to achieve robustness and 
reversibility. These models often utilize separate 
networks for embedding and recovery, ensuring 
that the secret data and the original cover image 
can both be perfectly retrieved. Such methods are 
particularly relevant for sensitive applications, in-
cluding medical imaging and digital watermark-
ing, where reversibility is critical [10].

Attention mechanisms in steganography 
based architectures focus on embedding data in 
visually less sensitive regions of an image, guided 
by mechanisms such as saliency maps or atten-
tion layers. These methods are optimized for hu-
man perception, enabling high-capacity data hid-
ing while maintaining minimal visual distortion. 
Additionally, they demonstrate robustness against 
manipulations like noise or compression. Howev-
er, reversibility remains moderate, as these meth-
ods often rely on approximate reconstructions 

[11]. The evaluation of neural network-based 
steganography methods is presented in Table 2.

Machine learning methods, particularly those 
using neural networks, offer significant advan-
tages in imperceptibility and robustness for steg-
anography. However, many models sacrifice re-
versibility in favor of embedding capacity and 
robustness, limiting their use in applications like 
medical imaging.

Transformers in steganography

Transformers, originally developed for natu-
ral language processing, have gained traction in 
computer vision tasks due to their ability to cap-
ture global dependencies in data. Recent studies 
have explored their application in steganography, 
particularly for robust image encoding. However, 
the potential of transformers for reversible em-
bedding, where both the original image and the 
hidden data can be perfectly recovered, remains 
underexplored. Below is an analysis of existing 
transformer-based methods in steganography.

Transformers, initially introduced by Vaswani 
et al. [12] for natural language processing tasks 
such as machine translation, have demonstrated 
exceptional performance due to their paralleliza-
tion and ability to model long-range dependen-
cies. This architecture quickly replaced LSTMs 
in NLP tasks and became the dominant model in 
the field. Recently, Transformers have also shown 
significant promise in computer vision (CV), 

Table 1. Evaluation of traditional steganography methods

Method Capacity Robustness Reversibility Imperceptibility 
(PSNR, dB)

LSB-based techniques
Up to 12.5% of image 
size (e.g., 40 KB for 512 
× 512 grayscale)

Low (bit errors ≈ 
80% under JPEG 
compression Q ≤ 50)

Moderate
(partial recovery) 35–40

Frequency domain 
(DCT, DWT)

1–5% of image size (e.g., 
4–20 KB for 512 × 512 
image)

High
(robust to JPEG Q ≥ 30) Low (irreversible) 40–50

GAN-based approaches 15–30% of image size 
(e.g., 1 MB for 512 × 512)

High (robust to cropping, 
resizing, noise)

Moderate  
(90–95% recovery) 45–55

Table 2. Evaluation of neural network-based steganography methods
Method Capacity Imperceptibility (PSNR) Robustness Reversibility Applications

CNN-based 
methods

Moderate
(~5–10%)

High
(50+ dB)

Moderate (resistant to 
noise, compression) Low Secure communication, 

DRM
GAN-based 
methods

High
(~15–30%)

Very High
(55+ dB)

High (robust to 
transformations) Low Covert communication, 

DRM
Reversible neural 
networks

Moderate 
(~5%)

Moderate
(40–50 dB) Moderate High Medical imaging, digital 

forensics
Attention 
mechanisms

High
(~10–20%)

High
(50+ dB) High Moderate High-capacity data 

hiding
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where their attention mechanisms enable efficient 
processing of high-dimensional visual data.

Dosovitskiy et al. [13] proposed the vision 
transformer (ViT) for image classification. ViT 
divides an image into 16 × 16 patches, treats each 
patch as a token, and processes them using a self-
attention mechanism. The patches are flattened 
into one-dimensional vectors, allowing the model 
to learn global dependencies across the entire im-
age. This innovation has been extended to other 
domains, including steganography.

In the context of steganography, transformers 
have been employed to encode secret data into 
images robustly. Their ability to extract meaning-
ful latent representations makes them highly ef-
fective for imperceptible and resilient embedding. 
For example, ViTs have been used to identify the 
most relevant regions of an image for embed-
ding hidden information while maintaining high 
robustness against distortions. However, most of 
these approaches lack reversibility, a limitation 
for applications requiring lossless recovery of 
both the secret data and the original image.

Tancik et al. [14] explored Vision transform-
ers in robust watermarking systems, where they 
demonstrated excellent imperceptibility and re-
sistance to manipulations such as noise and com-
pression. Despite these strengths, these methods 
were not designed to recover the original cover 
image after the embedded data was extracted.

In [15], the author proposed a novel scheme to 
enhance steganography performance by leveraging 
Transformers’ superior feature extraction capabili-
ties. The method referred to as transformer–swim, 
employs a floating window mechanism that im-
proves robustness and embedding efficiency. It was 
shown that this approach outperforms comparable 
state-of-the-art deep learning models, particularly 
in feature extraction for steganography tasks.

To address specific limitations, hybrid models 
combining transformers and convolutional neural 
networks (CNNs) have also been proposed. Wu 
and Liu [16] demonstrated a hybrid architecture 
where transformers process global features, and 

CNNs refine local embedding operations. This 
approach significantly improved robustness and 
imperceptibility but still did not fully achieve 
reversibility. The success of transformer-based 
models in steganography highlights their poten-
tial, but the lack of reversibility remains a chal-
lenge. Future research must focus on develop-
ing novel architectures or integrating reversible 
mechanisms, ensuring that both the hidden data 
and the original image can be perfectly recovered. 
The evaluation of transformer-based stegano-
graphic methods is presented in Table 3.

Transformers excel in global feature extraction 
and robustness. Their ability to embed large pay-
loads while maintaining imperceptibility makes 
them promising for robust steganography appli-
cations, such as digital watermarking and covert 
communication. Most transformer-based methods 
focus solely on robustness and imperceptibility. 
Reversibility, a critical feature for sensitive appli-
cations like medical imaging or secure digital ar-
chiving, has not been fully addressed. This limits 
their broader adoption in applications where loss-
less recovery of the cover image is essential.

STEGO TRANSFORMER

Originally introduced for natural language 
processing tasks, transformers have revolution-
ized machine learning by offering unparalleled 
capabilities in modeling relationships within se-
quential and high-dimensional data. Their core 
functionality lies in the attention mechanism, en-
abling them to effectively capture local and global 
dependencies [17]. At the heart of the transformer 
is the self-attention mechanism, which com-
putes the importance of each element in the in-
put sequence relative to every other element. This 
mechanism ensures that the model focuses on rel-
evant parts of the data while processing. In the 
context of images, transformers divide the image 
into patches (e.g., 16×16 blocks). Each patch is 
treated as a token, and its relationship with other 

Table 3. Evaluation of transformer-based steganographic methods

Method Capacity Robustness Reversibility Imperceptibility
(PSNR, dB)

Robust image encoding High
(~20–30%)

High
(resistant to noise and compression) Low (irreversible) High

(~50–55)
Vision transformers 
(ViT)

High
(~25–35%)

High
(robust to manipulations) Low (irreversible) High

(~50–55)
Hybrid transformer 
models

High
(~20–40%)

Very High
(resistant to cropping, scaling)

Low to moderate (depends 
on hybrid design)

Very high
(~55+)
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patches is analyzed using self-attention. This al-
lows the model to capture both local details and 
the global structure of the image.

Proposed in this work Stego transformer 
(StegoT) is a deep learning model that applies the 
Transformer architecture, originally developed 
for natural language processing (NLP), to stegan-
ography tasks [18].

To process the image a transformer encoder 
to capture spatial and contextual relationships be-
tween image patches. The image is divided into 
patches of size 16×16, and each patch is flattened 
into a vector. These flattened vectors are passed 
through a linear embedding layer to project them 
into a higher-dimensional latent space [20, 21]. 
Positional encodings are then added to each patch 
to retain the spatial structure of the image. 

Let’s break down Inputs to the attention 
mechanism using an example where the input 
consists of a matrix representation of an image 
and a secret message. These inputs are trans-
formed into queries Q, keys K, and values V for 
the attention mechanism. The image is divided 
into patches 16×16 and each patch is flattened 
into a vector. These vectors are concatenated to 
form the image matrix:
 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

  (1)
where: N – number of patches (64 for an 8×8 

grid of patches), dimage – dimensionality of 
each patch (256).

Example:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (2)

The secret message (e.g., a text string) is 
converted into a numerical tensor (e.g., ASCII or 
learned embeddings) and then aligned with the 
image representation:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

(3)
where: R – number of tokens in the message (16), 

dimage – dimensionality of each token (256).

Example:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (4)

The two matrices are concatenated along the 
token axis to create a unified input:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (5)

Example:

  

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 
(6)

Attention in the encoder allows the model to 
capture both local and global dependencies be-
tween image fragments using the multi-headed 
self-attention (MHSA) mechanism:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (7)

The combined matrix Z is linearly trans-
formed into queries (Q), keys (K), and values (V) 
using learnable weight matrices WQ, WK, WV:
 Q = ZWQ,   K = ZWQ,   V = ZWV 

where: WQ, WK, WV ϵ Rd×dk  and dk is the dimen-
sionality of the attention space.

For each input vector zi (row of Z), we compute:
 qi = ziWQ,   ki = ziWK,   vi = ziWV 

Example: 

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

  (8)
Then:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (9)

Similarly, K and V are computed. The multi-
head version (Hheads) combines multiple perspec-
tives of attention.

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (10)
Positional Encodings are added to tokens to 

retain spatial information within the flattened rep-
resentation. This prepares the inputs for the scaled 
dot-product attention step. The attention mecha-
nism computes weights for each token based on 
the similarity between queries (Q) and keys (K). 
The description of the algorithm is given below.

Step 1. Compute attention scores
The attention scores are computed as the dot 

product of Q and KT, scaled by the square root of 
the dimensionality dk to stabilize gradients:
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𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (11)

where:

    

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

Let Q and K have small values for simplicity:
 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

(12)
The resulting scores:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14) 

 (13)

Step 2. Apply Softmax
To normalize the scores into probabilities, ap-

ply the softmax function row-wise:

 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

    (2) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

    (4) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑    (5) 

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
] =

[
 
 
 
 
 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]
 
 
 
 
 

80×256

   (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉   (7) 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄   𝐾𝐾 = 𝑍𝑍𝑊𝑊𝑄𝑄,  𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄, 𝑊𝑊𝑄𝑄, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘  and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space. 

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄,  𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉 

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

    (8) 

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

     (9) 

𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝑍𝑍) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑆𝑆𝐴𝐴(ℎ𝐴𝐴𝑆𝑆𝑑𝑑1, ℎ𝐴𝐴𝑆𝑆𝑑𝑑2,… , ℎ𝐴𝐴𝑆𝑆𝑑𝑑𝐻𝐻)𝑊𝑊𝑜𝑜  (10) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = 𝑄𝑄𝑄𝑄𝛵𝛵

√𝑑𝑑𝑘𝑘
     (11) 

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀) 

• 𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
   (12) 

𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

    (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑆𝑆(𝐴𝐴, 𝑗𝑗) = 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖)
∑ 𝑖𝑖𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
   (14)   (14)

Example for one row of scores:
Row of scores: [0.38, 0.42, ...] → Attention 
weights: [0.25, 0.27, ...] 
Resulting matrix:

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [

0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (15)

Step 3. Compute weighted values
Multiply the attention weights with the values 

matrix V to produce the output representation:
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (16)

where:

     

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

Let V be:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (17)

If a row of is [0.25, 0.27, ...]:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (18)

The output of the scaled dot-product attention 
is a matrix representing the weighted combina-
tion of image and message features:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80
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a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 
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𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 
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2,     (29) 
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𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 
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 – the matrix, 
which contains the raw alignment scores, is 
calculated by multiplying the query matrix by 
the transpose of the key matrix and scaling by 
the square root of the feature dimension (dk).

 • AttentionWeights(Softmax) – for evaluation 
are normalized for each query row using the 

Figure 1. The visualization of attention mechanism: a – attention score matrix, b – attention weights (Softmax), 
c – attention weights
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softmax function to obtain a distribution over 
the keys.

 • Output(AttentionWeights×V) – shows the at-
tention weights computed by the weighted 
sum of the value vectors, which results in the 
final output of the attention mechanism.

The attention mechanism plays a pivotal role 
in the Stego Transformer framework, enabling 
effective embedding and extraction of secret 
messages within the latent space of images. The 
attention mechanism, whose block diagram is 
shown in Figure 2, a core component of Trans-
former architectures, dynamically focuses on the 
most relevant parts of the input data by comput-
ing pairwise relationships between all input ele-
ments. This capability is leveraged in the Stego 
Transformer to encode and decode secret messag-
es with high fidelity and imperceptibility. In the 
encoding phase, the input image is divided into 
fixed-size patches, which are linearly projected 
into a high-dimensional feature space and aug-
mented with positional encodings. The resulting 
embeddings are passed through multiple layers of 
self-attention, allowing the model to capture com-
plex dependencies between patches. This step en-
sures that the latent representation incorporates 
both spatial and contextual information, which is 
crucial for embedding the secret message seam-
lessly without disrupting the perceptual quality of 
the cover image. The attention mechanism oper-
ates by computing query, key, and value vectors 
for each patch, enabling the model to identify 
and prioritize critical regions for embedding. By 
attending to relevant features, the Stego Trans-
former minimizes interference with the image’s 
visual content, ensuring imperceptibility. More-
over, the attention mechanism helps distribute 
the embedded message across the latent space, 
enhancing robustness against distortions such as 
compression or noise. During the decoding phase, 
the transformer decoder employs cross-attention 
layers to reconstruct the secret message from the 

stego image’s latent representation. The cross-at-
tention mechanism aligns the embedded features 
with the original message’s structure, enabling 
accurate recovery. This design ensures reversibil-
ity by maintaining the integrity of both the cover 
image and the secret message. 

Proposed reversible steganography method

The proposed hiding network for Reversible 
Steganography Method is designed to embed 
secret messages into images while ensuring that 
both the secret message and the original image 
can be perfectly recovered. Originally intro duced 
for natural language processing tasks, transform-
ers have revolutionized machine learning by of-
fering unparalleled capabilities in modeling rela-
tionships within sequential and high-dimensional 
data. Their core functionality lies in the attention 
mechanism, which enables them to effectively 
capture both local and global dependencies. At 
the heart of the transformer is the self-attention 
mechanism, which computes the importance of 
each element in the input sequence relative to ev-
ery other element [19-21]. This mechanism en-
sures that the model focuses on relevant parts of 
the data while processing. In the context of im-
ages, transformers divide the image into patches 
(e.g., 16×16 blocks). Each patch is treated as a 
token, and its relationship with other patches is 
analyzed using self-attention. This allows the 
model to capture both local details and the global 
structure of the image. Figure 3 illustrates the la-
tent representation of an image under different 
processing techniques within the proposed Stego-
Transformer framework. Subfigure (a) shows the 
original, unmodified input image, which serves as 
the reference for subsequent transformations.

Subfigure (b) presents a heatmap-based vi-
sualization of the image’s latent representa-
tion, highlighting the spatial regions that encode 
stronger or more relevant semantic features af-
ter passing through the transformer layers. This 

Figure 2. Flowchart of the attention mechanism
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visualization reflects the internal attention distri-
bution and the model’s focus during the embed-
ding process.

Subfigure (c) displays the principal com-
ponent analysis (PCA) projection of the latent 
space, offering a reduced-dimensional view of 
the embedded features. This representation en-
ables analysis of how information is compressed, 
organized, and separated within the latent space, 
providing insight into the structural properties of 
the encoded content.

This model ensures the original image can be 
perfectly reconstructed while securely retrieving 
the hidden message. The architecture leverages at-
tention mechanisms to selectively embed informa-
tion into regions of the image’s latent space, op-
timizing imperceptibility, robustness, and revers-
ibility. The StegoTransformer integrates attention 
mechanisms throughout its architecture to embed 
secret messages in an image’s latent representation

The latent representation of the image pro-
duced by the transformer encoder operates in a 
high-dimensional space. Neural networks can 
learn an optimized representation of the mes-
sage, capturing meaningful features while mini-
mizing redundancy. 

The architecture of the hiding network for 
reversible steganography with transformers

The proposed hiding network for reversible 
steganography with transformers is designed to 
embed secret messages into images while ensur-
ing that both the secret message and the original 
image can be perfectly recovered. The hiding 
network in stegotransformer is designed to em-
bed secret messages into the latent representa-
tion of an image, ensuring high imperceptibility, 

robustness, and reversibility. This approach intro-
duces a novel reversible steganographic method 
that leverages transformer networks, where mes-
sages are encoded directly into the latent repre-
sentation of the image. The latent representation, 
defined as a high-dimensional, abstract encoding 
of the image’s structural and semantic features, 
is obtained by dividing the input image into non-
overlapping patches, projecting these patches into 
a lower-dimensional latent space, and processing 
them through a multi-layer transformer encoder. 
This transformation ensures that the essential in-
formation from the original image is captured in 
a compact and manipulable form, enabling effi-
cient and secure integration of the secret message 
while maintaining the image’s integrity and qual-
ity. A latent image representation after processing 
by a transformer encoder is not a traditional im-
age; instead, it is a high-dimensional numerical 
matrix or tensor. This latent representation cap-
tures the essential features of the image, such as 
spatial and contextual information, in a way that 
is meaningful for downstream tasks (e.g., embed-
ding, classification, or steganography).

The proposed reversible transform steganog-
raphy method (RSTM) architecture includes the 
following stages: input layer, feature extraction, 
message embedding, refinement and recovery, and 
output layer and is shown in Figure 4. The design 
ensures that the original image and the embedded 
secret message can be perfectly reconstructed by 
utilizing a multi-headed transformer self-capture 
mechanism for feature extraction and integration. 

At the beginning, the original image  and the 
secret message  are fed to the input layer, where 
the data is initially processed into the form of 
matrices C ϵ RH×W×3, where H and W are the im-
age dimensions and 3 denotes the RGB channels. 

Figure 3. The latent representation of an image: a – original image, b – Latent reprezentation in heatmaps 
techniques, c – Latent reprezentation in PCA techniques
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A secret message M ϵ Rdm, represented as a binary 
or numeric sequence, is encoded using an embed-
ding network:
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• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (20)
where: fmsg maps M to a high-dimensional rep-

resentation zm ϵ Rdm, compatible with the 
latent space of C.

The feature extraction stage, shown in Figure 
4, uses the transformer encoder to process to-
kenized image slices. The multi-headed self-dual 
layers in Transformer are responsible for captur-
ing global dependencies, which enables robust 
feature extraction from both spatial and spectral 
regions of the image. 

For feature extraction, the cover image is par-
titioned into 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 non-overlapping patches 
of size P×P, which are flattened into tokens:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (21)

where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 is a learnable projection 
matrix. 

A Transformer encoder processes the tokens 
Z(0) = {x1, x2, …, xN. The multi-head self-attention 
mechanism extracts both local and global features:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (22)

where: Q = ZWQ, K = ZWQ, V = ZWV  and WQ, WK, 
WV are learnable projection matrices. 

Positional encodings  are added to the token 
embeddings to retain spatial information:
. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (23)
The secret message embedding zm is integrat-

ed into the image’s latent representation Z (1) using 
a fusion mechanism: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (24)
where: g(·) maps zm to the dimensionality of Z (1). 

This can be implemented as additive fusion  
g(zm) adds zm to selected tokens, concatenative fu-
sion g(zm) appends g(zm) as new tokens. The la-
tent features with the embedded message undergo 
refinement using a Transformer decoder. The de-
coder refines the combined latent representation 
to prepare it for reconstruction Zfuzed:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (25)

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

(26)
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (27)

where: LN( ) is layer normalization, FFN is a 
feedforward network, and l denotes the 
layer index.

During the reconstruction step, the refined 
latent Zrefined representation is decoded to recon-
struct the stego-image of Ĉ:
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (28)
where: frecon maps latent tokens back to the pixel 

space. To ensure imperceptibility, the re-
construction is optimized using the fol-
lowing losses:

Reconstruction loss 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (29)

ensuring minimal perceptual differences between  
C and Ĉ.
Message recovery loss 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

  (30)
where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 = fmsg(Zrefined) represents the extracted 
message.

Figure 4. The architecture of the hiding network for 
reversible steganography with transformers
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Produces the stego-image, which visually rep-
licates the original cover image with the hidden 
message embedded. Provides an inverse process 
to ensure lossless recovery of both the original 
image and the secret message during extraction. 

The output layer at the output of Ĉ produces a 
stego-image, visually indistinguishable from the 
cover image C, with a message embedded in its 
hidden representation. The model guarantees that 
both the original image and the secret message 
can be recovered:

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (31)

The Stego transformer’s hiding network uses 
advanced transformer-based feature extraction, 
multi-head self-attention, and fusion mechanisms 
to embed messages imperceptibly. The architec-
ture’s design balances imperceptibility, robust-
ness, and reversibility, making it suitable for se-
cure communication applications. The total loss 
function is defined as:
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 (32)
where: α and β control the balance between im-

age quality and message recovery.

The architecture of the extracting network
for reversible steganography with 
transformers

The extraction network aims to recover the 
original image and embedded message from the 
encoded image. The architecture utilizes a decod-
er-transformer, ensuring reversibility and main-
taining high fidelity of both the recovered image 
and the extracted message, is shown in Figure 5.

The encoded image  is first divided into non-
overlapping patches of size P×P, resulting in  
patches. Each patch is flattened into tokens for 
processing by the transformer decoder:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

  (33)
 i = 1, 2, ..., N

The transformer decoder extracts features 
from the encoded image patches and fuses them 
with positional embeddings to recover spatial 
information:

 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

where: pi are learnable positional embeddings.

Figure 5. The architecture of the extracting network for reversible steganography with transformers
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The self-attention mechanism in the decoder 
computes queries (Q), keys (K), and values (V) for 
each attention head: Q = z1WQ, K = z1WK, V = z1WV,
where WQ, WK, WV are learnable weights. The at-
tention scores are then calculated as:

 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

  (34)

where: dk is the dimensionality of the key vector.

The multi-head attention aggregates informa-
tion across multiple subspaces:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

 (35)
where: W0 is a learnable projection matrix, and h 

is the number of attention heads.

Finally, the features are refined using feed-
forward layers and residual connections:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

(36)

Message and image reconstruction. The trans-
former decoder outputs latent features that are re-
shaped and passed through a refinement network 
to reconstruct the original image :
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

  (37)

The reconstruction process minimizes the fol-
lowing loss to ensure fidelity:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

  (38)
where: C´ is the reconstructed image.

The latent features are simultaneously used to 
recover the embedded message M:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

 (39)
where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

 is the extracted message, and MLP is 
a multi-layer perceptron that maps latent 
features back to the message space.

The message recovery loss ensures the accu-
rate retrieval of the original message:

 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

 (40)

The total loss function balances the recon-
struction of the image and the recovery of the 
message, while ensuring imperceptibility of the 
steganographic process:
 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42) 

 (41)
where: Lrec – image reconstruction loss, Lmsg –

message recovery loss, Limp – impercepti-
bility loss, which is defined as:

 

 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(�̂�𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, : ]), 𝑖𝑖 = 1,2,… ,𝑁𝑁.  (33) 

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁], 
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾,  𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉 

𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐹𝐹(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (34) 

𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹(ℎ𝐹𝐹𝐹𝐹𝑑𝑑1,… , ℎ𝐹𝐹𝐹𝐹𝑑𝑑ℎ)𝑊𝑊𝑂𝑂,   (35) 

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝐹𝐹𝐿𝐿𝐹𝐹𝐿𝐿𝑁𝑁𝐴𝐴𝐿𝐿𝑆𝑆(𝑀𝑀𝑆𝑆𝐴𝐴(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙.   (36) 

�̂�𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′.     (37) 

𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22,     (38) 

�̂�𝑀 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),    (39) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖�̂�𝑀 −𝑀𝑀‖2
2.     (40) 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑙𝑙𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖,    (41) 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝐶𝐶′, 𝐶𝐶),     (42)   (42)
and λ1, λ2, λ3 are weights controlling the contribu-
tion of each loss component.

The final outputs of the network are the re-
covered original image C´, which closely resem-
bles C  and the extracted secret message 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

   (15) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 × 𝑉𝑉   (16) 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀) 

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘 

• 𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑  

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

    (17) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝑅𝑅𝐴𝐴𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38]  (18) 

𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [
𝐴𝐴1
𝐴𝐴2
⋮
𝐴𝐴80

]

80×64

    (19) 

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
) 

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀),     (20) 

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2  non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens: 

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶[𝐴𝐴])𝐴𝐴𝑒𝑒, 𝐴𝐴 = 1,… ,𝑁𝑁   (21) 

𝐴𝐴𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝐹𝐹𝑥𝑥 (𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉,   (22) 

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃.    (23) 

𝑍𝑍𝑓𝑓𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑍𝑍(1) + 𝐴𝐴(𝑧𝑧𝑚𝑚),    (24) 

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙),   (25) 

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1),  (26) 

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝑁𝑁 (𝐿𝐿𝑁𝑁(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1),   (27) 

�̂�𝐶 = 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑),    (28) 

 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − �̂�𝐶‖2
2,     (29) 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − �̂�𝑀‖2
2,    (30) 

𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑍𝑍𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑟𝑟𝑒𝑒𝑑𝑑) = (�̂�𝐶, �̂�𝑀).    (31) 

𝐿𝐿𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚,    (32) 

�̂�𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2   

, which 
perfectly matches M. This transformer-based ex-
tracting network ensures reversible steganogra-
phy, enabling accurate recovery of both the cover 
image and the embedded message.

EXPERIMENT

To validate the proposed reversible image 
steganography framework, a structured experi-
mental setup was developed using the CIFAR-10 
dataset [23]. In this study, we specifically focused 
on the ‘people’ class, which comprises human-
like figures often depicted in various poses and 
environments. This class was selected due to its 
rich structural diversity, including facial textures, 
clothing patterns, and complex backgrounds –fac-
tors that are particularly challenging for stegano-
graphic embedding. One of the reasons for select-
ing this class is the potential future application of 
this method for hiding confidential information 
directly within photographs of people. Such vari-
ability allowed us to assess how well the trans-
former-based encoder handles semantically rich 
and perceptually sensitive regions. The diversity 
in skin tones, edge patterns, and background clut-
ter served as a useful benchmark for both imper-
ceptibility and robustness analysis.

The embedded latent representation was pro-
cessed by the transformer decoder to reconstruct 
the original image and recover the embedded 
message. Parameters such as peak signal-to-noise 
ratio (PSNR) were used to evaluate the quality 
of the reconstructed image, while the message 
recovery accuracy was validated through bit-
wise comparison between the input and extracted 
messages.

The proposed reversible steganography 
method using transformers can be reduced to 
two main steps: embedding and extraction, as 
shown in Figure 6. In the embedding stage, the 
input data consists of a hidden image  and a se-
cret message . The hidden image is divided into 
non-overlapping regions and its features are 
extracted and these regions are encoded into 
hidden representations. At the same time, the 
secret message is processed and embedded into 
the latent features using the message embed-
ding stage. Then, in the latent features refine-
ment phase, they are combined and refined to 
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provide robust message integration while main-
taining the visual fidelity of the stego-image. 
Finally, the refined latent features are decoded 
to reconstruct the stego-image.

Ĉ which visually resembles the original cover 
image while imperceptibly containing the embed-
ded message. In the extraction stage, the stego-
image  is processed by the extracting network to 
recover both the original cover image C and the 
embedded message Ĉ. The stego-image is divided 
into patches and passed through a transformer-
based decoder, which recovers the latent features. 
These features are used to reconstruct the cover 
image C´ while another branch of the network 
decodes the secret message M´. The reconstruc-
tion and extraction processes are guided by a joint 
loss function that ensures high fidelity of the re-
covered image and the accurate retrieval of the 
embedded message.

The experimental setup for training the re-
versible steganography network was carefully 
designed to achieve an optimal balance between 
training efficiency and performance. The primary 
objectives included high-fidelity reconstruction 
of the original cover image, precise extraction of 
the embedded message, and efficient generaliza-
tion to unseen data. To ensure training stability, 
a batch size of 32, a learning rate of 0.0001, and 
the Adam optimizer [22] were used, providing 
consistent convergence during gradient-based 
optimization. Regularization techniques, such as 
weight decay (0.0005) and dropout (0.1), were 
employed to prevent overfitting and enhance 
generalization.

The network architecture leveraged a latent 
space embedding size of 512, six transformer lay-
ers, and a multi-head attention mechanism with 
eight heads to capture detailed and hierarchical 
data representations. To maintain spatial relation-
ships within image patches, learnable positional 
encodings were applied, which played a critical 
role in achieving accurate reconstruction and 

message extraction. Input images were divided 
into non-overlapping patches of size 16×16, en-
abling efficient processing and feature extraction 
by the transformer network.

The CIFAR-10 dataset was used for training 
and validation, providing diverse visual data to 
facilitate robust learning and evaluation. A com-
posite loss function was defined to optimize both 
tasks simultaneously, using Mean Squared Er-
ror (MSE) for image reconstruction and Binary 
Cross-Entropy (BCE) for message decoding. The 
training process spanned 50 epochs, during which 
the model consistently improved in both recon-
struction fidelity and message recovery accuracy. 
These hyperparameter choices and experimental 
strategies ensured the model’s ability to achieve 
high performance while maintaining the revers-
ibility of the steganographic process (Table 4).

The proposed reversible steganography meth-
od with transformers balances training efficiency 
and performance, achieving high reconstruction 
fidelity and accurate message extraction. Ex-
periments on CIFAR-10 and ImageNet datasets 
assessed capacity, imperceptibility, robustness, 
and reversibility. The method achieves a maxi-
mum message size of 512 bits (1 bit per pixel), 
maintaining high fidelity with an average PSNR 
exceeding 50 dB for CIFAR-10 and 45 dB for 
ImageNet. Robustness was evaluated under dis-
tortions like JPEG compression and noise. At a 
JPEG quality of 90%, the PSNR is 48 dB with 
a recovery accuracy of 99.96%, while Gaussian 
noise (σ = 0.01) gives a PSNR of 44 dB and a 
recovery accuracy of 98.5%. The embedding pro-
cess is effectively reversible, with negligible re-
construction and reversibility losses. Efficiency is 
demonstrated by a training time of 120 seconds 
per epoch (CIFAR-10, batch size = 64) and an 
inference time of 0.03 seconds per image. Com-
pared to existing methods, the approach achieves 
a PSNR improvement of 5 dB over GAN-based 
techniques and doubles the embedding capacity 

Figure 6. Generalized message embedding and extracting diagram for the reversible steganography with 
transformers
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of traditional methods. Embedding capacity is 
calculated by multiplying the total number of pix-
els in the cover medium by the number of bits 
that can be embedded in each pixel. A latent space 
dimension of 512 offers an optimal trade-off be-
tween capacity and reconstruction quality, though 
higher learning rates (>0.001) cause instability. 
In summary, the method delivers superior imper-
ceptibility, robustness, reversibility, and compu-
tational efficiency, making it a competitive alter-
native to both traditional and deep learning-based 
steganography techniques.

RESULTS 

Experimental results of the reversible steganog-
raphy method using transformers are presented in 
Table 5 demonstrating its robustness and efficien-
cy. The method was evaluated on the CIFAR-10 

Table 5. The experimental results for the proposed RSTM
Parameters Evaluation method Result Comments

Dataset CIFAR-10 Images resized to 32 × 32 The standard benchmark for image 
processing

Message size Random binary message 
(512 bits) Successfully embedded Seamless integration with latent 

structure

Image reconstruction Peak signal-to-noise ratio 
(PSNR) > 50 dB High-quality, imperceptible modifications

Message recovery accuracy Bitwise comparison 99.96% Recoverable embedded messages

Transformer encoder Latent space conversion
(patch-based) Successful Divided into patches and transformed

Transformer decoder Image and message 
reconstruction Successful The original image and message 

perfectly recovered

Applications Secure communication, 
digital forensics Robust High capacity and reversible embedding

dataset, with the image size resized to 32×32 pixels 
to ensure compatibility with a standard image pro-
cessing benchmark. A random binary message of 
512 bits was successfully embedded in each image, 
seamlessly blending into the latent structure. The 
peak signal-to-noise ratio (PSNR) exceeded 50 dB, 
indicating high-quality reconstruction with imper-
ceptible changes to the original images, which is a 
critical requirement for steganography.

The transformer encoder successfully con-
verted images into latent space using a patch-
based approach, dividing the image into patches 
for effective localized information processing. 
The decoder perfectly reconstructed both the im-
age and the embedded message, demonstrating 
the method’s robustness and precision in revers-
ing the embedding process. 

With applications in secure communication 
and digital forensics, the method offers a robust 

Table 4. Hyperparameters for training the reversible steganography network
Hyperparameters Value Description

Batch size 32 Number of samples processed per training iteration

Learning rate 0.0001 Step size for gradient descent optimization

Optimizer Adam Optimization algorithm used for training

Weight decay 0.0005 Regularization parameter to prevent overfitting

Number of epochs 50 Total number of complete passes through the training dataset

Embedding size 512 The dimensionality of the latent space used for embedding

Transformer layers 6 Number of encoder and decoder layers in the transformer

Number of heads 8 Number of attention heads in the multi-head attention mechanism

Dropout rate 0.1 Dropout probability is used to prevent overfitting in the network

Positional encoding type Learnable Type of positional encoding applied to the input patches

Patch size 16 × 16 Size of the image patches processed by the transformer

Training dataset CIFAR-10 Dataset used for training, containing 60,000 labeled images

Validation dataset CIFAR-10 (Validation) Dataset split used for validation during training

Loss function MSE (Image), BCE (Text) Mean squared error (image reconstruction) and binary cross-entropy 
(message)
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solution with high embedding capacity and full 
reversibility. The PSNR exceeding 50 dB and 
99.96% message recovery accuracy (MRA, cal-
culated as the percentage of correctly extracted 
message bits) highlight its superior performance 
compared to traditional approaches. The use of a 
transformer-based architecture ensures scalability 
and adaptability for diverse datasets.

A visually represents the reconstruction qual-
ity of the stego-images, demonstrating the robust-
ness of the proposed approach across different 
datasets is shown in Figure 7.

Figure 7 shows the robustness of the meth-
od on CIFAR-10, ImageNet with clean images, 
JPEG compression (90%) and added Gaussian 
noise (σ = 0.01). Four main parameters were used 
to evaluate the method: performance, impercep-
tibility PSNR, robustness, and reversibility. The 
proposed method performed well on all param-
eters, and the results are summarized in Table 6.

The method demonstrated superior capac-
ity and imperceptibility compared to CNN- and 
GAN-based methods, while maintaining robust-
ness and reversibility [24]. The transformer-based 
approach effectively captured both local and 
global features, allowing precise embedding and 
extraction of secret messages. The results con-
firmed the potential of transformers in reversible 
steganography tasks, especially for applications 
requiring high data capacity and image quality 
preservation. The method exhibited higher com-
putational requirements due to the transformer 
architecture. Additionally, performance degrada-
tion was observed in extremely high-noise sce-
narios, indicating a need for further optimization 
in robustness against adversarial attacks. These 
experiments allow evaluating the proposed meth-
od, emphasizing its advantages, and paving the 
way for future improvements.

The reversible steganography method with 
transformers opens several promising avenues for 
future research. One significant direction is the 
optimization of computational efficiency. While 
transformers excel at capturing complex pat-
terns and features, their resource-intensive nature 
poses challenges for real-time and large-scale ap-
plications. Developing lightweight transformer 
architectures or incorporating efficient training 
techniques could help mitigate these limitations. 
Another area of exploration lies in extending 
the methodology to different data modalities. 
The current work focuses on images, but adapt-
ing the approach to audio, video, or even multi-
modal data could uncover new possibilities for 
secure data embedding and retrieval across vari-
ous media formats. This would require tailored 
modifications to account for the distinct structural 
and temporal characteristics of these data types. 
Enhancing robustness against more complex at-
tacks is another critical research avenue. While 
the method demonstrates resilience to noise and 

Table 6. Comparison with existing methods

Method Capacity Imperceptibility 
(PSNR, dB) Robustness Reversibility Applications

CNN-based 
methods Moderate (~5–10%) High

(50+)
Moderate (resistant to 
noise, compression) Low Secure communication, 

DRM
GAN-based 
methods High (~15–30%) Very High

(55+)
High (robust to 
transformations) Low Covert communication, 

DRM
Reversible 
neural networks Moderate (~5%) Moderate

(40–50) Moderate High Medical imaging, digital 
forensics

Attention 
mechanisms High (~10–20%) High

(50+) High Moderate High-capacity data 
hiding

Reversible 
steganography 
method (RSTM)

Very High (~20–30%) Very High
(55+)

High (resistant 
to complex 
transformations)

High
Secure communication, 
medical imaging, IP 
protection

Figure 7. PSNR values for CIFAR-10 and ImageNet
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transformations, future work could explore ad-
vanced strategies to counter adversarial attacks or 
compression techniques without compromising 
reversibility or capacity. Investigating adaptive 
embedding strategies is also an intriguing direc-
tion. By dynamically adjusting the embedding 
process based on the content and complexity of 
the input image, it might be possible to further 
enhance imperceptibility and robustness while 
maintaining reversibility. Finally, expanding the 
applicability of the method to real-world scenari-
os, such as medical diagnostics, watermarking, or 
privacy-preserving data sharing, would solidify 
its practical value. 

The ROC curves presented in Figure 8 show 
the performance of the reversible steganography 
method compared to methods based on CNN, 
GAN, reversible neural networks and attention 
mechanisms. The curve of each method was cal-
culated using the hypothesized TPR and FPR val-
ues, and the area under the curve (AUC) gives the 
overall performance score.

The proposed reversible steganography meth-
od exhibits the highest Area Under the Curve 
(AUC), indicating superior performance in dis-
tinguishing between stego and non-stego images 
across varying thresholds. This advantage is at-
tributed to the use of transformers, which effec-
tively capture both local and global features, en-
hancing robustness and imperceptibility. 

The CNN-based methods show moderate 
AUC values, reflecting a balanced but less robust 
performance. While these methods are computa-
tionally efficient, they lack the capability to man-
age high-capacity data hiding and are less resilient 

to distortions, making them less suitable for sce-
narios demanding high security and reversibility.

GAN-based methods demonstrate com-
petitive AUC values, closely approaching the 
performance of the proposed method. Their 
strength lies in high imperceptibility and robust-
ness, particularly against image transformations. 
However, they fall short in reversibility and may 
introduce artifacts in certain cases, limiting their 
application in scenarios where exact reconstruc-
tion is critical.

Reversible Neural Networks show lower 
AUC values compared to the proposed method. 
These approaches prioritize reversibility, which 
comes at the cost of reduced robustness and ca-
pacity. They remain effective for specialized ap-
plications, such as medical imaging and foren-
sics, where reversibility is paramount.

Attention mechanisms deliver AUC values 
that are competitive but slightly lower than the 
proposed method. Their ability to balance robust-
ness, imperceptibility, and reversibility makes 
them versatile, though they may struggle with 
extremely high-capacity data hiding compared to 
transformer-based architectures.

The proposed method outperforms other 
techniques in both robustness and imperceptibil-
ity while maintaining reversibility. This balance 
makes it particularly suited for applications re-
quiring secure and covert communication, as well 
as scenarios demanding precise recovery of both 
the original image and embedded message. The 
results underline the significance of leveraging 
advanced transformer architectures for modern 
steganography tasks.

Figure 8. ROC curves of reversible steganography method (RSTM), CNNs, GANs, reversible neural 
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The proposed reversible steganography meth-
od is differentiated from other techniques in terms 
of both persistence and invisibility, while main-
taining reversibility. This balance makes it par-
ticularly suitable for applications requiring secure 
and secret communication, as well as for scenar-
ios requiring accurate reconstruction of both the 
original image and the embedded message.

CONCLUSIONS

The proposed reversible image steganogra-
phy method, built upon a transformer-based ar-
chitecture, demonstrates considerable promise 
for secure and lossless data embedding applica-
tions. By leveraging the transformer’s ability 
to model long-range dependencies, the method 
enables precise integration of hidden messages 
into visual data and their accurate retrieval. Ex-
perimental evaluations confirm that the image 
quality remains visually intact – as evidenced by 
consistently high PSNR values – while message 
recovery accuracy remains high. This makes the 
approach particularly suitable for scenarios in 
which both the cover image and the embedded 
content must be preserved, such as in medical 
image archiving, forensic analysis, and protected 
digital communication. Furthermore, the method 
exhibits resilience against common image modi-
fications, outperforming several conventional 
steganographic techniques in terms of robustness.

Despite these promising results, several limi-
tations remain. The model’s reliance on a multi-
layer transformer architecture results in signifi-
cant computational overhead, which can hinder 
scalability to high-resolution images or real-time 
deployment. Future research may focus on reduc-
ing this complexity through model compression 
techniques such as pruning, quantization, or the 
adoption of lightweight transformer variants like 
MobileViT. Additionally, although the method 
performs well under mild perturbations (e.g., 
JPEG compression at 90% quality, low-level 
Gaussian noise), its robustness deteriorates when 
subjected to more aggressive transformations – 
such as high compression rates (JPEG < 70%), 
rescaling, or semantic-preserving augmentations 
commonly applied by social media platforms. 
These distortions can compromise the integrity 
of the latent embedding, leading to reduced mes-
sage recovery fidelity. Potential solutions include 
adversarial training and the integration of error 

correction mechanisms. Finally, the method’s 
resistance to black-box steganalysis, particularly 
those employing machine learning techniques, 
has not yet been comprehensively evaluated. Fu-
ture work should include rigorous testing against 
both classical and deep-learning-based steganal-
ysis tools to assess its stealthiness under adver-
sarial scrutiny. The presented approach provides 
a robust and intelligent foundation for reversible 
data hiding and paves the way for future advance-
ments in transformer-based steganography.
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