
148

INTRODUCTION

The rapid digitization of global networks
has transformed information into digital bits and
bytes, making it an integral part of computer
systems and communication channels. Critical
information is now stored, processed, and trans-
mitted digitally, exposing it to significant risks.
Malicious actors target these systems to steal sen-
sitive information or disrupt critical operations.
To counteract these threats, cryptography, and
steganography have emerged as pivotal tools in
information security.

Modern cryptography offers a robust suite of
techniques that ensure data confidentiality, integ-
rity, and access control for legitimate users. De-
spite its strengths, cryptography faces challenges
in real-world scenarios. Encrypted, authenticated,
and digitally signed data can be cumbersome to
access during critical decision-making moments.
Furthermore, cryptographic methods cannot in-
herently ensure selective access control and en-
crypted messages can attract unwanted attention

in environments where cryptographic practices
are restricted [1].

Unlike cryptography, steganography address-
es these limitations by concealing the very exis-
tence of secret messages. It embeds sensitive in-
formation into digital objects – such as text files,
license keys, or media files – without arousing
suspicion. Media files, including images, audio,
and video, serve as particularly effective carriers
due to their large data capacity and widespread
usage. Advanced steganographic techniques can
even embed messages so deeply that they remain
intact after editing, resizing, printing, or scan-
ning. These capabilities make image steganogra-
phy a versatile and reliable approach for securing
confidential information [2, 3].

With the integration of modern technologies,
such as artificial intelligence, the field of stegan-
ography has witnessed significant advancements.
In particular, deep-learning models like trans-
formers, originally designed for natural language
processing (NLP), have demonstrated exception-
al performance in computer vision (CV) tasks [4].

Reversible image steganography using transformer-based latent
embedding

Olga Veselska1 , Ruslana Ziubina1*

1 Department of Computer Science and Automatics, University of Bielsko-Biala, 43-306 Bielsko-Biala, Poland
* Corresponding author’s e-mail: rziubina@ubb.edu.pl

ABSTRACT
Steganography, the practice of concealing information within media, has evolved significantly with advancements
in deep learning. This paper presents a novel reversible image steganography framework based on transformer
architectures. The proposed method embeds secret messages into the latent representation of an image obtained
through a transformer encoder. The decoder, implemented as an inverse transformer network, enables the recon-
struction of both the original image and the hidden message. This approach leverages the attention mechanism to
enhance feature extraction, allowing for high embedding capacity while maintaining imperceptibility and robust-
ness. Unlike traditional methods, it ensures full reversibility – a critical requirement in domains such as digital
forensics and medical imaging. Experimental results demonstrate that the proposed system achieves high peak
signal-to-noise ratio (PSNR) and message recovery accuracy, validating its effectiveness and practicality.

Keywords: image steganography; transformer architecture; latent representation; attention mechanism; deep
learning; data hiding; image encryption, message recovery.

Received: 2025.02.07
Accepted: 2025.05.27
Published: 2025.06.25

Advances in Science and Technology Research Journal, 2025, 19(8), 148–164
https://doi.org/10.12913/22998624/204419
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0000-0002-4914-2187
https://orcid.org/0000-0002-8654-6981

149

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

This paper explores the potential of transformers
for reversible image steganography, presenting a
novel approach that leverages their ability to en-
code global dependencies and capture contextual
relationships.

The reversible steganography method pro-
posed in this paper embeds secret messages into
media files while preserving their original quality,
allowing for lossless recovery of both the hidden
information and the original content. The integra-
tion of transformers into image steganography
marks a step forward in achieving high-capacity,
robust, and imperceptible data embedding. By
addressing the limitations of traditional methods,
this approach opens new avenues for secure com-
munication and information protection in a vari-
ety of applications.

RELATED WORK

Traditional methods

Traditional steganography methods primar-
ily utilize techniques such as least significant bit
(LSB) embedding and frequency domain trans-
formations. These methods aim to balance capac-
ity, robustness, and imperceptibility, but often
struggle to achieve all three simultaneously. The
following is an analysis of the main approaches,
their characteristics and limitations.

LSB-based methods embed secret data by
altering the least significant bits of pixel values,
typically within RGB or grayscale channels.
These techniques are straightforward to imple-
ment and allow for embedding a large amount of
data. However, they are highly sensitive to image
manipulations such as compression, cropping, or
noise, which can corrupt the embedded message.
While LSB embedding may allow partial revers-
ibility depending on the implementation, it is not
inherently designed for full recovery. Additional-
ly, slight pixel modifications can become notice-
able in high-resolution or uniform-colored image
regions. LSB techniques include methods such as
simple LSB substitution, which directly modifies
the least significant bits to embed data. Another
approach is pseudorandomized LSB embedding,
which enhances security by randomly selecting
pixel positions for data embedding [5].

Frequency domain methods, such as those us-
ing the discrete cosine transform (DCT) and dis-
crete wavelet transform (DWT), embed data into

transformed coefficients of the image [6]. These
methods are advantageous for their resistance to
common image manipulations, including lossy
compression (e.g., JPEG), as they modify less
perceptible areas of the image. While frequency
domain techniques improve robustness, they are
not inherently reversible, as the original coeffi-
cients are typically altered irreversibly. Modifi-
cations are usually applied to frequency compo-
nents that are less noticeable to the human visual
system, such as high-frequency regions.

Generative adversarial networks (GANs)
have emerged as powerful tools for steganogra-
phy, enabling the embedding of large amounts of
data without compromising perceptual quality.
GANs excel in producing robust stego-images, as
their adversarial training helps them adapt to per-
turbations or image manipulations. While GAN-
based methods can achieve partial reversibility
under specific conditions, full reversibility is not
guaranteed by default. The generative capabili-
ties of GANs ensure excellent visual quality, pro-
ducing images that are nearly indistinguishable
from natural ones. GAN-based methods utilize
techniques such as modifying GAN-generated
features to embed hidden messages. Addition-
ally, adversarial training is employed to improve
both robustness and imperceptibility, ensuring
the stego-images remain indistinguishable from
natural images [7]. The evaluation of traditional
steganography methods is presented in Table 1.

Neural network-based steganography

Recent advancements in neural networks
have led to the use of CNNs and RNNs for steg-
anography. For example, hide and seek employs
CNNs for robust image steganography. However,
their temporal modeling capabilities in video re-
main limited. Deep neural networks (DNNs) offer
remarkable capabilities in embedding informa-
tion with high imperceptibility and robustness.
However, many methods do not prioritize revers-
ibility, which limits their applicability in sensi-
tive domains such as medical imaging or digital
watermarking.

CNN-based methods have become a corner-
stone of modern steganography due to their abil-
ity to encode secret data into images with high
imperceptibility. These approaches typically uti-
lize encoder-decoder architectures, where the en-
coder embeds the secret data into a cover image,
and the decoder retrieves it. By optimizing for

150

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

imperceptibility, these models achieve robust and
visually seamless data embedding [8].

GANs have been employed in steganography
to enhance imperceptibility through an adver-
sarial framework. In these methods, the generator
embeds the secret message, while the discrimi-
nator evaluates the quality of the stego-image,
pushing the generator toward producing highly
realistic outputs. This dynamic ensures that the
embedded information remains concealed from
human perception while maintaining robustness
to distortions [9].

Hybrid deep learning methods combine neu-
ral networks’ strengths to achieve robustness and
reversibility. These models often utilize separate
networks for embedding and recovery, ensuring
that the secret data and the original cover image
can both be perfectly retrieved. Such methods are
particularly relevant for sensitive applications, in-
cluding medical imaging and digital watermark-
ing, where reversibility is critical [10].

Attention mechanisms in steganography
based architectures focus on embedding data in
visually less sensitive regions of an image, guided
by mechanisms such as saliency maps or atten-
tion layers. These methods are optimized for hu-
man perception, enabling high-capacity data hid-
ing while maintaining minimal visual distortion.
Additionally, they demonstrate robustness against
manipulations like noise or compression. Howev-
er, reversibility remains moderate, as these meth-
ods often rely on approximate reconstructions

[11]. The evaluation of neural network-based
steganography methods is presented in Table 2.

Machine learning methods, particularly those
using neural networks, offer significant advan-
tages in imperceptibility and robustness for steg-
anography. However, many models sacrifice re-
versibility in favor of embedding capacity and
robustness, limiting their use in applications like
medical imaging.

Transformers in steganography

Transformers, originally developed for natu-
ral language processing, have gained traction in
computer vision tasks due to their ability to cap-
ture global dependencies in data. Recent studies
have explored their application in steganography,
particularly for robust image encoding. However,
the potential of transformers for reversible em-
bedding, where both the original image and the
hidden data can be perfectly recovered, remains
underexplored. Below is an analysis of existing
transformer-based methods in steganography.

Transformers, initially introduced by Vaswani
et al. [12] for natural language processing tasks
such as machine translation, have demonstrated
exceptional performance due to their paralleliza-
tion and ability to model long-range dependen-
cies. This architecture quickly replaced LSTMs
in NLP tasks and became the dominant model in
the field. Recently, Transformers have also shown
significant promise in computer vision (CV),

Table 1. Evaluation of traditional steganography methods

Method Capacity Robustness Reversibility Imperceptibility
(PSNR, dB)

LSB-based techniques
Up to 12.5% of image
size (e.g., 40 KB for 512
× 512 grayscale)

Low (bit errors ≈
80% under JPEG
compression Q ≤ 50)

Moderate
(partial recovery) 35–40

Frequency domain
(DCT, DWT)

1–5% of image size (e.g.,
4–20 KB for 512 × 512
image)

High
(robust to JPEG Q ≥ 30) Low (irreversible) 40–50

GAN-based approaches 15–30% of image size
(e.g., 1 MB for 512 × 512)

High (robust to cropping,
resizing, noise)

Moderate
(90–95% recovery) 45–55

Table 2. Evaluation of neural network-based steganography methods
Method Capacity Imperceptibility (PSNR) Robustness Reversibility Applications

CNN-based
methods

Moderate
(~5–10%)

High
(50+ dB)

Moderate (resistant to
noise, compression) Low Secure communication,

DRM
GAN-based
methods

High
(~15–30%)

Very High
(55+ dB)

High (robust to
transformations) Low Covert communication,

DRM
Reversible neural
networks

Moderate
(~5%)

Moderate
(40–50 dB) Moderate High Medical imaging, digital

forensics
Attention
mechanisms

High
(~10–20%)

High
(50+ dB) High Moderate High-capacity data

hiding

151

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

where their attention mechanisms enable efficient
processing of high-dimensional visual data.

Dosovitskiy et al. [13] proposed the vision
transformer (ViT) for image classification. ViT
divides an image into 16 × 16 patches, treats each
patch as a token, and processes them using a self-
attention mechanism. The patches are flattened
into one-dimensional vectors, allowing the model
to learn global dependencies across the entire im-
age. This innovation has been extended to other
domains, including steganography.

In the context of steganography, transformers
have been employed to encode secret data into
images robustly. Their ability to extract meaning-
ful latent representations makes them highly ef-
fective for imperceptible and resilient embedding.
For example, ViTs have been used to identify the
most relevant regions of an image for embed-
ding hidden information while maintaining high
robustness against distortions. However, most of
these approaches lack reversibility, a limitation
for applications requiring lossless recovery of
both the secret data and the original image.

Tancik et al. [14] explored Vision transform-
ers in robust watermarking systems, where they
demonstrated excellent imperceptibility and re-
sistance to manipulations such as noise and com-
pression. Despite these strengths, these methods
were not designed to recover the original cover
image after the embedded data was extracted.

In [15], the author proposed a novel scheme to
enhance steganography performance by leveraging
Transformers’ superior feature extraction capabili-
ties. The method referred to as transformer–swim,
employs a floating window mechanism that im-
proves robustness and embedding efficiency. It was
shown that this approach outperforms comparable
state-of-the-art deep learning models, particularly
in feature extraction for steganography tasks.

To address specific limitations, hybrid models
combining transformers and convolutional neural
networks (CNNs) have also been proposed. Wu
and Liu [16] demonstrated a hybrid architecture
where transformers process global features, and

CNNs refine local embedding operations. This
approach significantly improved robustness and
imperceptibility but still did not fully achieve
reversibility. The success of transformer-based
models in steganography highlights their poten-
tial, but the lack of reversibility remains a chal-
lenge. Future research must focus on develop-
ing novel architectures or integrating reversible
mechanisms, ensuring that both the hidden data
and the original image can be perfectly recovered.
The evaluation of transformer-based stegano-
graphic methods is presented in Table 3.

Transformers excel in global feature extraction
and robustness. Their ability to embed large pay-
loads while maintaining imperceptibility makes
them promising for robust steganography appli-
cations, such as digital watermarking and covert
communication. Most transformer-based methods
focus solely on robustness and imperceptibility.
Reversibility, a critical feature for sensitive appli-
cations like medical imaging or secure digital ar-
chiving, has not been fully addressed. This limits
their broader adoption in applications where loss-
less recovery of the cover image is essential.

STEGO TRANSFORMER

Originally introduced for natural language
processing tasks, transformers have revolution-
ized machine learning by offering unparalleled
capabilities in modeling relationships within se-
quential and high-dimensional data. Their core
functionality lies in the attention mechanism, en-
abling them to effectively capture local and global
dependencies [17]. At the heart of the transformer
is the self-attention mechanism, which com-
putes the importance of each element in the in-
put sequence relative to every other element. This
mechanism ensures that the model focuses on rel-
evant parts of the data while processing. In the
context of images, transformers divide the image
into patches (e.g., 16×16 blocks). Each patch is
treated as a token, and its relationship with other

Table 3. Evaluation of transformer-based steganographic methods

Method Capacity Robustness Reversibility Imperceptibility
(PSNR, dB)

Robust image encoding High
(~20–30%)

High
(resistant to noise and compression) Low (irreversible) High

(~50–55)
Vision transformers
(ViT)

High
(~25–35%)

High
(robust to manipulations) Low (irreversible) High

(~50–55)
Hybrid transformer
models

High
(~20–40%)

Very High
(resistant to cropping, scaling)

Low to moderate (depends
on hybrid design)

Very high
(~55+)

152

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

patches is analyzed using self-attention. This al-
lows the model to capture both local details and
the global structure of the image.

Proposed in this work Stego transformer
(StegoT) is a deep learning model that applies the
Transformer architecture, originally developed
for natural language processing (NLP), to stegan-
ography tasks [18].

To process the image a transformer encoder
to capture spatial and contextual relationships be-
tween image patches. The image is divided into
patches of size 16×16, and each patch is flattened
into a vector. These flattened vectors are passed
through a linear embedding layer to project them
into a higher-dimensional latent space [20, 21].
Positional encodings are then added to each patch
to retain the spatial structure of the image.

Let’s break down Inputs to the attention
mechanism using an example where the input
consists of a matrix representation of an image
and a secret message. These inputs are trans-
formed into queries Q, keys K, and values V for
the attention mechanism. The image is divided
into patches 16×16 and each patch is flattened
into a vector. These vectors are concatenated to
form the image matrix:
	 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

 	 (1)
where: N – number of patches (64 for an 8×8

grid of patches), dimage – dimensionality of
each patch (256).

Example:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (2)

The secret message (e.g., a text string) is
converted into a numerical tensor (e.g., ASCII or
learned embeddings) and then aligned with the
image representation:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

(3)
where:	R – number of tokens in the message (16),

dimage – dimensionality of each token (256).

Example:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (4)

The two matrices are concatenated along the
token axis to create a unified input:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (5)

Example:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	
(6)

Attention in the encoder allows the model to
capture both local and global dependencies be-
tween image fragments using the multi-headed
self-attention (MHSA) mechanism:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (7)

The combined matrix Z is linearly trans-
formed into queries (Q), keys (K), and values (V)
using learnable weight matrices WQ, WK, WV:
	 Q = ZWQ, K = ZWQ, V = ZWV

where: WQ, WK, WV ϵ Rd×dk and dk is the dimen-
sionality of the attention space.

For each input vector zi (row of Z), we compute:
	 qi = ziWQ, ki = ziWK, vi = ziWV

Example:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

 	 (8)
Then:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (9)

Similarly, K and V are computed. The multi-
head version (Hheads) combines multiple perspec-
tives of attention.

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (10)
Positional Encodings are added to tokens to

retain spatial information within the flattened rep-
resentation. This prepares the inputs for the scaled
dot-product attention step. The attention mecha-
nism computes weights for each token based on
the similarity between queries (Q) and keys (K).
The description of the algorithm is given below.

Step 1. Compute attention scores
The attention scores are computed as the dot

product of Q and KT, scaled by the square root of
the dimensionality dk to stabilize gradients:

153

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (11)

where:

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

Let Q and K have small values for simplicity:
	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

(12)
The resulting scores:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14)

	 (13)

Step 2. Apply Softmax
To normalize the scores into probabilities, ap-

ply the softmax function row-wise:

	

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |
1.2 0.5 … 0.9
0.7 1.1 … 0.4
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 1.5
|

64×256

 (2)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = |
0.2 1.1 … 0.6
0.9 0.4 … 0.7
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0
|

16×256

 (4)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑 (5)

𝑍𝑍 = [
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
] =

[

 1.2 0.5 … 0.9

⋮ ⋮ ⋱ ⋮
0.3 0.8 … 1.5
0.2 1.1 … 0.6
⋮ ⋮ ⋱ ⋮

0.5 0.3 … 1.0]

80×256

 (6)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉 (7)

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈𝑅𝑅𝑑𝑑×𝑑𝑑𝑘𝑘 and 𝑑𝑑𝑘𝑘 is the dimensionality of the attention space.

𝑞𝑞𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑄𝑄, 𝑘𝑘𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝐾𝐾, 𝑣𝑣𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑊𝑊𝑉𝑉

𝑊𝑊𝑄𝑄 = [
0.2 0.5 … 0.1
⋮ ⋮ ⋱ ⋮

0.3 0.8 … 0.4
]
256×64

 (8)

𝑄𝑄 = [
𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞80

]

80×64

 (9)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, ℎ𝑒𝑒𝑒𝑒𝑒𝑒2,… , ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻)𝑊𝑊𝑜𝑜 (10)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑄𝑄𝐾𝐾𝛵𝛵

√𝑑𝑑𝑘𝑘
 (11)

• 𝑄𝑄 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝐾𝐾𝛵𝛵 ∈ 𝑅𝑅𝑑𝑑𝑘𝑘×(𝑁𝑁+𝑀𝑀)

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

𝑄𝑄 = [
0.2 0.5
0.3 0.8
⋮ ⋮

]
80×64

, 𝐾𝐾𝛵𝛵 = [0.1 0.4 …
0.6 0.3 …]

64×80
 (12)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
0.38 0.42 …
0.56 0.48 …

⋮ ⋮ ⋱
]
80×80

 (13)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖)(𝑁𝑁+𝑀𝑀)

𝑘𝑘=1
 (14) (14)

Example for one row of scores:
Row of scores: [0.38, 0.42, ...] → Attention
weights: [0.25, 0.27, ...]
Resulting matrix:

	
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [

0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 (15)

Step 3. Compute weighted values
Multiply the attention weights with the values

matrix V to produce the output representation:
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (16)

where:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

Let V be:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (17)

If a row of is [0.25, 0.27, ...]:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (18)

The output of the scaled dot-product attention
is a matrix representing the weighted combina-
tion of image and message features:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (19)

This output will be passed through subse-
quent layers (e.g., feedforward or transformer de-
coders) for further processing. A visualization of
the above described attention mechanism is pre-
sented in Figure 1 and shows:

	• Attention score matrix

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 – the matrix,
which contains the raw alignment scores, is
calculated by multiplying the query matrix by
the transpose of the key matrix and scaling by
the square root of the feature dimension (dk).

	• AttentionWeights(Softmax) – for evaluation
are normalized for each query row using the

Figure 1. The visualization of attention mechanism: a – attention score matrix, b – attention weights (Softmax),
c – attention weights

154

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

softmax function to obtain a distribution over
the keys.

	• Output(AttentionWeights×V) – shows the at-
tention weights computed by the weighted
sum of the value vectors, which results in the
final output of the attention mechanism.

The attention mechanism plays a pivotal role
in the Stego Transformer framework, enabling
effective embedding and extraction of secret
messages within the latent space of images. The
attention mechanism, whose block diagram is
shown in Figure 2, a core component of Trans-
former architectures, dynamically focuses on the
most relevant parts of the input data by comput-
ing pairwise relationships between all input ele-
ments. This capability is leveraged in the Stego
Transformer to encode and decode secret messag-
es with high fidelity and imperceptibility. In the
encoding phase, the input image is divided into
fixed-size patches, which are linearly projected
into a high-dimensional feature space and aug-
mented with positional encodings. The resulting
embeddings are passed through multiple layers of
self-attention, allowing the model to capture com-
plex dependencies between patches. This step en-
sures that the latent representation incorporates
both spatial and contextual information, which is
crucial for embedding the secret message seam-
lessly without disrupting the perceptual quality of
the cover image. The attention mechanism oper-
ates by computing query, key, and value vectors
for each patch, enabling the model to identify
and prioritize critical regions for embedding. By
attending to relevant features, the Stego Trans-
former minimizes interference with the image’s
visual content, ensuring imperceptibility. More-
over, the attention mechanism helps distribute
the embedded message across the latent space,
enhancing robustness against distortions such as
compression or noise. During the decoding phase,
the transformer decoder employs cross-attention
layers to reconstruct the secret message from the

stego image’s latent representation. The cross-at-
tention mechanism aligns the embedded features
with the original message’s structure, enabling
accurate recovery. This design ensures reversibil-
ity by maintaining the integrity of both the cover
image and the secret message.

Proposed reversible steganography method

The proposed hiding network for Reversible
Steganography Method is designed to embed
secret messages into images while ensuring that
both the secret message and the original image
can be perfectly recovered. Originally intro duced
for natural language processing tasks, transform-
ers have revolutionized machine learning by of-
fering unparalleled capabilities in modeling rela-
tionships within sequential and high-dimensional
data. Their core functionality lies in the attention
mechanism, which enables them to effectively
capture both local and global dependencies. At
the heart of the transformer is the self-attention
mechanism, which computes the importance of
each element in the input sequence relative to ev-
ery other element [19-21]. This mechanism en-
sures that the model focuses on relevant parts of
the data while processing. In the context of im-
ages, transformers divide the image into patches
(e.g., 16×16 blocks). Each patch is treated as a
token, and its relationship with other patches is
analyzed using self-attention. This allows the
model to capture both local details and the global
structure of the image. Figure 3 illustrates the la-
tent representation of an image under different
processing techniques within the proposed Stego-
Transformer framework. Subfigure (a) shows the
original, unmodified input image, which serves as
the reference for subsequent transformations.

Subfigure (b) presents a heatmap-based vi-
sualization of the image’s latent representa-
tion, highlighting the spatial regions that encode
stronger or more relevant semantic features af-
ter passing through the transformer layers. This

Figure 2. Flowchart of the attention mechanism

155

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

visualization reflects the internal attention distri-
bution and the model’s focus during the embed-
ding process.

Subfigure (c) displays the principal com-
ponent analysis (PCA) projection of the latent
space, offering a reduced-dimensional view of
the embedded features. This representation en-
ables analysis of how information is compressed,
organized, and separated within the latent space,
providing insight into the structural properties of
the encoded content.

This model ensures the original image can be
perfectly reconstructed while securely retrieving
the hidden message. The architecture leverages at-
tention mechanisms to selectively embed informa-
tion into regions of the image’s latent space, op-
timizing imperceptibility, robustness, and revers-
ibility. The StegoTransformer integrates attention
mechanisms throughout its architecture to embed
secret messages in an image’s latent representation

The latent representation of the image pro-
duced by the transformer encoder operates in a
high-dimensional space. Neural networks can
learn an optimized representation of the mes-
sage, capturing meaningful features while mini-
mizing redundancy.

The architecture of the hiding network for
reversible steganography with transformers

The proposed hiding network for reversible
steganography with transformers is designed to
embed secret messages into images while ensur-
ing that both the secret message and the original
image can be perfectly recovered. The hiding
network in stegotransformer is designed to em-
bed secret messages into the latent representa-
tion of an image, ensuring high imperceptibility,

robustness, and reversibility. This approach intro-
duces a novel reversible steganographic method
that leverages transformer networks, where mes-
sages are encoded directly into the latent repre-
sentation of the image. The latent representation,
defined as a high-dimensional, abstract encoding
of the image’s structural and semantic features,
is obtained by dividing the input image into non-
overlapping patches, projecting these patches into
a lower-dimensional latent space, and processing
them through a multi-layer transformer encoder.
This transformation ensures that the essential in-
formation from the original image is captured in
a compact and manipulable form, enabling effi-
cient and secure integration of the secret message
while maintaining the image’s integrity and qual-
ity. A latent image representation after processing
by a transformer encoder is not a traditional im-
age; instead, it is a high-dimensional numerical
matrix or tensor. This latent representation cap-
tures the essential features of the image, such as
spatial and contextual information, in a way that
is meaningful for downstream tasks (e.g., embed-
ding, classification, or steganography).

The proposed reversible transform steganog-
raphy method (RSTM) architecture includes the
following stages: input layer, feature extraction,
message embedding, refinement and recovery, and
output layer and is shown in Figure 4. The design
ensures that the original image and the embedded
secret message can be perfectly reconstructed by
utilizing a multi-headed transformer self-capture
mechanism for feature extraction and integration.

At the beginning, the original image and the
secret message are fed to the input layer, where
the data is initially processed into the form of
matrices C ϵ RH×W×3, where H and W are the im-
age dimensions and 3 denotes the RGB channels.

Figure 3. The latent representation of an image: a – original image, b – Latent reprezentation in heatmaps
techniques, c – Latent reprezentation in PCA techniques

156

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

A secret message M ϵ Rdm, represented as a binary
or numeric sequence, is encoded using an embed-
ding network:
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (20)
where:	 fmsg maps M to a high-dimensional rep-

resentation zm ϵ Rdm, compatible with the
latent space of C.

The feature extraction stage, shown in Figure
4, uses the transformer encoder to process to-
kenized image slices. The multi-headed self-dual
layers in Transformer are responsible for captur-
ing global dependencies, which enables robust
feature extraction from both spatial and spectral
regions of the image.

For feature extraction, the cover image is par-
titioned into

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 non-overlapping patches
of size P×P, which are flattened into tokens:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (21)

where:	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 is a learnable projection
matrix.

A Transformer encoder processes the tokens
Z(0) = {x1, x2, …, xN. The multi-head self-attention
mechanism extracts both local and global features:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 (22)

where:	Q = ZWQ, K = ZWQ, V = ZWV and WQ, WK,
WV are learnable projection matrices.

Positional encodings are added to the token
embeddings to retain spatial information:
.	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (23)
The secret message embedding zm is integrat-

ed into the image’s latent representation Z (1) using
a fusion mechanism:
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (24)
where: g(·) maps zm to the dimensionality of Z (1).

This can be implemented as additive fusion
g(zm) adds zm to selected tokens, concatenative fu-
sion g(zm) appends g(zm) as new tokens. The la-
tent features with the embedded message undergo
refinement using a Transformer decoder. The de-
coder refines the combined latent representation
to prepare it for reconstruction Zfuzed:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (25)

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

(26)
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (27)

where:	LN() is layer normalization, FFN is a
feedforward network, and l denotes the
layer index.

During the reconstruction step, the refined
latent Zrefined representation is decoded to recon-
struct the stego-image of Ĉ:
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (28)
where:	 frecon maps latent tokens back to the pixel

space. To ensure imperceptibility, the re-
construction is optimized using the fol-
lowing losses:

Reconstruction loss	

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (29)

ensuring minimal perceptual differences between
C and Ĉ.
Message recovery loss	
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 	 (30)
where:	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 = fmsg(Zrefined) represents the extracted
message.

Figure 4. The architecture of the hiding network for
reversible steganography with transformers

157

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

Produces the stego-image, which visually rep-
licates the original cover image with the hidden
message embedded. Provides an inverse process
to ensure lossless recovery of both the original
image and the secret message during extraction.

The output layer at the output of Ĉ produces a
stego-image, visually indistinguishable from the
cover image C, with a message embedded in its
hidden representation. The model guarantees that
both the original image and the secret message
can be recovered:

	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (31)

The Stego transformer’s hiding network uses
advanced transformer-based feature extraction,
multi-head self-attention, and fusion mechanisms
to embed messages imperceptibly. The architec-
ture’s design balances imperceptibility, robust-
ness, and reversibility, making it suitable for se-
cure communication applications. The total loss
function is defined as:
	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

	 (32)
where:	α and β control the balance between im-

age quality and message recovery.

The architecture of the extracting network
for reversible steganography with
transformers

The extraction network aims to recover the
original image and embedded message from the
encoded image. The architecture utilizes a decod-
er-transformer, ensuring reversibility and main-
taining high fidelity of both the recovered image
and the extracted message, is shown in Figure 5.

The encoded image is first divided into non-
overlapping patches of size P×P, resulting in
patches. Each patch is flattened into tokens for
processing by the transformer decoder:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

 	 (33)
	 i = 1, 2, ..., N

The transformer decoder extracts features
from the encoded image patches and fuses them
with positional embeddings to recover spatial
information:

	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

where: pi are learnable positional embeddings.

Figure 5. The architecture of the extracting network for reversible steganography with transformers

158

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

The self-attention mechanism in the decoder
computes queries (Q), keys (K), and values (V) for
each attention head: Q = z1WQ, K = z1WK, V = z1WV,
where WQ, WK, WV are learnable weights. The at-
tention scores are then calculated as:

	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

 (34)

where: dk is the dimensionality of the key vector.

The multi-head attention aggregates informa-
tion across multiple subspaces:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

	(35)
where: W0 is a learnable projection matrix, and h

is the number of attention heads.

Finally, the features are refined using feed-
forward layers and residual connections:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

(36)

Message and image reconstruction. The trans-
former decoder outputs latent features that are re-
shaped and passed through a refinement network
to reconstruct the original image :
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

 	 (37)

The reconstruction process minimizes the fol-
lowing loss to ensure fidelity:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

 	 (38)
where: C´ is the reconstructed image.

The latent features are simultaneously used to
recover the embedded message M:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

	 (39)
where:	

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

 is the extracted message, and MLP is
a multi-layer perceptron that maps latent
features back to the message space.

The message recovery loss ensures the accu-
rate retrieval of the original message:

	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

 (40)

The total loss function balances the recon-
struction of the image and the recovery of the
message, while ensuring imperceptibility of the
steganographic process:
	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42)

	 (41)
where:	Lrec – image reconstruction loss, Lmsg –

message recovery loss, Limp – impercepti-
bility loss, which is defined as:

	

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶̂𝐶[𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, 𝑝𝑝𝑖𝑖,1: 𝑝𝑝𝑖𝑖,2, :]), 𝑖𝑖 = 1,2,… ,𝑁𝑁. (33)

𝑧𝑧0 = [𝑥𝑥1 + 𝑝𝑝1, 𝑥𝑥2 + 𝑝𝑝2,… , 𝑥𝑥𝑁𝑁 + 𝑝𝑝𝑁𝑁],
𝑄𝑄 = 𝑧𝑧1𝑊𝑊𝑄𝑄,𝐾𝐾 = 𝑧𝑧1𝑊𝑊𝐾𝐾, 𝑉𝑉 = 𝑧𝑧1𝑊𝑊𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (34)

𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑑𝑑1,… , ℎ𝑒𝑒𝑒𝑒𝑑𝑑ℎ)𝑊𝑊𝑂𝑂, (35)

𝑧𝑧𝑙𝑙+1 = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙))) + 𝑧𝑧𝑙𝑙. (36)

𝐶̂𝐶 → 𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → 𝐶𝐶′. (37)

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶′ − 𝐶𝐶‖22, (38)

𝑀̂𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (39)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀̂𝑀 −𝑀𝑀‖2
2. (40)

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, (41)

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶′, 𝐶𝐶), (42) 	 (42)
and λ1, λ2, λ3 are weights controlling the contribu-
tion of each loss component.

The final outputs of the network are the re-
covered original image C´, which closely resem-
bles C and the extracted secret message

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 = [
0.25 0.27 ⋮
0.30 0.35 ⋮
⋮ ⋮ ⋱

]
80×80

 (15)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 × 𝑉𝑉 (16)

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×(𝑁𝑁+𝑀𝑀)

• 𝑉𝑉 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑𝑘𝑘

• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∈ 𝑅𝑅(𝑁𝑁+𝑀𝑀)×𝑑𝑑

𝑉𝑉 = [
0.3 0.7
0.6 0.2
⋮ ⋮

]
80×64

 (17)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [0.25, 0,27, …] × [
0.3 0.7
0.6 0.2
⋮ ⋮

] = [0.42 0.38] (18)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = [
𝑜𝑜1
𝑜𝑜2
⋮
𝑜𝑜80

]

80×64

 (19)

a) Attention score matrix (𝑄𝑄𝐾𝐾
𝛵𝛵

√𝑑𝑑𝑘𝑘
)

𝑧𝑧𝑚𝑚 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀), (20)

𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2 non-overlapping patches of size 𝑃𝑃 × 𝑃𝑃, which are flattened into tokens:

𝑥𝑥𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶[𝑖𝑖])𝑊𝑊𝑒𝑒, 𝑖𝑖 = 1,… ,𝑁𝑁 (21)

𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅(𝑃𝑃2×3)×𝑑𝑑𝑧𝑧 is a learnable projection matrix.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑄𝑄𝑄𝑄
𝑇𝑇

√𝑑𝑑𝑘𝑘
)𝑉𝑉, (22)

𝑍𝑍(1) = 𝑍𝑍(0) + 𝑃𝑃𝑃𝑃. (23)

𝑍𝑍𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑍𝑍(1) + 𝑔𝑔(𝑧𝑧𝑚𝑚), (24)

𝑧𝑧(𝑙𝑙+1) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙), (25)

𝑧𝑧(𝑙𝑙+1) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1)), 𝑍𝑍(1)) + 𝑧𝑧(𝑙𝑙+1), (26)

𝑧𝑧(𝑙𝑙+1) = 𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿(𝑧𝑧(𝑙𝑙+1))) + 𝑧𝑧(𝑙𝑙+1), (27)

𝐶̂𝐶 = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), (28)

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝐶𝐶 − 𝐶̂𝐶‖2
2, (29)

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝑀𝑀 − 𝑀̂𝑀‖2
2, (30)

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = (𝐶̂𝐶, 𝑀̂𝑀). (31)

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, (32)

𝐶̂𝐶 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 is in 𝑁𝑁 = 𝐻𝐻×𝑊𝑊
𝑃𝑃2

, which
perfectly matches M. This transformer-based ex-
tracting network ensures reversible steganogra-
phy, enabling accurate recovery of both the cover
image and the embedded message.

EXPERIMENT

To validate the proposed reversible image
steganography framework, a structured experi-
mental setup was developed using the CIFAR-10
dataset [23]. In this study, we specifically focused
on the ‘people’ class, which comprises human-
like figures often depicted in various poses and
environments. This class was selected due to its
rich structural diversity, including facial textures,
clothing patterns, and complex backgrounds –fac-
tors that are particularly challenging for stegano-
graphic embedding. One of the reasons for select-
ing this class is the potential future application of
this method for hiding confidential information
directly within photographs of people. Such vari-
ability allowed us to assess how well the trans-
former-based encoder handles semantically rich
and perceptually sensitive regions. The diversity
in skin tones, edge patterns, and background clut-
ter served as a useful benchmark for both imper-
ceptibility and robustness analysis.

The embedded latent representation was pro-
cessed by the transformer decoder to reconstruct
the original image and recover the embedded
message. Parameters such as peak signal-to-noise
ratio (PSNR) were used to evaluate the quality
of the reconstructed image, while the message
recovery accuracy was validated through bit-
wise comparison between the input and extracted
messages.

The proposed reversible steganography
method using transformers can be reduced to
two main steps: embedding and extraction, as
shown in Figure 6. In the embedding stage, the
input data consists of a hidden image and a se-
cret message . The hidden image is divided into
non-overlapping regions and its features are
extracted and these regions are encoded into
hidden representations. At the same time, the
secret message is processed and embedded into
the latent features using the message embed-
ding stage. Then, in the latent features refine-
ment phase, they are combined and refined to

159

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

provide robust message integration while main-
taining the visual fidelity of the stego-image.
Finally, the refined latent features are decoded
to reconstruct the stego-image.

Ĉ which visually resembles the original cover
image while imperceptibly containing the embed-
ded message. In the extraction stage, the stego-
image is processed by the extracting network to
recover both the original cover image C and the
embedded message Ĉ. The stego-image is divided
into patches and passed through a transformer-
based decoder, which recovers the latent features.
These features are used to reconstruct the cover
image C´ while another branch of the network
decodes the secret message M´. The reconstruc-
tion and extraction processes are guided by a joint
loss function that ensures high fidelity of the re-
covered image and the accurate retrieval of the
embedded message.

The experimental setup for training the re-
versible steganography network was carefully
designed to achieve an optimal balance between
training efficiency and performance. The primary
objectives included high-fidelity reconstruction
of the original cover image, precise extraction of
the embedded message, and efficient generaliza-
tion to unseen data. To ensure training stability,
a batch size of 32, a learning rate of 0.0001, and
the Adam optimizer [22] were used, providing
consistent convergence during gradient-based
optimization. Regularization techniques, such as
weight decay (0.0005) and dropout (0.1), were
employed to prevent overfitting and enhance
generalization.

The network architecture leveraged a latent
space embedding size of 512, six transformer lay-
ers, and a multi-head attention mechanism with
eight heads to capture detailed and hierarchical
data representations. To maintain spatial relation-
ships within image patches, learnable positional
encodings were applied, which played a critical
role in achieving accurate reconstruction and

message extraction. Input images were divided
into non-overlapping patches of size 16×16, en-
abling efficient processing and feature extraction
by the transformer network.

The CIFAR-10 dataset was used for training
and validation, providing diverse visual data to
facilitate robust learning and evaluation. A com-
posite loss function was defined to optimize both
tasks simultaneously, using Mean Squared Er-
ror (MSE) for image reconstruction and Binary
Cross-Entropy (BCE) for message decoding. The
training process spanned 50 epochs, during which
the model consistently improved in both recon-
struction fidelity and message recovery accuracy.
These hyperparameter choices and experimental
strategies ensured the model’s ability to achieve
high performance while maintaining the revers-
ibility of the steganographic process (Table 4).

The proposed reversible steganography meth-
od with transformers balances training efficiency
and performance, achieving high reconstruction
fidelity and accurate message extraction. Ex-
periments on CIFAR-10 and ImageNet datasets
assessed capacity, imperceptibility, robustness,
and reversibility. The method achieves a maxi-
mum message size of 512 bits (1 bit per pixel),
maintaining high fidelity with an average PSNR
exceeding 50 dB for CIFAR-10 and 45 dB for
ImageNet. Robustness was evaluated under dis-
tortions like JPEG compression and noise. At a
JPEG quality of 90%, the PSNR is 48 dB with
a recovery accuracy of 99.96%, while Gaussian
noise (σ = 0.01) gives a PSNR of 44 dB and a
recovery accuracy of 98.5%. The embedding pro-
cess is effectively reversible, with negligible re-
construction and reversibility losses. Efficiency is
demonstrated by a training time of 120 seconds
per epoch (CIFAR-10, batch size = 64) and an
inference time of 0.03 seconds per image. Com-
pared to existing methods, the approach achieves
a PSNR improvement of 5 dB over GAN-based
techniques and doubles the embedding capacity

Figure 6. Generalized message embedding and extracting diagram for the reversible steganography with
transformers

160

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

of traditional methods. Embedding capacity is
calculated by multiplying the total number of pix-
els in the cover medium by the number of bits
that can be embedded in each pixel. A latent space
dimension of 512 offers an optimal trade-off be-
tween capacity and reconstruction quality, though
higher learning rates (>0.001) cause instability.
In summary, the method delivers superior imper-
ceptibility, robustness, reversibility, and compu-
tational efficiency, making it a competitive alter-
native to both traditional and deep learning-based
steganography techniques.

RESULTS

Experimental results of the reversible steganog-
raphy method using transformers are presented in
Table 5 demonstrating its robustness and efficien-
cy. The method was evaluated on the CIFAR-10

Table 5. The experimental results for the proposed RSTM
Parameters Evaluation method Result Comments

Dataset CIFAR-10 Images resized to 32 × 32 The standard benchmark for image
processing

Message size Random binary message
(512 bits) Successfully embedded Seamless integration with latent

structure

Image reconstruction Peak signal-to-noise ratio
(PSNR) > 50 dB High-quality, imperceptible modifications

Message recovery accuracy Bitwise comparison 99.96% Recoverable embedded messages

Transformer encoder Latent space conversion
(patch-based) Successful Divided into patches and transformed

Transformer decoder Image and message
reconstruction Successful The original image and message

perfectly recovered

Applications Secure communication,
digital forensics Robust High capacity and reversible embedding

dataset, with the image size resized to 32×32 pixels
to ensure compatibility with a standard image pro-
cessing benchmark. A random binary message of
512 bits was successfully embedded in each image,
seamlessly blending into the latent structure. The
peak signal-to-noise ratio (PSNR) exceeded 50 dB,
indicating high-quality reconstruction with imper-
ceptible changes to the original images, which is a
critical requirement for steganography.

The transformer encoder successfully con-
verted images into latent space using a patch-
based approach, dividing the image into patches
for effective localized information processing.
The decoder perfectly reconstructed both the im-
age and the embedded message, demonstrating
the method’s robustness and precision in revers-
ing the embedding process.

With applications in secure communication
and digital forensics, the method offers a robust

Table 4. Hyperparameters for training the reversible steganography network
Hyperparameters Value Description

Batch size 32 Number of samples processed per training iteration

Learning rate 0.0001 Step size for gradient descent optimization

Optimizer Adam Optimization algorithm used for training

Weight decay 0.0005 Regularization parameter to prevent overfitting

Number of epochs 50 Total number of complete passes through the training dataset

Embedding size 512 The dimensionality of the latent space used for embedding

Transformer layers 6 Number of encoder and decoder layers in the transformer

Number of heads 8 Number of attention heads in the multi-head attention mechanism

Dropout rate 0.1 Dropout probability is used to prevent overfitting in the network

Positional encoding type Learnable Type of positional encoding applied to the input patches

Patch size 16 × 16 Size of the image patches processed by the transformer

Training dataset CIFAR-10 Dataset used for training, containing 60,000 labeled images

Validation dataset CIFAR-10 (Validation) Dataset split used for validation during training

Loss function MSE (Image), BCE (Text) Mean squared error (image reconstruction) and binary cross-entropy
(message)

161

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

solution with high embedding capacity and full
reversibility. The PSNR exceeding 50 dB and
99.96% message recovery accuracy (MRA, cal-
culated as the percentage of correctly extracted
message bits) highlight its superior performance
compared to traditional approaches. The use of a
transformer-based architecture ensures scalability
and adaptability for diverse datasets.

A visually represents the reconstruction qual-
ity of the stego-images, demonstrating the robust-
ness of the proposed approach across different
datasets is shown in Figure 7.

Figure 7 shows the robustness of the meth-
od on CIFAR-10, ImageNet with clean images,
JPEG compression (90%) and added Gaussian
noise (σ = 0.01). Four main parameters were used
to evaluate the method: performance, impercep-
tibility PSNR, robustness, and reversibility. The
proposed method performed well on all param-
eters, and the results are summarized in Table 6.

The method demonstrated superior capac-
ity and imperceptibility compared to CNN- and
GAN-based methods, while maintaining robust-
ness and reversibility [24]. The transformer-based
approach effectively captured both local and
global features, allowing precise embedding and
extraction of secret messages. The results con-
firmed the potential of transformers in reversible
steganography tasks, especially for applications
requiring high data capacity and image quality
preservation. The method exhibited higher com-
putational requirements due to the transformer
architecture. Additionally, performance degrada-
tion was observed in extremely high-noise sce-
narios, indicating a need for further optimization
in robustness against adversarial attacks. These
experiments allow evaluating the proposed meth-
od, emphasizing its advantages, and paving the
way for future improvements.

The reversible steganography method with
transformers opens several promising avenues for
future research. One significant direction is the
optimization of computational efficiency. While
transformers excel at capturing complex pat-
terns and features, their resource-intensive nature
poses challenges for real-time and large-scale ap-
plications. Developing lightweight transformer
architectures or incorporating efficient training
techniques could help mitigate these limitations.
Another area of exploration lies in extending
the methodology to different data modalities.
The current work focuses on images, but adapt-
ing the approach to audio, video, or even multi-
modal data could uncover new possibilities for
secure data embedding and retrieval across vari-
ous media formats. This would require tailored
modifications to account for the distinct structural
and temporal characteristics of these data types.
Enhancing robustness against more complex at-
tacks is another critical research avenue. While
the method demonstrates resilience to noise and

Table 6. Comparison with existing methods

Method Capacity Imperceptibility
(PSNR, dB) Robustness Reversibility Applications

CNN-based
methods Moderate (~5–10%) High

(50+)
Moderate (resistant to
noise, compression) Low Secure communication,

DRM
GAN-based
methods High (~15–30%) Very High

(55+)
High (robust to
transformations) Low Covert communication,

DRM
Reversible
neural networks Moderate (~5%) Moderate

(40–50) Moderate High Medical imaging, digital
forensics

Attention
mechanisms High (~10–20%) High

(50+) High Moderate High-capacity data
hiding

Reversible
steganography
method (RSTM)

Very High (~20–30%) Very High
(55+)

High (resistant
to complex
transformations)

High
Secure communication,
medical imaging, IP
protection

Figure 7. PSNR values for CIFAR-10 and ImageNet

162

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

transformations, future work could explore ad-
vanced strategies to counter adversarial attacks or
compression techniques without compromising
reversibility or capacity. Investigating adaptive
embedding strategies is also an intriguing direc-
tion. By dynamically adjusting the embedding
process based on the content and complexity of
the input image, it might be possible to further
enhance imperceptibility and robustness while
maintaining reversibility. Finally, expanding the
applicability of the method to real-world scenari-
os, such as medical diagnostics, watermarking, or
privacy-preserving data sharing, would solidify
its practical value.

The ROC curves presented in Figure 8 show
the performance of the reversible steganography
method compared to methods based on CNN,
GAN, reversible neural networks and attention
mechanisms. The curve of each method was cal-
culated using the hypothesized TPR and FPR val-
ues, and the area under the curve (AUC) gives the
overall performance score.

The proposed reversible steganography meth-
od exhibits the highest Area Under the Curve
(AUC), indicating superior performance in dis-
tinguishing between stego and non-stego images
across varying thresholds. This advantage is at-
tributed to the use of transformers, which effec-
tively capture both local and global features, en-
hancing robustness and imperceptibility.

The CNN-based methods show moderate
AUC values, reflecting a balanced but less robust
performance. While these methods are computa-
tionally efficient, they lack the capability to man-
age high-capacity data hiding and are less resilient

to distortions, making them less suitable for sce-
narios demanding high security and reversibility.

GAN-based methods demonstrate com-
petitive AUC values, closely approaching the
performance of the proposed method. Their
strength lies in high imperceptibility and robust-
ness, particularly against image transformations.
However, they fall short in reversibility and may
introduce artifacts in certain cases, limiting their
application in scenarios where exact reconstruc-
tion is critical.

Reversible Neural Networks show lower
AUC values compared to the proposed method.
These approaches prioritize reversibility, which
comes at the cost of reduced robustness and ca-
pacity. They remain effective for specialized ap-
plications, such as medical imaging and foren-
sics, where reversibility is paramount.

Attention mechanisms deliver AUC values
that are competitive but slightly lower than the
proposed method. Their ability to balance robust-
ness, imperceptibility, and reversibility makes
them versatile, though they may struggle with
extremely high-capacity data hiding compared to
transformer-based architectures.

The proposed method outperforms other
techniques in both robustness and imperceptibil-
ity while maintaining reversibility. This balance
makes it particularly suited for applications re-
quiring secure and covert communication, as well
as scenarios demanding precise recovery of both
the original image and embedded message. The
results underline the significance of leveraging
advanced transformer architectures for modern
steganography tasks.

Figure 8. ROC curves of reversible steganography method (RSTM), CNNs, GANs, reversible neural

163

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

The proposed reversible steganography meth-
od is differentiated from other techniques in terms
of both persistence and invisibility, while main-
taining reversibility. This balance makes it par-
ticularly suitable for applications requiring secure
and secret communication, as well as for scenar-
ios requiring accurate reconstruction of both the
original image and the embedded message.

CONCLUSIONS

The proposed reversible image steganogra-
phy method, built upon a transformer-based ar-
chitecture, demonstrates considerable promise
for secure and lossless data embedding applica-
tions. By leveraging the transformer’s ability
to model long-range dependencies, the method
enables precise integration of hidden messages
into visual data and their accurate retrieval. Ex-
perimental evaluations confirm that the image
quality remains visually intact – as evidenced by
consistently high PSNR values – while message
recovery accuracy remains high. This makes the
approach particularly suitable for scenarios in
which both the cover image and the embedded
content must be preserved, such as in medical
image archiving, forensic analysis, and protected
digital communication. Furthermore, the method
exhibits resilience against common image modi-
fications, outperforming several conventional
steganographic techniques in terms of robustness.

Despite these promising results, several limi-
tations remain. The model’s reliance on a multi-
layer transformer architecture results in signifi-
cant computational overhead, which can hinder
scalability to high-resolution images or real-time
deployment. Future research may focus on reduc-
ing this complexity through model compression
techniques such as pruning, quantization, or the
adoption of lightweight transformer variants like
MobileViT. Additionally, although the method
performs well under mild perturbations (e.g.,
JPEG compression at 90% quality, low-level
Gaussian noise), its robustness deteriorates when
subjected to more aggressive transformations –
such as high compression rates (JPEG < 70%),
rescaling, or semantic-preserving augmentations
commonly applied by social media platforms.
These distortions can compromise the integrity
of the latent embedding, leading to reduced mes-
sage recovery fidelity. Potential solutions include
adversarial training and the integration of error

correction mechanisms. Finally, the method’s
resistance to black-box steganalysis, particularly
those employing machine learning techniques,
has not yet been comprehensively evaluated. Fu-
ture work should include rigorous testing against
both classical and deep-learning-based steganal-
ysis tools to assess its stealthiness under adver-
sarial scrutiny. The presented approach provides
a robust and intelligent foundation for reversible
data hiding and paves the way for future advance-
ments in transformer-based steganography.

REFERENCES

1.	 Chan CK, Cheng LM. Hiding data in images
by simple LSB substitution. Pattern Recognit.
2004;37(3):469–74.

2.	 Bamatraf A, Ibrahim R. A new LSB-based image
steganography method to enhance data hiding se-
curity. Int J Comput Sci Netw Secur. 2010.

3.	 Kowalski J, Nowak M. Steganography usage to
control multimedia stream. Adv Sci Technol Res J.
2014;8(21):80–6.

4.	 Cox IJ, Miller ML, Bloom JA. Digital watermark-
ing. Proc IEEE. 1997;87(7):1127–41.

5.	 Kumar R, Singh K. A DWT-DCT-based robust and
blind watermarking scheme for copyright protec-
tion. Multimed Tools Appl. 2017;76:13541–56.

6.	 Zhang K, Zhu JY. Invisible steganography via gen-
erative adversarial networks. Proc IEEE Conf Com-
put Vis Pattern Recognit (CVPR). 2019.

7.	 Baluja S. Hiding images within images. Adv Neural
Inf Process Syst (NeurIPS). 2017.

8.	 Zhang Z, Wei W. Reversible image steganography
based on deep neural networks. J Vis Commun Im-
age Represent. 2020.

9.	 Wang Z, et al. Deep image steganography using
transformer and recursive permutation. Entropy.
2022;24(7):878.

10.	Kingma DP, Ba JL. Adam: A method for stochastic
optimization. 2014.

11.	Wang Z, Zhou M, Liu B, Li T. Deep image steganog-
raphy using transformer and recursive permutation.
Entropy. 2022;24(7):878.

12.	Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, et al. Attention is all you
need. Adv Neural Inf Process Syst (NeurIPS).
2022;30:5998–6008.

13.	Dosovitskiy A, et al. An image is worth 16×16
words: Transformers for image recognition at scale.
Int Conf Learn Represent (ICLR). 2020.

14.	Tancik M, et al. StegaStamp: Robust invisible wa-
termarking using deep neural networks. IEEE Conf

164

Advances in Science and Technology Research Journal 2025, 19(8), 148–164

Comput Vis Pattern Recognit (CVPR). 2020.
15.	Wu X, Liu Y. Hybrid neural network models for

data hiding in images. Multimed Tools Appl. 2021.
16.	Wu X, Liu Y. Hybrid neural network models for

data hiding in images. Multimed Tools Appl. 2021.
17.	Dong H, et al. Hiding image with inception trans-

former. IET Image Process. 2022.
18.	Huang CH, Wu JL. Image data hiding with multi-

scale autoencoder network. 2022.
19.	Ye H, et al. PPRSteg: Printing and photography

robust QR code steganography via attention flow-
based model. 2024.

20.	Zhou Z, et al. Secret-to-image reversible transfor-
mation for generative steganography. 2022.

21.	Song B, et al. Double-flow-based steganography
without embedding for image-to-image hiding.
2023.

22.	Keras Team. Adam Optimizer. Keras Documenta-
tion [Internet]. Available from: https://keras.io/api/
optimizers/adam/

23.	Krizhevsky A, Hinton G. The CIFAR-10 dataset.
Can Inst Adv Res (CIFAR) [Internet]. Available
from: https://www.cs.toronto.edu/~kriz/cifar.html

24.	Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L.
ImageNet: A large-scale hierarchical image data-
base. Proc IEEE Conf Comput Vis Pattern Recog-
nit (CVPR). 2009:248–55. Available from: https://
www.image-net.org

