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INTRODUCTION

The rapid advancement of robotics and arti-
ficial intelligence has significantly transformed 
modern industrial environments, particularly in 
the areas of logistics, manufacturing, and automat-
ed assembly. Autonomous and semi-autonomous 
robotic systems are increasingly deployed in sce-
narios that demand precision, efficiency, and ad-
aptability—ranging from warehouse automation 
to therapeutic applications and human-robot col-
laboration in production lines. A central challenge 
in these domains is the development of effective 
planning and control strategies for multi-robot 
systems operating under constraints such as lim-
ited communication, dynamic environments, or 
human presence. Traditional approaches to auton-
omous planning often rely on centralized systems 
or explicit inter-robot communication. However, 
recent studies, such as Grzejszczak and Nocon [1], 
demonstrate that decentralized and cooperative 

planning methods, even under non-communicative 
conditions, can substantially enhance performance 
in tasks like parcel transportation in warehouses. 
Their simulation-based work shows that coopera-
tion, in the form of intelligent task allocation and 
physical interaction strategies (e.g., package hand-
offs), can significantly reduce idle time and im-
prove task efficiency. Meanwhile, the integration 
of mobile and collaborative robots is reshaping 
the landscape of industrial automation. Boschetti 
and Minto [2] explore various control strategies 
for mobile collaborative robots, focusing on ad-
mittance controllers to facilitate safe and intuitive 
human interaction. Complementing this, Gusan et 
al. [3] provide a comparative perspective on the 
roles of industrial versus collaborative robots, em-
phasizing their functional benefits and relevance 
in non-conventional and intelligent manufacturing 
systems. In parallel, touch-based human-robot in-
teraction is emerging as a key factor in therapeutic 
and assistive robotics. Mitsuoka et al. [4] propose 
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a semi-autonomous touch system that blends user 
input with robot-initiated contact, aiming to reduce 
discomfort and enhance emotional engagement in 
users – demonstrating the growing interdiscipli-
nary nature of robotics research.

The advancement of mobile and collabora-
tive robotics has become central to addressing 
modern industrial, logistic, and social challenges. 
Burghardt et al. [5] modeled the dynamics of coop-
erating wheeled mobile robots transporting large 
objects, using Lagrange equations and the projec-
tive method to obtain a control-oriented system 
free of unknown friction forces. Complementary 
work by Buratowski et al. [6] and Szuster et al. 
[7] explored hierarchical and fuzzy-neural control 
strategies for mobile robot formations and auton-
omous navigation, respectively. Lee et al. [8] and 
Andersson et al. [9] investigated collaborative ro-
bots in industrial environments, emphasizing the 
importance of safety, usability, and control accu-
racy for effective human-robot interaction. Fer-
raguti et al. [10] proposed a standardized meth-
odology for benchmarking collaborative robots, 
providing insight into their capabilities within the 
context of Industry 4.0. In the domestic and ser-
vice sector, Yamamoto et al. [11] evaluated user 
affinity with autonomous and remote-controlled 
robots in fetch-and-carry tasks, suggesting hybrid 
control modes as a practical solution. Research 
by Rykala et al. [12] demonstrated the use of Ul-
tra Wideband (UWB) technology for tag track-
ing with mecanum-wheeled robots, while Xu et 
al. [13] presented a neural network-based mod-
el identification approach for autonomous robot 
kinematics. Moreover, Burghardt et al. [14–17] 
have contributed significantly to mechatronic 
design and practical implementation, showcas-
ing applications such as virtual reality-based ro-
bot programming, mobile robot prototyping, and 
robot-assisted inspection of turbine geometries. 
Finally, Daneshjo et al. [18] examined vibrodiag-
nostics in robotic maintenance, presenting vibra-
tion analysis as a tool for assessing the health of 
industrial robots. 

SCARA (selective compliance assembly ro-
bot arm) robots have been the subject of extensive 
research due to their versatility in manufacturing 
and educational contexts. These robots are often 
explored for their unique kinematic configura-
tions and potential applications in industrial and 
miniature environments. Van Helvoort et al. [19] 
presented a low-order linear fractional transfor-
mation (LFT) model for a double SCARA robot, 

demonstrating its effectiveness in gain-scheduling 
control systems. Their method utilized analytical 
modelling and frequency response measurements 
to validate the system’s stability and applicability 
in industrial settings. This work underscores the 
potential of SCARA robots in precision-driven 
environments through advanced control design. 
Similarly, Coman et al. [20] focused on a dou-
ble-arm SCARA robot with a five-link parallel 
mechanism. Their study covered physical structure 
development, kinematic modeling, and integra-
tion of control systems to perform pick-and-place 
tasks. Their findings emphasize the importance 
of kinematic accuracy and repeatability in indus-
trial scenarios. Siltala et al. [21] introduced the H-
SCARA mini robot, which combines dual parallel 
kinematic structures. This compact design aligns 
with the modularity of desktop and micro-factory 
concepts, enabling efficient manufacturing with 
minimal workspace requirements. Their work 
highlighted the potential for reconfigurable assem-
bly systems in constrained environments. Vuola et 
al. [22] discussed the broader scope of miniatur-
ized production systems and their alignment with 
sustainable manufacturing trends. The presented 
flexible screwing cell exemplifies how macro-
world assembly systems can be adapted for minia-
turized applications, demonstrating the scalability 
of SCARA-based solutions. Salzmann et al. [23] 
proposed a miniature robot for otologic surgery, 
featuring a five-degree-of-freedom parallel struc-
ture tailored for precise bone drilling. This study 
exemplifies how parallel kinematic configurations 
like those of SCARA robots can meet the stringent 
accuracy demands of medical applications.

The integration of vision systems into robotic 
applications has been extensively explored to en-
hance autonomy and adaptability. Vision-based 
control techniques are pivotal for tasks requiring 
precision and adaptability in dynamic environ-
ments. Ali et al. [24] demonstrated the integra-
tion of a vision system with an existing Scorbot 
manipulator for object sorting in industrial appli-
cations. They addressed challenges such as com-
munication protocols, camera-robot coordination, 
and system integration, paving the way for adapt-
able manufacturing solutions. Mehta and Burks 
[25] developed a vision-based control system for 
robotic fruit harvesting. Their cooperative visual 
servo controller utilized fixed and camera-in-hand 
systems to ensure precise targeting and harvesting. 
The controller’s stability analysis and practical 
evaluations highlighted the role of vision systems 
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in enhancing robotic efficiency in agricultural do-
mains. Stieber et al. [26] investigated vision-based 
sensing and control for space manipulators, ad-
dressing challenges like structural flexibility and 
non-collocated sensor-actuator configurations. 
Their work demonstrated how photogrammetric 
image processing could achieve precise real-time 
positioning for payload handling in space. Wells 
et al. [27] utilized feedforward neural networks 
for vision-based robot positioning. By learning 
the implicit relationship between pose displace-
ments and global image descriptors, their method 
achieved high accuracy in industrial inspection 
tasks, showcasing the potential of AI (artificial 
intelligence) in enhancing visual servoing. Corke 
and Hager [28] provided an extensive overview of 
vision-based control methodologies, emphasizing 
the interplay between vision and control systems. 
They discussed key issues like dynamic perfor-
mance, feature extraction, and future research 
trends. A comprehensive review by Hashimoto 
[29] further categorized vision-based control ap-
proaches, focusing on robust and globally stable 
controllers. Their work highlights the evolution of 
vision-based servo mechanisms and their critical 
role in advancing robotic manipulators. The work 
of Bochen and Ambrozkiewicz [30] investigates 
how light intensity impacts the performance of 
vision systems used in collaborative robots like 
ABB Yumi, offering insights into the environmen-
tal dependencies of visual object detection.

The inclusion of vision-based control in the 
education of future robotics and mechatronics en-
gineers is paramount to prepare them for the chal-
lenges of modern industry and research. Vision 
systems are integral to advanced robotics applica-
tions, enabling robots to operate in unstructured, 
dynamic environments with enhanced perception 
and adaptability. By incorporating vision-based 
control into educational programs, students gain 
hands-on experience in critical areas such as im-
age processing, computer vision, and visual ser-
voing. These skills are essential for developing 
solutions to real-world problems, ranging from 
autonomous navigation and object manipulation 
to defect detection and quality control in manu-
facturing. Furthermore, exposure to the integra-
tion of vision systems with robotic platforms 
fosters an interdisciplinary approach, combining 
principles of electronics, programming, and me-
chanical design. This holistic education equips 
future engineers to innovate in rapidly evolving 
fields such as autonomous systems, collaborative 

robots, and AI-powered robotics, ensuring their 
competitiveness and adaptability in the work-
force. This project aimed to develop an easy-to-
build and deploy educational robot, which may 
be used during classes to study machine vision-
based control and classification. The remainder of 
this paper is organized as follows: 
	• Section 2 describes the design of the educa-

tional parallel SCARA robot, detailing its ge-
ometry, kinematics, control system configura-
tion, and manufacturing process.

	• Section 3 focuses on the sample laboratory ex-
ercises developed for the robot, starting with a 
pick-and-place task that includes the general 
control algorithm, synchronous movement of 
stepper motors, object detection, and tool cen-
ter point positioning. The section then delves 
into the supervised classification of parts, cov-
ering data preparation and the use of deep con-
volutional neural networks. It concludes with 
unsupervised classification of parts, exploring 
data preparation, convolutional autoencoders, 
and latent space exploration. Here we present 
the results and discussion of the experiments 
conducted during the laboratory exercises.

	• Section 4 provides a summary of the findings 
and conclusions drawn from the study. 

ROBOT DESIGN

This section presents the design of a double 
SCARA manipulator, covering its geometry, ki-
nematics, manufacturing processes, and the con-
trol system used.

Geometry and kinematics

The robot was designed as a parallel SCARA 
manipulator driven by two stepper motors controlled 
by Raspberry Pi Zero 2W. The 3D CAD model of 
the designed manipulator is shown in Figure 1.

As the gripper, the electromagnet is used, 
which may manipulate objects into one from se-
lected boxes attached, the camera observes the 
working area of the manipulator. The kinematic 
diagram and top view of the manipulator are pre-
sented in Figure 2. Two stepper motors are direct-
ly connected (by joints OL and OR) to the first pair 
of arms |ALOL|, |AROR| (length l1 = 75 mm) which 
are connected by revolute joints (points AL and 
AR) with the second pair of arms |ALTCP|, |ART-
CP| (length l2 = 95 mm). The angles of rotation of 
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the first pair of arms φL and φR define the position 
of the centre point of the tool (TCP). The points 
OL and OR are shifted through the horizontal co-
ordinate system axis x against the vertical axis y 
by e = 22.5 mm.

Based on Figure 2 we may find the inverse ki-
nematics of the manipulator given by Equation 1: 

	

𝜑𝜑𝑅𝑅 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒) −
− acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

𝜑𝜑𝐿𝐿 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒) +
+ acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

    (1) 

 
 
 
𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿  =  
= 𝑙𝑙1 sin 𝜑𝜑𝑃𝑃 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 
−𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 = 
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 
 
 

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 = −𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 =   
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 

𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿 = 
=𝑙𝑙1 sin 𝜑𝜑𝑅𝑅 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 

 
 
𝑥𝑥 = 𝑠𝑠𝑐𝑐𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑥𝑥
𝑦𝑦 = −𝑠𝑠𝑐𝑐𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

      (4) 

 
 
∆𝜑𝜑′𝑅𝑅 = −(𝜑𝜑′𝑅𝑅 − 𝜑𝜑𝑅𝑅)
∆𝜑𝜑′𝐿𝐿 = −(𝜑𝜑′𝐿𝐿 − 𝜑𝜑𝐿𝐿)      (5) 

 
 
 

	 (1)

where:	atan2(y,x) is the 2-argument arctangent 
function, xTCP and yTCP are the tool centre 
point (TCP) coordinates in the coordinate 
system x-y. Based on Figure 2 we can also 
derive the forward kinematics. By solving 
the system of Equations 2 for γL and γR:

	

𝜑𝜑𝑅𝑅 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒) −
− acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

𝜑𝜑𝐿𝐿 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒) +
+ acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

    (1) 

 
 
 
𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿  =  
= 𝑙𝑙1 sin 𝜑𝜑𝑃𝑃 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 
−𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 = 
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 
 
 

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 = −𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 =   
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 

𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿 = 
=𝑙𝑙1 sin 𝜑𝜑𝑅𝑅 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 

 
 
𝑥𝑥 = 𝑠𝑠𝑐𝑐𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑥𝑥
𝑦𝑦 = −𝑠𝑠𝑐𝑐𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

      (4) 

 
 
∆𝜑𝜑′𝑅𝑅 = −(𝜑𝜑′𝑅𝑅 − 𝜑𝜑𝑅𝑅)
∆𝜑𝜑′𝐿𝐿 = −(𝜑𝜑′𝐿𝐿 − 𝜑𝜑𝐿𝐿)      (5) 

 
 
 

	 (2)

and then substituting them into (3):

	

𝜑𝜑𝑅𝑅 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒) −
− acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

𝜑𝜑𝐿𝐿 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒) +
+ acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

    (1) 

 
 
 
𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿  =  
= 𝑙𝑙1 sin 𝜑𝜑𝑃𝑃 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 
−𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 = 
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 
 
 

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 = −𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 =   
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 

𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿 = 
=𝑙𝑙1 sin 𝜑𝜑𝑅𝑅 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 

 
 
𝑥𝑥 = 𝑠𝑠𝑐𝑐𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑥𝑥
𝑦𝑦 = −𝑠𝑠𝑐𝑐𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

      (4) 

 
 
∆𝜑𝜑′𝑅𝑅 = −(𝜑𝜑′𝑅𝑅 − 𝜑𝜑𝑅𝑅)
∆𝜑𝜑′𝐿𝐿 = −(𝜑𝜑′𝐿𝐿 − 𝜑𝜑𝐿𝐿)      (5) 

 
 
 

	 (3)

we arrive at the coordinates of the tool cen-
tre point (TCP). Taking into account geometric 
boundary conditions such as:
	• avoiding collision of the second pair of arms 

(π – φL – φR ≥ 0.51 rad),
	• avoiding collision of arm l1 with l2 (ϒR + φR ≥ 

0.37 rad and ϒL + π – φL ≥ 0.37 rad ),
	• avoiding collision of the first pair of arms with 

the body (φL ϵ [0.62 rad, 3.87 rad] and φR ϵ 
[–0.73 rad, 2.51 rad]),

we may obtain the workspace of the manipu-
lator (Figure 3).

The gripper can reach every box and most of 
the worktable area, making it possible to perform 
pick-and-place tasks.

To produce manipulator parts, we have used 
Prusa i3 MK3S 3D printer (Figure 4a). This print-
er makes the use of melted and extruded manu-
facturing (MEM) also known as fused filament 
fabrication (FFF) or fused deposition modelling 
(FDM). This method involves building the model 
layer by layer by pressing filament through the 
nozzle, which is heated to melt the material being 

Figure 1. Isometric view of the parallel SCARA manipulator
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pressed. Parts of the manipulator were manufac-
tured from ABS (acrylonitrile butadiene styrene) 
thermoplastic polymer, which is characterized by 
significant strength, resistance to shocks and rela-
tively high melting temperature [31].

Models were arranged on the worktable of the 
3D printer in the virtual environment (Figure 4b). 
Next the 3D printing parameters were chosen (Fig-
ure 4c). The basic parameters were 0.2 mm of layer 
thickness and 80% of parallel lines internal fill.

Control system configuration

The control of the manipulator is realised by 
a Raspberry Pi Zero 2W microcontroller, which 
might be programmed with the aid of MATLAB 

environment, Python, or C (Figure 5). The code can 
be deployed and tested remotely on the edge device 
via the WiFi network. The USB camera is connect-
ed to the first micro-USB port on the board. Control 
of the stepper motors (28BYJ-48) is performed with 
the aid of two stepper motor drivers (ULN2008) 
which are controlled by a Raspberry Pi board 
through the general purpose input/output interface 
(GPIO). This interface is also used for gripper con-
trol (electromagnet module SEN-MAG25N).

SAMPLE LABORATORY EXERCISES

This section introduces sample laboratory exer-
cises that can be performed during classes, namely: 

Figure 2. Kinematical structure of parallel SCARA manipulator

Figure 3. Workspace of the parallel SCARA manipulator
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pick and place task, supervised classification of 
parts, and unsupervised classification of parts.

Pick-and-place task

Pick-and-place tasks are fundamental in ro-
botics, involving the movement of an object from 
one location to another. These tasks are vital for 
automating processes in various industries, such 
as manufacturing, logistics, healthcare, and ser-
vice robotics. This section introduces a general 
control algorithm for coordinating the synchro-
nous movement of stepper motors, along with 
object detection and tool center point positioning.

General control algorithm 

Here, we present the general control algo-
rithm for the pick and place task. It can be re-
alised by pseudocode given in Figure A.1 (Ap-
pendix). In this case, the code was implemented 
in MATLAB and deployed on the edge device 
with automatic C-code generation. To run the 
algorithm, we need several functions which will 
be explained further in subsequent section. The 
algorithm starts by defining the coordinates of 
the boxes (line 1) and getting the coordinates 
of the objects based on image processing (func-
tion getObjCoords – line 2). Then the number of 

objects for handling is calculated (line 3). More-
over, the initial angular position of arms φL0, φR0 
is calculated with the aid of inverse kinematics 
(function invKin – line 4) based on initial po-
sition of the TCP (x = 0, y = 29.3 mm). These 
initial values are then stored as current angular 
position as variables φL, φR (lines 5 and 6). Next, 
the program iterates over all objects (loop from 
line 8). Within that loop, several consequential 
actions are performed. Firstly, the physical coor-
dinates of centroids for each object are obtained 
(line 9) with the aid of function px2xy which 
transforms pixels into millimetres (refer to sec-
tion “Tool centre point positioning”). Next, the 
angular position of arms φLr, φRr is calculated that 
corresponds to the position of the centroid of the 
handled object (line 10). These angles are then 
used to calculate angles ΔφL, ΔφR at which arms 
need to rotate in order to take the position (lines 
18 and 19) corresponding to the absolute angles 
φLr, φRr. Then stepper motors perform the desired 
movement (line 20) and the values of the cur-
rent angles are updated (lines 21 and 22). Next 
the electromagnet is turned on (function magOn 
– line 16) and the procedure is repeated to move 
to the box defined by counter k (line 17). If TCP 
reaches the desired position the magnet is turned 
off (function magOff – line 23). At the end of the 

Figure 4. Manipulator parts manufacturing: a) Prusa i3 MK3S 3D printer, b) parts arrangement on the worktable, 
c) view of the internal structure of models
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loop, condition is checked (line 25) in order not 
to exceed the number of boxes by counter k. This 
procedure is repeated for all objects detected. At 
the end of the program, TCP returns to initial po-
sition (lines from 29 to 32).

Synchronous movement of stepper motors

For synchronous rotation of stepper motors, 
the motorSync function is applied (Figure A.2 
from an Appendix). Firstly in line 2 basic pa-
rameters of stepper motors are defined such as 
integrated gearbox reduction ratio (ratio = 64), 
number of steps per revolution (st_rev = 64) and 
parameters of stepper motor control like number 
of steps (stepCount = 8 for half-step operation) 
and step time (stepTime = 2 ms). Next, the control 

sequences are calculated for the left and right mo-
tors based on given angles of rotation (line 3). 
For that purpose, the impSeq function is used 
which is given by pseudocode from Figure A.3 
(Appendix) and takes into account the sign of the 
angle. Further, the angles are converted from ra-
dians into the number of revolutions and next into 
number of steps (lines 4 and 5). Motors should 
achieve the desired angular displacement at the 
same time. There are two cases where the angular 
displacement of the left motor is greater than that 
of the right motor (stepsL ≥ stepsR) or when it is 
smaller (stepsL < stepsR). The actual case is rec-
ognized by the conditional statement from line 9. 
In the first case (stepsL ≥ stepsR) dStep parameter 
is defined in line 7. It tells us how much faster 

Figure 5. Control system configuration diagram
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should left motor rotate in order to achieve the fi-
nal position in similar time as right motor. In other 
words it gives us number of the steps of left motor 
which corresponds to one step of right motor. The 
above is realised in loops from line 9 and 11 in 
which setStepR and setStepL function are given 
by pseudocode from Figure A.4 (Appendix) and 
are responsible for setting the pin state for motors 
control. Similar procedure is undertaken for the 
second case (stepsL < stepsR), where also dStep 
is defined in line 27. Here the right motor needs to 
keep up and move faster than the left one.

Object detection

Object detection might be performed using 
the getObjCoord function (Figure A.5 from Ap-
pendix). This function returns coordinates of cen-
troids of objects in pixels. The algorithm starts 
from capturing an image (line 2 – Figure 6a). 
Next, this image is transformed into a greyscale 
image (line 3 – Figure 6b). We also define the 
binary mask (M) within two loops (lines 5 and 
6). The mask mentioned above (Figure 6c) cor-
responds to a working table area – only objects 
on this area are within our interest. Another step 
is to define a kernel for the convolution operation. 
In this study we use the Sobel kernel [32] (line 
14). In addition, we produce convolved images H 

and V, which correspond to horizontal and vertical 
edges (line 15 and 16 – Figure 6d,e). On line 17 
the gradient-filtered image E (Figure 6f) is com-
puted, where the symbol ⊙ denotes element-wise 
product. Next we produce binary image based 
on threshold value of 25, making use of logical 
indexing, which is then masked with previously 
defined binary mask M (line 18) - image Bw. Then 
the area opening is performed (line 19 – Figure 
6g), so removing connected regions which have 
fewer pixels than the estimated object area. The 
hole filling operation is then performed (line 20 – 
Figure 6h). The final step of the algorithm is to de-
fine the hBlob object for the analysis and deriva-
tion of centroids (line 21 and 22). The subsequent 
steps of algorithm are visualised in Figure 6.

As a result, we obtain centroids coordinates, 
which are marked in Figure 7. The values in mil-
limetres were calculated with the aid of the px2xy 
function described in Section 3.1.4.

Tool centre point positioning

In order to get reasonable results, the machine 
vision system needs to be calibrated. Our main 
goal of calibration is to transform the pixel coor-
dinates from the image into a system of coordi-
nates of a manipulator with units of mm. To do 
that, we may use checkerboard pattern (Figure 8).

Figure 6. Image processing for object detection: a) original colour image, b) greyscale image, c) binary mask 
(M), d) convolved image – horizontal edges (H), e) convolved image – vertical edges (V), f) gradient filtered 

image (E), g) black and white image after thresholding and masking (Bw), h) opened image (Bo), i) image after 
hole filling (Bf)
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In this case, checkerboard pattern consists 
of 100 (10 × 10) black and white rectangles of 
width 10 mm. Two coordinate systems are intro-
duced (Figure 8b): x-y as an absolute coordinate 
system of the manipulator and scxim-scyim which 
is a scaled coordinate system of an image. The 
scale coefficient sc may be calculated by direct 
measurements of the checkerboard image. In this 
case, the scale was estimated as sc = 0.241 mm/px. 
From image measurements we may also estimate 
parameters vx = sc∙340 and vy= sc∙212 which gives 
an information about position of the image coor-
dinate system in relation to the center of checker-
board. Furthermore, the checkerboard is placed in 

such a way that ty = 95 mm. Finally, we arrive at 
transformation from image coordinate system to 
coordinate system of manipulator given as:

	

𝜑𝜑𝑅𝑅 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒) −
− acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

𝜑𝜑𝐿𝐿 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒) +
+ acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇

2 +𝑙𝑙1
2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

    (1) 

 
 
 
𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿  =  
= 𝑙𝑙1 sin 𝜑𝜑𝑃𝑃 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 
−𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 = 
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 
 
 

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 = −𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 =   
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 

𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿 = 
=𝑙𝑙1 sin 𝜑𝜑𝑅𝑅 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 

 
 
𝑥𝑥 = 𝑠𝑠𝑐𝑐𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑥𝑥
𝑦𝑦 = −𝑠𝑠𝑐𝑐𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

      (4) 

 
 
∆𝜑𝜑′𝑅𝑅 = −(𝜑𝜑′𝑅𝑅 − 𝜑𝜑𝑅𝑅)
∆𝜑𝜑′𝐿𝐿 = −(𝜑𝜑′𝐿𝐿 − 𝜑𝜑𝐿𝐿)      (5) 

 
 
 

	 (4)

This is the simplest calibration method that 
does not take into account the skewness and distor-
tion of an image resulting from camera lenses. In 
order to evaluate our calibration method, we may 
compare coordinates of points computed by Equa-
tion 4 and those obtained from an image (Figure 9).

The maximum eccentricity error between 
points estimated by Equation 4 and detected 

Figure 7. Results of the object detection algorithm

Figure 8. Calibration of vision system with the aid of checkerboard pattern: a) photograph, 
b) coordinate systems
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points is 0.9 mm thus for our application it was 
sufficient. It can be observed that an image is dis-
torted and for a precise application, it would re-
quire a more sophisticated method of calibration 
such as the estimation of intrinsic and extrinsic 
camera parameters based on the camera model 
with lens distortion [33]. Such functionality is of-
fered by MATLAB or OpenCV library and might 
be additionally used. All in all, the px2xy func-
tion is pretty straightforward (Fig. A.6 from an 
Appendix) and makes the use of calibration re-
sults and Equation 4. Tool centre point (TCP) is 
positioned in an open loop based on inverse kine-
matics given by Equation 1 which is introduced in 
the invKin function (Figure A.7 from Appendix). 
The invKin takes the desired TCP coordinates 
and converts them into absolute angles φR and φL. 
Such a method might be sufficient only for rough 
positioning like the one presented. 

In order to compensate for backlash and as-
sembly/manufacturing errors one may use closed-
loop control with feedback from camera. The 
basic idea is that after taking the position based 
on inverse kinematics the image is captured, and 
then the TCP position is extracted to calculate the 
correction angles. This method is schematically 
illustrated in Figure 10.

Let us assume that it is required to achieve 
position TCP’, however vision system recognizes 
tool centre point in position TCP. Based on the 
coordinates of the actual TCP and the desired po-
sition coordinates (TCP’) we may obtain (with the 

use of the invKin function) angles at which the 
arms need to rotate to take the desired position:

	

𝜑𝜑𝑅𝑅 = atan2(𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇, 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒) −
− acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
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2
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+ acos (𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
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2−𝑙𝑙2

2

2𝑙𝑙1√(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇+𝑒𝑒)2+𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇
2

    (1) 

 
 
 
𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿  =  
= 𝑙𝑙1 sin 𝜑𝜑𝑃𝑃 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 
−𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 = 
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 
 
 

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 = −𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 cos 𝛾𝛾𝐿𝐿 =   
= 𝑒𝑒 + 𝑙𝑙1 cos 𝜑𝜑𝑅𝑅 − 𝑙𝑙2 cos 𝛾𝛾𝑅𝑅 

𝑦𝑦𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙1 sin 𝜑𝜑𝐿𝐿 + 𝑙𝑙2 sin 𝛾𝛾𝐿𝐿 = 
=𝑙𝑙1 sin 𝜑𝜑𝑅𝑅 + 𝑙𝑙2 sin 𝛾𝛾𝑅𝑅 

 
 
𝑥𝑥 = 𝑠𝑠𝑐𝑐𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑥𝑥
𝑦𝑦 = −𝑠𝑠𝑐𝑐𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

      (4) 

 
 
∆𝜑𝜑′𝑅𝑅 = −(𝜑𝜑′𝑅𝑅 − 𝜑𝜑𝑅𝑅)
∆𝜑𝜑′𝐿𝐿 = −(𝜑𝜑′𝐿𝐿 − 𝜑𝜑𝐿𝐿)      (5) 

 
 
 

	 (5)

To extract actual coordinates of tool centre 
point, we can use coloured marking, which was 
applied on screw head holding electromagnet 
(Figure 11a). Based on the histogram of an image 
of this marking, we can derive threshold values 
used in colour detection algorithm.

The colour detection algorithm (Figure A.8 
from Appendix) aims to detect areas of pixels 
of the same colour (in our case - pink). The 
algorithm starts from acquiring an image for 
processing (line 1 – Figure 11a). Next we ex-
tract the red (R), green (G) and blue (B) bands 
(lines 2, 3 and 4). Further (lines 6–11) we de-
fine threshold values for each band, they were 
obtained based on histogram from Figure 11b). 
Then the maskThresh function (Figure A.9 from 
an Appendix) is used to generate red (MR), green 
(MG) and blue (MB) masks (lines 12, 13 and 14). 
The bands and their corresponding masks are 
presented in Figure 12.

The purple mask (MP) is calculated as the ele-
ment-wise product of the three masks mentioned 
above (line 15). Finally, we arrive at defining the 
hBlob object and derivation of centroid of TCP 
(lines 16–18). The results are shown in Figure 13.

Figure 9. Evaluation of calibration
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In order to get coordinates of TCP in milim-
eters one should perform additional calibration 
in the plane of TCP marking, thus additional 
px2xy_det function would be needed. The mask-
Thresh function used here is given by algorithm 
from Figure A.9 (Appendix). The principle is 
similar as in the case of defining the binary mask 
(Figure A.5 – Appendix), but here the high and 
low threshold values are used in conditional 
statement (line 5).

Supervised classification of parts

Machine vision is commonly used in indus-
trial settings to identify defective parts during 
the manufacturing process. These defective parts 
should be sorted using automated systems, such 
as specialized machines or robots. One effective 
method for fault detection is the use of neural 
networks trained under supervision. This section 
discusses data preprocessing, the architecture of 
convolutional neural network, and the results ob-
tained for classification.

Data preparation

As an example, we will consider small steel 
parts for automotive brakes after the galvanisa-
tion process. For some reason, the galvanisation 
not always is proper and a whole batch of prod-
ucts may be withdrawn by the client if only one 
has surface defects. Ideal for this kind of task are 
convolutional neural networks. Before we start 
building the classification model first we need to 
collect data for training, testing and validation. 
Images for the dataset were captured directly by 
the vision system of the manipulator. To automate 
data acquisition one may use an object detection 
algorithm (Figure A.5 from an Appendix) and 
trimming. As a result, we have collected 307 im-
ages of parts without defects (Figure 14a) and 307 
defected (Figure 14b).

Next, to increase the number of images, 
data augmentation was performed. Each of 
the images was rotated about an angle of 90°, 
180° and 270°. This resulted in a total number 
of colour images of 2456 of size 90 × 90 px 

Figure 10. Vision-based correction of TCP position

Figure 11. Coloured marking at tool centre point: a) captured image, b) histogram of marking
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each. The dataset was split into data for train-
ing (60%), validation (20%) and testing (20%) 
which gives respectively 1476, 490 and 490 im-
ages. In each of these subsets, the distribution of 
features (defect/no defect) is equal (50%/50%). 
Before training, images were subjected to pre-
processing, namely zero-centering with respect 

to the training dataset and converting into BGR 
images (Figure 15).

Deep convolutional neural network

For part classification task we came up with 
a deep convolutional neural network (CNN) with 
six hidden layers (Figure 16).

Figure 12. Image processing for colour detection: a) red band image, b) red band mask, c) green bang image, 
d) green band mask, e) blue band image, f) blue band mask

Figure 13. Results of the TCP detection algorithm: a) purple mask (MP), b) detected TCP
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The network consists of two convolutional 2D 
layers with 3 × 3 kernel and rectified linear unit 
activation function followed by max pooling lay-
ers with pool size 2 × 2. In the end, the output after 
pooling is flattened and returned after the dense 
layer with softmax activation as the probability 

of class occurrence. The training was performed 
with Adam optimizer and as the loss the categori-
cal cross-entropy was used. The results of testing 
are presented in Figure 17 as confusion matrix.

The CNN performed well, achieving high pre-
cision (0.98), recall (0.97) and F1-measure (0.97).

Figure 14. Image dataset: a) parts without defects, b) parts with defects

Figure 15. Image pre-processing: a) original image of part without defect, b) zero-centered BGR image of part 
without defect, c) original image of part with defect, d) zero-centered BGR image of part with defect

Figure 16. Convolutional neural network architecture for part classification
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Unsupervised classification of parts

Sometimes we encounter heavily imbalanced 
datasets, particularly when there is a limited 
amount of data representing the failure state. This 
situation is common in various diagnostic tasks 
where we lack extensive test results and primar-
ily know how the system should perform under 
normal operating conditions. In such cases, it 
becomes necessary to employ unsupervised or 
semi-supervised learning approaches. This sec-
tion discusses data preprocessing, autoencoder 
architecture, as well as training procedure and the 
resulting outcomes.

Data preparation

To simulate this situation we will use part of 
our dataset (Figure 14). For training and valida-
tion, we will use only images of parts without 

defects. Testing will be performed with both 
defect and no defect images. This results in 738 
(100% without defect) images for training, 245 
(100% without defect) for validation and 490 
(50% defective / 50% without defect) for testing. 
To decrease the training time we applied different 
pre-processing. Images were resized to 28 × 28 
px, transformed into greyscale and normalized.

Convolutional autoencoder

One of the typical applications of the unsu-
pervised learning approach is anomaly detection. 
There are various anomaly detection methods, 
and one of them is to use of an autoencoder. An 
autoencoder is a special type of neural network 
designed to reconstruct its input. It might be used 
for dimensionality reduction and feature extrac-
tion. Input data are compressed by the encoder 
into the latent layer and then decoded by the de-
coder. Anomaly might be detected by analysis 
of latent space or reconstruction error. Figure 18 
presents a convolutional autoencoder used for the 
detection of abnormal images in this study.

The encoder consists of five convolutional 2D 
layers with a rectified linear unit activation func-
tion and two max pooling layers. The decoder 
is constructed from five up-sampling transposed 
convolutional layers. While training, Adam opti-
mizer with the loss as the mean squared error was 
used (Figure 19).

Training and validation loss converges to 
small value of approx. 0.15. The result of recon-
struction of training data is presented in Figure 20. 

The reconstructed images correspond to 
input ones but are blurred, which is typical for 
autoencoders.

Figure 17. Confusion matrix for supervised 
classification

Figure 18. Convolutional autoencoder architecture
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Latent space exploration

Figure 21 presents images compressed into 
the latent layer. It can be observed that the auto-
encoder tries to learn the features of the image. In 
the case presented this feature corresponds to the 
gloss of the part which is expressed as brighter 
pixels. Parts with defects have a smaller number 
of those pixels.

To visualise the results we may transform la-
tent space into three-dimensional space with the 
aid of T-distributed stochastic neighbour embed-
ding (t-SNE) [34], which is shown in Figure 22.

After embedding the latent image data, a cen-
tred cluster corresponding to parts without de-
fects is observed. Points for parts with defects are 
spread around this centre cluster. To detect when-
ever a point is within the blue cluster the k-means 
algorithm can be used. We assume that only blue 
points are known, which forms one cluster (k = 
1). Then we calculate the average of these points 
which corresponds to the cluster center. In the 
case presented center coordinates are near zero 
(tSNE1 = -0.15, tSNE2 = 0.23, tSNE3 = -0.04). Next, we 
calculate the distance of each blue point to the 
cluster centre and average them, which gives us 
the limiting distance (rlim = 17.58). The point is 
considered an outlier if its distance to the cluster 

centre is greater than rlim. Otherwise, we assume 
that it is located within this cluster. The results of 
k-means-based classification are given in Figure 
23 and in Figure 24 as the confusion matrix.

We achieve comparable metrics as in the case 
of the supervised learning approach. Exploration 
of a latent layer of an autoencoder gives high pre-
cision (1.00), recall (0.96) and f1-measure (0.98).

Conclusions

This paper introduces a small, educational par-
allel SCARA robot designed for academic appli-
cations. The robot’s design and control framework 
are detailed, accompanied by example laboratory 
exercises to facilitate hands-on learning. Its low-
cost and easy-to-assemble design enables equip-
ping laboratories with multiple test stands, ensur-
ing that each student or pair of students can active-
ly engage with practical exercises. This approach 
promotes experiential learning in key areas such 
as robotics, machine vision, and neural networks.

The proposed teaching program is versatile 
and can be integrated into university courses 
in disciplines such as mechatronics and robot-
ics, which demand interdisciplinary knowledge. 
Furthermore, the program can be expanded to 

Figure 19. Autoencoder training and validation loss

Figure 20. Training data reconstruction: a) input images, b) output images
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include rapid prototyping, combining robotic de-
sign with manufacturing techniques to enhance 
the scope of the project.

Significantly, the test stand replicates real-
world industrial challenges, such as part classi-
fication and fault or anomaly detection, offering 
students practical insights into real-life applica-
tions. Notably, we investigate both supervised 
(using convolutional neural networks) and unsu-
pervised (through autoencoder latent space ex-
ploration) approaches for classifying faulty parts. 
The unsupervised method achieved high perfor-
mance, with a precision of 1.00, recall of 0.96, 
and an F1-measure of 0.98, which is comparable 
to the supervised approach that yielded a preci-
sion of 0.98, recall of 0.97, and an F1-measure of 
0.97. This integration of theory and practice pre-
pares students for addressing complex problems 
in industrial and research settings.

Future research could focus on alternative 
calibration methods, such as ArUco markers or 
QR codes, for pose estimation and 3D image re-
construction to detect the orientation, size and 
texture of spatial parts.
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