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INTRODUCTION

Large industries such as aviation and automo-
tive require frequent use of materials with spe-
cial properties, usually require high resistance to 
corrosion, high strength and good machinability. 
Assumptions about the strength of corrosion re-
sistance and the preservation of properties at high 
temperatures are met by nickel-based alloys. 

Machining of these alloys is difficult due 
to the high temperature occurrence in the cut-
ting zone, outer-metal chip notch formed on the 
edge, the elastic recovery of the machined layer 
and hardening of the material during machining. 
For this reason, it is difficult to predict the value 
of tool wear [1]. Inconel machining causes sig-
nificant changes in the microstructure of the pro-
cessed material [2–5]. In the paper [2] the authors 
compared the microstructure and stress in the 
surface layer of turned Inconel 718 with PCBN 
and ceramic inserts. In all tested cases, plastic de-
formation and heat generation in the cutting pro-
cess caused clear microstructural changes. The 
Grain fragmentation under the influence of strong 

plastic deformation was observed. Depth profiles 
of the tested specimens showed residual stresses 
with surface tension and subsurface compression 
due to local plastic deformation and heating. 

Xavior et al. [4] investigated the effect of ma-
chining under different cutting conditions with 
different tool materials on microstructure, residu-
al stress and work hardening of Inconel 718. The 
authors noticed that during dry machining tensile 
stresses raised significant on the treated surface 
and greater grain degradation occurred than dur-
ing machining with cooling. On the other hand, 
when flood cooling was used, the greater micro-
hardness occurred. When machining nickel-based 
alloys, there is a strong adhesion between the 
tool and the workpiece, which affects tool wear, 
roughness and forces. By increasing the speed, 
the temperature in the cutting zone rises, which 
leads to the hardness increase of the workpiece 
and results in an escalation cutting forces [5]. The 
forces also increase with increasing other cutting 
parameters (depth, feed). However, these mech-
anisms are typical for machining resulting for 
machining when the cutting layer cross-section 
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growth and consequently of cutting force increas-
es. In the article [6], cryogenic cooling with liquid 
nitrogen was used which significantly reduced 
the temperature in the cutting zone and improve 
lubrication, what resulted reduction of the oc-
currence of adhesion phenomena and grain deg-
radation. The roughness value Ra was lowered 
by 88%. The condition of the cutting edge has a 
significant influence on the roughness of the ma-
chined surface. In the article [7] authors studied 
surface integrity and fatigue in the end milling of 
Inconel 718. They used tools with three tool flank 
wear levels: 0, 0.1, 0.2. Under these conditions 
they found that higher tool wear produced less 
surface roughness. However, in the article [8] the 
authors analyzed a wider range of cutting insert 
wear. They proved that during the break-in of the 
tool, the roughness was high. Depending on the 
tool geometry it decreased or remained constant. 
The roughness subsequently increased when tool 
wear overcome VB = 0.3–0.4 mm. 

Taking into account the properties of Inconel 
indicated in the literature and the significance of 
the impact of tool wear on the quality of the manu-
factured elements and the difficulties in predicting 
wear during machining, the authors decided to use 
artificial neural networks in research. ANNs are 
most often used to predict or monitor the condi-
tion of the edge [9–12] or the roughness of the 
machined surface in machining [13,14]. In paper 
[15], the authors used artificial neural networks to 
predict tool wear during Iconel 718 turning on the 
basis of variable cutting speed and cutting time. In 
their research, the prediction error was different 
depending on the cutting speed. NN training and 
testing was carried out by the ‘‘leave-k-out’’ meth-
od, which is particularly useful when dealing with 
small training sets. Received RSME error 0.005–
0.038. In the article [16], the prediction errors of 
the tool wear value for regression analysis and ar-
tificial neural networks for Inconel turning were 
compared, showing more than twice as high error 
in the case of regression. Similar conclusions were 
reached by the authors [17], who milled Inconel 

718 in their research, and used cutting parameters 
and corner radius as input parameters. Research-
ers in [18] show a higher usefulness of the genetic 
algorithm than ANN for predicting the maximum 
wear on the flank surface. A strategy based on 
ANN for estimating tool flank wear is presented 
in [19]. The ANN-based system was trained using 
real-time RMS signals of cutting force and torque 
(Mz) from the three axes (Fx, Fy, Fz), cutting and 
time parameters. Showing a total error of 5.42%. 
In paper [20], the authors use neural networks to 
predict tool wear during steel turning. As input pa-
rameters, using data from many sensors, e.g. forc-
es, temperatures and vibrations and demonstrate 
the validity of the measurements used. The authors 
[21] used the values of force amplitudes in the fre-
quency and time domains to predict tool wear us-
ing neural networks. 

The authors of this article use force meas-
ures in the time domain and cutting parameters 
to predict tool wear. In addition, they determine 
the measures and parameters most suited to the 
prediction of the tool condition. In many publi-
cations, the authors do not focus on the validity 
of the input parameters used in the construction 
of models, and often use only one measure (e.g. 
RMS) for the recorded variable, which may omit 
significant predictor variables.

MATERIALS AND METHODS

Tests were carried out on an Inconel 718 
workpiece. Mass fractions of elements in Inconel 
718 are shown in Table 1. A four-edge carbide 
milling cutter (P8700450 by Fraisa) dedicated to 
machining nickel-based alloys was used. The tool 
diameter was 10 mm and the cutting length was 
50 mm. The five identical tools were used. The 
research was carried out on vertical machining 
center DMC 70V hi-dyn (DMG Mori).

The end milling operation was carried out ac-
cording to cutting parameters and cutting plan (ap 
– cutting depth, vc – cutting velocity, ae – cutting 

Table 1. Mass fractions of elements in Inconel 718 alloy
Percentages Ni Cr Nb Mo Ti Al Co Si

Min. % 50 17 4.75 2.8 0.65 0.2 - -

Max.% 55 21 5.50 3.30 1.15 0.80 1.00 0.35

Percentages Mn Cu C P S B Fe

Min. % - - - - - - -

Max.% 0.35 0.30 0.08 0.015 0.015 0.006 Balance
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width, fz – feed per tooth) presented in Table 2. 
Five-level central composite experimental design 
was used. Full data on the cutting parameters in 
each pass and the value of tool wear and cutting 
time are contained in Table 3. Table 3 does not 
take into account repeated passes.

Figure 1 shows a simplified scheme of meas-
urement path used during the tests. The follow-
ing are the technical parameters of the measure-
ment and measuring instruments. Forces were 
measured in three directions by three-directions 
piezoelectric dynamometer (own design). The 
sensitivity of the dynamometer are for x-axis 8.6 
pC/N, y-axis 8.7 pC/N, z-axis 3.4 pC/N and natu-
ral frequency fn = 8 kHz. The signal from the dy-
namometer was transmitted to the Kistler charge 
amplifier type 5015 A. The measuring range was 
± 2000 N and the built-in low pass filter was set 
to 30 kHz. Then the signal was sent to the an-
alog-to-digital A/D converter with the sampling 
frequency fs = 6000 Hz for each channel. From 
the A/D converter, the signals were transferred to 
a computer and digitally processed using special 
software. Based on time signals, time-domain 
measures were determined: root mean square 
(RMS), peak to peak (P-P), ripple RMS (ripple). 
In the following, these measures were used as in-
puts to the neural network.

In this paper RMS values of cutting forces 
were analyzed. This allows among others to avoid 

differences in signs resulting from the sense of a 
force vector. The RMS value was given by the 
formula (1), peak to peak formula (2) and ripple 
RMS formula (3).

	

1 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = √ 1
𝑇𝑇2−𝑇𝑇1

∫ [𝑥𝑥(𝑡𝑡)]2𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

         (1) 

 
𝑃𝑃 − 𝑃𝑃 = 𝑃𝑃max ℎ𝑖𝑖𝑖𝑖ℎ + 𝑃𝑃max 𝑙𝑙𝑙𝑙𝑙𝑙         (2) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑅𝑅𝑅𝑅𝑅𝑅 = √ 1
𝑇𝑇2−𝑇𝑇1

∫ [𝑥𝑥(𝑡𝑡) − 𝐾𝐾]2𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

        (3) 

 
 

𝑉𝑉𝑉𝑉𝐶𝐶 = 0.17𝑣𝑣𝑐𝑐 − 0.68𝑎𝑎𝑝𝑝 − 0.66𝑎𝑎𝑒𝑒 –  0.28𝑣𝑣𝑓𝑓 + 
+ 1.37𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 − 0.58𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃 – 0.51𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 − 

– 0.29𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.25𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃 –  0.2𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 + 
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where:	RMS – root mean square, K – the constant 
component of the shift.

The time period T used in the calculations was 
2 s. Tool wear parameters were measured after 
each pass in the same spot on the corner. Wear pa-
rameter and VBC (band width of the corner wear) 
for each edge were measured. After each mea-
surement, the arithmetic mean for the four corners 
was calculated. Tool wear was measured using a 
workshop microscope with a measurement accu-
racy of 0.01 mm. The measured value is shown 
in Figure 2. The wear was photographed using 
the Zeiss Stereo Discovery V.20 microscope. In 
the further part of the article, the average value of 
tool wear for four corners was assumed.

Artificial neural networks of the MLP (multi-
layer perceptron) type with backward error prop-
agation, with one hidden layer and one output 

Table 2. Cutting parameters

Parameters
Program levels

-2 -1 0 1 2

vc [m/min] 15 25 30 35 40

ap [mm] 1 3.5 6 9 12

ae [mm] 0.1 0.3 0.5 0.75 1

fz [mm/tooth] 0.02 0.025 0.030 0.035 0.040

Figure 1. Scheme of measurement path used during the tests
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Figure 2. Tool wear: VBC = 0.08 mm, vc = 25 m/min,
vf = 107 mm/min, ap = 9 mm, ae = 0.75 mm. 

magnification x48

neuron were used in the research. During the 
tests, various sets of input variables were used, 
which included cutting parameters (vc, vf, ae, ap), 
cutting time tc, RMS values of cutting forces 
(FiRMS), RMS values of ripple (Firipple) and values 
peak to peak (FiP-P). All measures were measured 
in three directions, f – in the direction of the feed, 
z – in the direction of the z axis and fN - normal to 
the feed direction.

RESULTS AND DISCUSSION

Full data on the cutting parameters in each 
pass and the value of tool wear and cutting time 
are contained in Table 3. Table 3 does not take 
into account repeated passes. Based on the results 
presented in Table 3, the tool wear results in all 
passes with repetitions shown on Figure 3. Statis-
tica software was used in further analyses.

Subsequent points on the graph do not have 
constant cutting parameters, so it is not a wear 
curve. Due to the use of different cutting param-
eters, it is not possible to establish a direct rela-
tionship between wear and cutting time. 

None of the determined measures show a di-
rect correlation with the analyzed variable, which 
can be seen in the example graph (Figure 4 for 
Ff_RMS and Figure 5. for FfN_RMS), These graphs 
show a test of force correlation in feed direc-
tion, normal feed direction and tool wear. It was 
decided to use multiple regression (4) to check 
whether the combination of all variables into one 

equation, i.e. taking into account the impact of a 
given variable while taking into account the im-
pact of other variables, would improve the quality 
of prediction. Analysis of the impact of individual 
parameters is important due to the elimination of 
the possibility of simple dependencies.

	

1 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = √ 1
𝑇𝑇2−𝑇𝑇1

∫ [𝑥𝑥(𝑡𝑡)]2𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

         (1) 

 
𝑃𝑃 − 𝑃𝑃 = 𝑃𝑃max ℎ𝑖𝑖𝑖𝑖ℎ + 𝑃𝑃max 𝑙𝑙𝑙𝑙𝑙𝑙         (2) 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑅𝑅𝑅𝑅𝑅𝑅 = √ 1
𝑇𝑇2−𝑇𝑇1

∫ [𝑥𝑥(𝑡𝑡) − 𝐾𝐾]2𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

        (3) 

 
 

𝑉𝑉𝑉𝑉𝐶𝐶 = 0.17𝑣𝑣𝑐𝑐 − 0.68𝑎𝑎𝑝𝑝 − 0.66𝑎𝑎𝑒𝑒 –  0.28𝑣𝑣𝑓𝑓 + 
+ 1.37𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 − 0.58𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃 – 0.51𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 − 

– 0.29𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.25𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃 –  0.2𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 + 
+ 0.91𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 –  0.04𝐹𝐹𝐹𝐹𝑃𝑃−𝑃𝑃 + 0.42𝑡𝑡𝑐𝑐 + 0.1 

 
(4) 

 
𝑡𝑡𝑡𝑡𝑡𝑡ℎ = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥        (5)  
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  1

1−𝑒𝑒−1         (6) 
 

	(4)

As assumed, the correlation coefficient R2 
increased, but its value was still very low and 
amounted to 0.4. Figure 6 shows the correlation 
of predictions for multiple regression.

The dispersion of the results is so large that 
the effectiveness of tool monitoring based on re-
gression models is unsatisfactory. The prediction 
system must therefore be based on more advanced 
algorithms, such as ANN.
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research, the most effective activation functions 
were determined. The best effects of the network 
showed the use of the tanh function (5) as the 
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function (6) as the activation of the output layer. 
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functions and the BFGS (Broyden-Fletcher-
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vantages of this algorithm are low sensitivity 
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set was 15% of all input data. The variables were 
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lected choosing the highest coefficient R2 and the 
lowest possible root mean square error (RSME) 
for testing data set. Maximum number of epochs 
(iterations) needed to complete the learning of 
ANN equal 200, that is the moment when the 
variability of weights for given network is less 
than or equal to 0.0001.
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The first set of networks was built using all 
cutting parameters and measures. Figure 7 shows 
a diagram of such a neural network.
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Table 3. Full data of passes
nr tool nr tc [min] VBC [mm] vc [m/min] vf [mm/min] ae [mm] ap [mm]

1 1 0.27 0.015 30 111 0.1 6

2 1 0.47 0.032 30 152 0.5 1

3 1 0.75 0.034 25 108 0.3 3.5

4 1 1.14 0.037 25 76 0.3 3.5

5 1 1.42 0.037 25 107 0.75 3.5

6 1 1.70 0.043 35 108 0.75 3.5

7 1 1.90 0.043 35 152 0.3 3.5

8 1 2.17 0.045 35 111 0.3 3.5

9 1 2.44 0.047 30 111 0.5 6

10 1 2.71 0.048 30 111 1 6

11 1 3.10 0.059 35 76 0.75 9

12 1 3.30 0.060 25 152 0.3 9

13 1 3.57 0.060 35 111 0.3 3.5

14 1 3.77 0.062 30 152 0.5 12

15 1 3.96 0.064 35 152 0.75 3.5

16 1 4.16 0.068 35 152 0.75 3.5

17 1 4.36 0.075 30 152 0.5 6

18 1 4.64 0.078 40 107 0.5 6

19 1 4.92 0.080 25 107 0.75 9

20 1 5.19 0.083 35 111 0.75 3.5

21 1 5.73 0.083 35 55 0.75 3.5

22 1 5.94 0.085 35 148 0.3 3.5

23 1 6.13 0.088 35 152 0.75 3.5

24 1 6.41 0.088 30 108 0.5 1

25 1 6.69 0.090 40 107 0.5 6

26 1 7.09 0.090 30 76 0.5 1

27 1 7.36 0.093 30 111 0.5 6

28 1 7.63 0.093 25 111 0.3 9

29 1 7.83 0.095 35 152 0.3 3.5

30 1 8.02 0.095 35 152 0.3 9

31 1 8.30 0.098 25 107 0.3 9

32 1 8.57 0.100 35 111 0.75 9

33 1 8.78 0.103 35 148 0.3 9

34 1 9.05 0.105 30 111 0.5 12

35 1 9.32 0.105 15 108 0.5 6

36 1 9.60 0.110 35 107 0.3 3.5

37 1 9.80 0.113 35 152 0.75 9

38 2 0.41 0.061 30 73 0.5 6

39 2 0.61 0.061 35 152 0.3 9

40 2 0.89 0.067 25 108 0.75 9

41 2 1.08 0.067 35 152 0.75 3.5

42 2 1.35 0.071 30 111 0.5 6

43 2 1.63 0.085 35 107 0.75 3.5

44 2 1.84 0.085 30 149 0.5 6

45 2 2.23 0.093 25 76 0.3 3.5

46 2 2.64 0.093 30 73 0.5 6

47 2 2.92 0.095 25 108 0.75 3.5



399

Advances in Science and Technology Research Journal 2025, 19(7), 394–405

48 2 3.19 0.098 30 111 0.5 6

49 2 3.39 0.100 30 149 0.5 6

50 2 3.80 0.100 30 73 0.5 6

51 2 4.00 0.100 35 152 0.3 9

52 2 4.39 0.105 25 76 0.3 3.5

53 2 4.67 0.105 25 108 0.75 3.5

54 2 4.95 0.110 35 107 0.75 9

55 2 5.35 0.110 25 76 0.3 9

56 2 5.62 0.110 25 108 0.3 3.5

57 2 5.62 0.118 25 76 0.75 9

58 2 5.89 0.120 30 111 0.5 1

59 2 6.17 0.120 25 108 0.3 3.5

60 2 6.44 0.123 30 111 0.5 1

61 2 6.72 0.130 35 107 0.3 3.5

62 3 0.39 0.015 25 76 3.5 0.75

63 3 0.94 0.035 40 55 6 0.5

64 3 1.14 0.040 15 148 6 0.5

65 3 1.54 0.053 25 76 9 0.3

66 3 1.82 0.059 35 108 9 0.3

67 3 2.09 0.060 25 108 9 0.75

68 3 2.37 0.060 25 107 3.5 0.3

69 3 2.65 0.062 25 107 3.5 0.3

70 3 3.05 0.073 35 76 3.5 0.3

71 3 3.33 0.075 35 107 3.5 0.3

72 3 3.53 0.080 25 152 3.5 0.75

73 3 3.80 0.085 25 111 3.5 0.75

74 3 4.19 0.088 30 76 6 0.1

75 3 4.46 0.088 30 111 6 0.5

76 3 5.01 0.088 30 55 6 1

77 3 5.21 0.090 35 149 9 0.3

78 3 5.49 0.093 25 108 9 0.75

79 3 5.88 0.095 35 76 9 0.75

80 3 6.16 0.098 30 108 12 0.5

81 3 6.55 0.098 25 76 3.5 0.3

82 3 6.82 0.098 25 111 3.5 0.3

83 3 7.10 0.098 25 108 3.5 0.75

84 3 7.50 0.100 25 76 3.5 0.75

85 3 7.78 0.100 30 107 6 0.5

86 3 8.05 0.100 15 111 6 0.5

87 3 8.44 0.103 30 76 6 1

88 3 8.72 0.108 25 107 9 0.3

89 3 9.12 0.118 35 76 9 0.75

90 3 9.39 0.120 25 111 9 0.75

Then, the average global sensitivity of the net-
work to variables was analyzed (Figure 8). Sen-
sitivity analysis gives insight into the usefulness 
of individual input variables. It indicates vari-
ables that can be omitted without losing network 

quality and key variables that must never be omit-
ted. The measurement of network sensitivity is 
the quotient of the error obtained at the start of 
the network for the data set without one variable 
and the error obtained with the set of variables. 
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Figure 3. All tool wear results

Figure 4. Relationship between force in feed direction Ff_RMS and tool wear VBC

Figure 5. Relationship between force in feed direction FfN_RMS and tool wear VBC
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Figure 6. Correlation of predicted and measured variables for multiple regression

Figure 7. Scheme of a neural network

Figure 8. Normalized sensitivity of the network to input variables

The greater the error after rejecting the variable 
is, in relation to the original error, the more sensi-
tive the network is to the absence of this variable. 
For easier interpretation of the data, the sensitiv-
ity was normalized and presented in the graphs in 
this form.

On this basis, it was possible to eliminate two 
independent variables with the least impact on 
the prediction error from the training set. A com-
parison of the quality of the best networks can be 
found in Table 4. 

As the built models do not show a satisfac-
tory prediction quality, in the next step it was de-
cided to supplement the learning set with the cut-
ting time, and to re-analyze the sensitivity of the 
network (Figure 9). Previously rejected variables 
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Table 4. Network quality with all variables (MLP 13-15-1) and without vf and vc (MLP 11-10-1)
ANN structure Learning quality Validation quality Testing quality

MLP 13-15-1 0.97 0.82 0.89

MLP 11-10-1 0.92 0.81 0.85

Figure 9. Normalized sensitivity of the network to variables taking into account the cutting time tc

Table 5. Quality of neural networks including cutting time with all variables (MLP 12-10-1) and with a limited set 
of input variables (MLP 8-7-1)

ANN structure Learning quality Validation quality Testing quality

MLP 12-10-1 0.99 0.95 0.95

MLP 8-7-1 0.95 0.94 0.94

Figure 10. Correlation of predicted and measured variables for the MLP 12-10-1 network

were not taken into account in the built models. 
Based on the sensitivity results (Figure 9), the 
data was reselected, rejecting those whose sensi-
tivity did not exceed 0.2. In this way, all cutting 

parameters and peak-to-peak values in the z-
direction and in the normal feed direction were 
removed from the input data set. A comparison 
of the quality of the webs taking into account the 
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Figure 11. Correlation of predicted and measured variables for the MLP 8-7-1 network

Figure 12. Comparison of the RMSE error for the best networks for a given set of training variables

cutting time is presented in Table 5.  As can be 
seen, the removal of subsequent variables did not 
significantly worsen the quality of the network, 
but resulted in its clear simplification. The input 
data in the final prediction model comes only from 
the measurement of forces and easily measurable 
cutting time, but does not require entering data 
on cutting parameters. The graphs below show 
graphical correlations between predicted and 
actual variables measured for the MLP 12-10-1 
network (Figure 10) and the MLP 8-7-1 network 
(Figure 11) for the data from the validation and 
testing sets.  In the final step, the _RMSE errors 
for all networks presented above are summarized 
in the graph (Figure 12).

The obtained RMSE errors for networks with 
cutting time are lower than the measurement ac-
curacy of the workshop microscope used, which 

was 0.01 mm. It can be noticed that the addition 
of the cutting time to the set of learning vari-
ables resulted in a decrease in the RMSE pre-
diction error almost twice compared to networks 
not containing this variable, while further reduc-
tion of the learning set causes a slight increase in 
the error with a significant simplification of the 
system construction.

CONCLUSIONS

Based on the research and carried out analy-
sis, the following conclusions can be formulated:
1.	In the examined range of cutting parameters, 

the use of single-variable regression and mul-
tiple regression equations is not an effective 
method of predicting the value of tool wear. It 
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shows little correlation for multiple regression 
(R2 = 0.4) and no correlation for one variable.

2.	In the case of artificial neural networks, a much 
better prediction quality was obtained, espe-
cially for models with a cutting time of MLP 
12-10-1 and MLP 8-7-1 (R2 > 0.9). It is impor-
tant that to predict the value of the tool wear 
parameter, it is not necessary to enter the value 
of any of the cutting parameters. The absence 
of these variables in the set of input variables 
did not result in a significant increase in the 
prediction error. The error for the network con-
taining the MLP 12-10-1 width and depth of 
cut was RMSE = 0.0076 mm, while the error 
for the network without cutting parameters was 
RMSE = 0.0096 mm.

3.	Changing the cutting parameters causes a 
change in the level of cutting forces, usually 
greater than in the case of wear, so the cutting 
parameters do not have to be entered into the 
model. This change results from the change in 
the cross-section of the cutting layer.

4.	The most important diagnostic measures 
turned out to be the RMS values of forces in 
all directions, especially in the feed direction 
(Ff_RMS). The RMS values, by averaging the 
values, reflect the variability of the forces than 
the peak to peak values, the increase of which 
would reveal tool damage if it occurred during 
machining.

5.	The applied model allows for the derivation of 
the tool wear control track based on the force 
sensor, what is important, the cutting param-
eters can be variable during tool operation, 
which is common when using the tool in in-
dustry, and this will not cause significant errors 
in the wear indication.
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