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INTRODUCTION

In recent years, artificial intelligence (AI) has 
gained increasing attention, becoming a vital com-
ponent in numerous domains of modern life. One 
of its most dynamic branches is machine learning 
(ML), particularly deep learning, which builds 
upon classical neural network models. Deep neu-
ral networks (DNNs) have demonstrated remark-
able performance not only in image analysis but 
also in audio, speech, and text processing tasks 
[1]. These models have found practical applica-
tions across various sectors, including autono-
mous vehicles [2], healthcare [3], robotics [4], and 

agriculture [5]. A prominent example of AI’s ca-
pabilities is the transformer-based language model 
ChatGPT, which illustrates the potential of large 
neural architectures in human–machine interac-
tion and decision-making [6].

AI also plays an increasingly significant role 
in aviation, especially in the development and de-
ployment of UAVs, currently the fastest-growing 
segment of the global aerospace industry [7]. Al-
though UAVs contribute to diverse areas of soci-
ety, they also pose notable risks, such as unauthor-
ized airspace intrusion [8], potential use in crimi-
nal or terrorist activities [9], and collision threats 
to crewed aircraft and critical infrastructure [10]. 
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While no fatal drone incidents have been officially 
reported, documented collisions and near-misses 
have forced emergency landings, often resulting 
from operator error, technical faults, or unstable 
communication links [7]. Research conducted at 
the University of Dayton and Cranfield Univer-
sity demonstrated that UAVs can severely dam-
age aircraft radars, with battery ignition adding 
further hazards [7]. Studies by the Federal Avia-
tion Administration (FAA) under the Alliance for 
System Safety of UAS through Research Excel-
lence (ASSURE) program revealed that drones 
cause more structural damage than birds of simi-
lar mass, especially to wings and stabilizers [7]. 
In 2023, drones were involved in 18% of reported 
aviation incidents near runways [11]. Dublin Air-
port recorded the highest number of such events, 
while in the UK and USA, thousands of passen-
gers experienced delays due to drones – primarily 
DJI Mavic 2, Phantom 4, and Mavic 3 models. At 
Warsaw Chopin Airport, a drone of considerable 
size passed within 30 meters of a landing LOT 
aircraft, causing a 30-minute suspension of run-
way operations [7].

These incidents emphasize the urgent need 
for advanced UAV detection and classification 
systems capable of identifying drone presence, 
position, and flight parameters in real time. Ef-
fective detection remains challenging due to 
UAVs’ small physical dimensions, low-altitude 
operation, and limited radar cross-section, which 
make them difficult to track using conventional 
radar systems. As violations of restricted airspace 
become more frequent, especially around air-
ports, developing reliable detection solutions has 
become a critical priority for regulatory bodies, 
security services, and aviation authorities. This 
paper reviews recent advancements in UAV de-
tection based on AI, with a particular focus on 
FMCW radar and CNNs. It also highlights key 
UAV-related risks, analyzes real-world incident 
reports, and identifies research gaps that require 
further investigation.

DRONE DETECTION METHODS

Contemporary research on drone detection 
and classification explores a variety of sensor-
based methods, each characterized by unique 
capabilities and limitations. The most commonly 
used techniques include radar-based, radio-fre-
quency (RF)-based, acoustic, and vision-based 

approaches. In recent years, researchers have in-
creasingly integrated these with AI classifiers such 
as Support Vector Machines (SVMs) [12–13] and 
CNNs to improve the accuracy, automation, and 
real-time performance of UAV detection systems.

Although a wide range of detection tech-
niques is available and frequently combined in 
multi-sensor systems, the remainder of this article 
focuses exclusively on radar-based methods. This 
decision aligns with the scope of the study and re-
flects the growing significance of radar technolo-
gy – particularly FMCW radar – in AI-supported 
UAV detection, especially in the context of air-
port runway surveillance. The following sections 
explore radar signal characteristics, challenges 
related to low radar cross-section (RCS) targets, 
and the application of deep learning models such 
as CNNs to radar data processing.

Radar-based systems, particularly those using 
FMCW radars, detect UAVs by analyzing radio 
wave reflections to estimate object distance, ve-
locity, and micro-Doppler signatures generated 
by drone propellers [14]. These systems operate 
effectively in various weather conditions and are 
capable of detecting and tracking objects over 
long distances. However, detecting small UAVs 
remains challenging due to their low RCS, and 
false positives are common, especially in the 
presence of birds or other small airborne objects 
[15]. Additionally, micro-Doppler signal process-
ing requires substantial computational resources.

RF-based detection methods analyze com-
munication signals exchanged between UAVs and 
their ground controllers, identifying distinct fre-
quency patterns and transmission protocols [16]. 
These systems can detect drones at long ranges and 
may even locate the operator’s position. Neverthe-
less, they are ineffective against fully autonomous 
UAVs that operate without active transmissions 
and are susceptible to interference from other RF 
sources, such as Wi-Fi or cellular networks [17].

Acoustic detection relies on the identification 
of characteristic sound signatures produced by 
drone propellers and motors [18]. This method is 
particularly useful in environments where RF sig-
nals are absent or obstructed. Despite its relative-
ly low deployment cost, acoustic detection suffers 
from a short effective range (typically under 500 
meters) and reduced performance in noisy envi-
ronments, especially urban or windy areas [19].

Vision-based systems utilize high-resolution 
optical sensors combined with computer vision 
algorithms to detect and classify UAVs based on 
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visual cues [20]. These systems, often enhanced 
by deep learning models such as you only look 
once (YOLO) or CNNs, can distinguish between 
different drone types and provide visual confir-
mation of intrusions. However, their effective-
ness is heavily dependent on favorable environ-
mental conditions, requiring a clear line of sight 
and sufficient lighting [21].

To overcome the limitations of single-sensor 
systems, modern approaches increasingly adopt 
multi-sensor data fusion. These architectures in-
tegrate data from multiple modalities—such as 
radar and optical cameras, or RF and acoustic 
sensors—to create more robust and reliable de-
tection pipelines [22]. AI-based fusion models 
leverage either feature-level or decision-level 
fusion techniques to correlate complementary 
data streams and increase detection confidence. 
For example, vision data can be used to validate 
radar detections, while RF signals can assist in 
narrowing down regions of interest for visual 
tracking. Such systems are particularly promis-
ing in airport environments, where low-flying 
UAVs may be obscured by infrastructure, weath-
er conditions can change rapidly, and real-time 
decision-making is crucial [23].

The increasing complexity of UAV behavior 
and the evolution of counter-detection tactics 
demand flexible, adaptive, and intelligent sur-
veillance solutions. Therefore, integrating mul-
tiple sensing modalities with machine learning 
algorithms remains a key direction in the devel-
opment of next-generation UAV detection and 
classification systems.

Radar-based methods

Radar-based UAV detection systems are val-
ued for their ability to operate in adverse weath-
er and lighting conditions, as well as for their 

effectiveness in long-range surveillance. How-
ever, challenges remain in distinguishing UAVs 
from other airborne objects, particularly birds, 
and in the need for advanced signal analysis and 
classification algorithms.

A key phenomenon supporting radar-based 
classification is the micro-Doppler effect, which 
arises from radar wave modulation by moving 
parts of a target, such as drone propellers or hu-
man limbs [24]. Unlike conventional radar fea-
tures such as radar cross-section (RCS) or trans-
lational velocity, micro-Doppler provides ad-
ditional motion-based information derived from 
rotating components [25]. This can significantly 
enhance the ability to detect and classify UAVs. 
Figure 1 illustrates a typical micro-Doppler sig-
nature of a moving human forearm [24].

In UAV detection, this effect manifests clearly 
due to the high-frequency rotation of drone pro-
pellers. Figure 2 shows a representative micro-
Doppler signature generated by a two-blade rotor 
on a model helicopter [24].

Growing interest in this effect has led to nu-
merous studies exploring its utility in UAV clas-
sification. For instance, researchers in [26] de-
veloped a method for identifying small drones 
based on their propeller-induced micro-Doppler 
patterns. In [27], the micro-Doppler signatures 
of three drone models and four bird species were 
compared using phase-coherent radar operating 
in the K-band (24 GHz) and W-band (94 GHz), 
revealing significant distinctions that support the 
efficacy of such radars in drone detection.

Another study [28] employed a custom 
continuous-wave radar at 10 GHz to collect mi-
cro-Doppler data for various UAVs and birds. 
The researchers used support vector machines 
(SVMs) to classify drone size, distinguish drones 
from birds, and perform multi-class classifica-
tion across five object categories. Although the 

Figure 1. The micro-Doppler signature of the left forearm [24]
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experimental setup was constrained by limited 
data collection conditions, the results underscore 
the potential of micro-Doppler-based approaches. 
A more detailed discussion of the FMCW radar 
and CNN-based detection framework is present-
ed in the following sections.

APPLICATION OF FMCW RADAR AND 
CONVOLUTIONAL NEURAL NETWORKS 
IN UAV DETECTION NEAR AIRPORT 
RUNWAYS

Despite extensive research into UAV detec-
tion using radar and artificial intelligence, the 
specific problem of drone detection over airport 
runways remains insufficiently addressed in the 
literature. Most existing studies focus on general 
environments such as open fields, urban areas, or 
simulation test beds, with limited consideration 
of the operational constraints, spatial dynamics, 
and safety-critical nature of runway zones. To 
the best of the authors’ knowledge, no published 
work proposes or evaluates an AI-assisted radar 
system specifically configured for real-time UAV 
detection at the runway threshold.

 To address this gap, a detection scenario tai-
lored for low-altitude UAV incursions near the 

end of an airport runway is introduced. The sys-
tem employs two FMCW radar units placed sym-
metrically at the runway threshold, each with a 
100-meter detection range and a 30° azimuth and 
elevation field of view. The proposed deployment 
is illustrated in Figure 3.

This configuration enables continuous moni-
toring of the immediate airspace corridor where 
UAV intrusions pose the highest operational risk. 
Importantly, due to their relatively low transmis-
sion power and narrow operational bandwidth, 
FMCW radars of this type do not interfere with 
airport navigation aids, such as instrument land-
ing systems (ILS), nor with primary and second-
ary surveillance radars used in air traffic control.

The radar parameters used in this scenario 
are based on the uRAD USB v1.2 module – a 
24 GHz FMCW radar developed by Anteral – 
which the authors have utilized in their earlier 
research. This device is compact, USB-pow-
ered, and supports real-time streaming of radar 
data (I/Q components), making it suitable for 
integration into mobile or stationary surveil-
lance systems. 

Based on this spatial setup, the system utilizes 
artificial intelligence techniques to classify radar 
returns in real time. The full processing pipe-
line is shown in Figure 4. Radar echoes from the 

Figure 2. The micro-Doppler signature of a rotor with two blades on a model helicopter [24]
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UAV are captured through a USB interface and 
processed to extract the in-phase (I) and quadra-
ture (Q) signal components. Using STFT, a time-
frequency spectrogram is generated. This spec-
trogram is then analyzed by a pre-trained CNN, 
which classifies the object into its respective UAV 
category based on its micro-Doppler signature.

FMCW radar

FMCW radar combines the advantages of 
pulsed and continuous wave systems, enabling 
the simultaneous measurement of radial velocity, 
angular position, and range to a target by linearly 
modulating the frequency of the transmitted sig-
nal over time [29].

FMCW radar offers several benefits, includ-
ing low transmitted power, compact design, and 
relatively simple construction due to the ab-
sence of high-power switches and synchronizing 

components typical of pulsed systems. Its ability 
to continuously transmit and receive radio waves 
allows for real-time tracking of moving objects at 
short to medium ranges, making it well-suited for 
UAV detection in constrained environments such 
as airport runways. A typical block diagram of an 
FMCW radar system is presented in Figure 5.

In this architecture, the transmitted signal is 
divided using a directional coupler. One portion 
is radiated via the transmitting antenna, while the 
other serves as a local oscillator (LO) reference 
in the receiving path. The reflected echo signal 
is captured by the receiving antenna, amplified, 
and mixed with the LO signal in a nonlinear mix-
er. This produces sum and difference frequency 
components; a low-pass filter removes the high-
frequency component, yielding the intermediate 
frequency (IF) signal [29].

The IF signal undergoes quadrature demodu-
lation and analog-to-digital conversion, producing 

Figure 3. Proposed placement of dual FMCW radar units at the runway threshold, showing coverage zone for 
low-altitude UAV detection

Figure 4. Data flow in the drone detection and identification method using FMCW radar,  
STFT processing, and CNN
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complex I/Q data for further analysis. Signal pro-
cessing techniques such as STFT Gabor Trans-
form, Wavelet Transform, or Wigner-Ville Distri-
bution can be applied to extract meaningful fea-
tures—most notably, micro-Doppler signatures. 
Target detection is typically performed using 
threshold-based methods or adaptive techniques 
such as the constant false alarm rate (CFAR) al-
gorithm [30].

The FMCW radar transmits an electromag-
netic signal with time-varying frequency. In the 
context of this article, sawtooth frequency modu-
lation is considered as a representative waveform, 
as illustrated in Figure 6. This type of modulation, 

characterized by a linear frequency increase fol-
lowed by an instantaneous reset, is commonly 
used in FMCW radar systems due to its imple-
mentation simplicity and efficient range mea-
surement capability [31]. The unidirectional fre-
quency sweep allows for continuous range track-
ing with lower hardware complexity compared 
to symmetric waveforms. Although sawtooth 
modulation may introduce Doppler ambiguity in 
velocity estimation for moving targets, it remains 
suitable for many practical detection scenarios, 
including UAV detection at short ranges, where 
range resolution and processing speed are priori-
tized over exact Doppler discrimination.

Figure 5. Block diagram of FMCW radar

Figure 6. Linear frequency modulation signal
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The sawtooth signal with frequency modula-
tion transmitted by an FMCW radar can be math-
ematically modeled as [29]:
 𝑠𝑠(𝑡𝑡) =  cos(2𝜋𝜋𝑓𝑓𝐶𝐶𝑡𝑡 + 𝜑𝜑(𝑡𝑡)) (1) 

 

 

𝜑𝜑(𝑡𝑡) =  𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇2 +  𝜋𝜋𝜋𝜋𝑡𝑡2 (2) 
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where: ε represents a complex coefficient de-
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where: c denotes velocity of light.

While FMCW radar offers significant advan-
tages – such as low power consumption, compact 
design, and the ability to simultaneously measure 

range and velocity – it also presents several limi-
tations. Its range resolution is constrained by 
the bandwidth of the transmitted signal, requir-
ing wideband operation for fine detail detection. 
Additionally, velocity estimation can suffer from 
Doppler ambiguities, especially in unidirectional 
(e.g., sawtooth) modulation schemes. Multipath 
effects in cluttered environments, such as those 
found near runways, may introduce signal arti-
facts or false detections. Finally, the performance 
of FMCW systems in detecting low-RCS targets 
such as small UAVs remains a challenge, particu-
larly at greater distances or in the presence of en-
vironmental noise and interference [30].

Short time Fourier transform

The STFT is a commonly used technique 
for analyzing non-stationary radar signals, such 
as those influenced by the micro-Doppler effect. 
Unlike stationary signals with constant spectral 
content, non-stationary signals exhibit time-vary-
ing frequency components. STFT enables time–
frequency representation by dividing the signal 
into short overlapping segments (windows) and 
applying the Fourier transform to each segment 
individually [32].

This process produces a two-dimensional rep-
resentation called a spectrogram, defined as the 
squared magnitude of the STFT. Spectrograms 
reveal the temporal evolution of spectral compo-
nents, making them especially useful for detect-
ing motion-induced features in radar echoes—
such as those caused by drone propellers. These 
visual time–frequency patterns serve as suitable 
input for CNNs in classification tasks [12].

The continuous and discrete forms of the STFT 
are expressed by the following equations [32]:
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where: x(τ) represents the analyzed signal in the 
time domain, and w(τ – t) denotes the 
time window that moves along the sig-
nal x(τ), x(k) represents the sequence of 
discrete signal samples, N denotes the 
frame length, n indicates the position of 
the frame along the analyzed signal and m 
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= 0,1,2,…,N-1 represents the time shift. 
The most commonly used window func-
tions include Hanning, Hamming, Kaiser, 
and Blackman windows.

For the short-time Fourier transform, the 
spectrogram is defined as the square of its 
magnitude[32]:
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An example of an STFT applied to a linearly 
modulated frequency signal (LFM) is presented 
in Figure 7.

While the STFT is widely used in radar signal 
analysis due to its simplicity and compatibility 
with spectrogram-based classification, it suffers 
from a fundamental limitation: fixed time-fre-
quency resolution, which restricts its adaptability 
to signals with varying dynamics. To overcome 
this, alternative time–frequency transforms have 
been explored in recent studies on UAV detection 
and micro-Doppler analysis [32].

One such method is the Wavelet Transform, 
which provides multi-resolution analysis by 
adapting the window size to different frequency 
components [12]. It offers better time resolution 
for high-frequency events and better frequency 
resolution for low-frequency components, mak-
ing it particularly effective for detecting short, 
transient features in radar echoes.

Another approach is the Wigner-Ville Distri-
bution, known for its excellent time-frequency 
resolution [32]. However, its practical application 

is limited by the presence of interference artifacts 
known as “cross-terms”, which reduce interpret-
ability, especially in multi-component signals like 
those reflected from drones. The Gabor Trans-
form represents a refinement of STFT using a 
Gaussian window function, achieving a more op-
timal balance between time and frequency resolu-
tion. While it shares some limitations of STFT, 
it provides improved performance in applications 
involving periodic or slowly varying signals [32].

More advanced and adaptive techniques in-
clude the Hilbert-Huang transform (HHT), which 
decomposes the signal into intrinsic mode func-
tions using empirical mode decomposition. This 
method is highly effective for non-linear and non-
stationary signals but suffers from high computa-
tional complexity and instability in certain signal 
conditions [32]. Finally, the Chirplet Transform 
extends wavelet analysis by introducing chirp-
like basis functions, making it well-suited for 
analyzing frequency-modulated signals such as 
those affected by micro-Doppler. Though com-
putationally demanding, it provides enhanced 
sensitivity to the frequency variation patterns 
typical of drone propellers [32].

Although STFT remains the most commonly 
used tool due to its computational efficiency and 
simplicity, alternative transforms such as wave-
let or chirplet methods may offer improved per-
formance for specific signal types. The choice of 
transform should be guided by the signal charac-
teristics, detection requirements, and computa-
tional constraints of the system.

Figure 7. Example of a short-time Fourier t+6ransform for a LFM signal
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Convolutional neural network

Convolutional neural networks (CNNs) are 
widely used in signal analysis, including radar 
and acoustic domains, due to their ability to au-
tomatically extract spatial and temporal features 
from time–frequency data such as spectrograms 
[33]. This makes them particularly effective for 
classifying micro-Doppler signatures generated 
by UAVs. Figure 8 shows an example of a typical 
CNN architecture.

CNNs operate hierarchically, where early con-
volutional layers detect simple features (e.g., edg-
es), and deeper layers capture more abstract pat-
terns. Filters extract local features, activation func-
tions like ReLU introduce non-linearity, and pool-
ing layers reduce dimensionality while enhancing 
robustness [34]. Batch normalization is often ap-
plied to stabilize and accelerate training [35].

The learning process is based on minimizing 
a loss function using optimizers such as Adam, 
which dynamically adjusts learning rates for dif-
ferent weights, improving convergence under 
varying gradient conditions [33]. Learning rate 
schedules are also used to improve fine-tuning, 
applying higher rates at early stages and decreas-
ing them as training progresses [36].

Additional techniques such as data augmen-
tation enhance generalization, especially when 
training data is limited. Transfer learning with 
pre-trained models (e.g., ImageNet) allows re-
use of learned features, reducing training time 
and improving accuracy in domain-specific tasks. 
Ensemble learning, which combines outputs of 
multiple models, further improves classification 
robustness [33].

CNN-based models are evaluated using met-
rics such as accuracy, recall, and specificity, with 
additional tools like ROC-AUC and the confu-
sion matrix providing deeper insights into class 

separability and error types [33]. Standard prac-
tice includes splitting data into training, valida-
tion, and test sets, with final model performance 
assessed exclusively on the test set to prevent 
overfitting [34]. Cross-validation and repeated 
testing across multiple data splits help improve re-
liability and account for variability in results [35].

BACKGROUND

Numerous studies have investigated the use 
of AI techniques in combination with radar signal 
processing for the detection and classification of 
UAVs. In particular, the integration of FMCW ra-
dar, STFT for micro-Doppler analysis, and deep 
learning methods such as CNNs has shown prom-
ising results in terms of detection accuracy and 
robustness in non-cooperative scenarios.

A comprehensive summary of recent studies 
applying FMCW radar, digital signal processing 
techniques, and AI-based classifiers for UAV de-
tection is presented in Table 1. 

In [37], a CNN-based approach was proposed 
for classifying UAVs, humans, and vehicles us-
ing raw range-time data from a compact FMCW 
radar with a range of up to 30 meters. The radar 
signals were processed into log-scaled mel-spec-
trograms via STFT and analyzed using a 6-layer 
CNN, achieving only 32.1% accuracy for UAVs, 
mainly due to their low radar cross-section. The 
dataset comprised 1,937 samples, augmented to 
3,944 using standard techniques. Despite demon-
strating the feasibility of CNNs for radar signal 
classification, the study lacked information on ra-
dar frequency, UAV models, and real-world test-
ing conditions, limiting its practical applicability 
to environments like airport runways.

Figure 8. Example of a CNN network structure
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Park et al. [38] proposed a CNN-based classi-
fication approach for UAV detection using micro-
Doppler signatures extracted from FMCW radar 
signals. An Ancortek SDR-KIT 980AD2 radar 
operating in the X-band (8–12 GHz) was used to 
record echoes from five low-RCS targets, includ-
ing three UAVs (Metafly – wing-flapping, Mavic 
Air 2 – quadcopter, and Disco – fixed-wing) and 
two human activities (walking and sit-walking). 
The radar data were transformed into spectro-
gram images using short-time Fourier transform 
(STFT), with various window sizes (128, 256, 
512) and overlap ratios (50–85%) to capture tem-
poral and spectral features.

A total of 18 spectrogram variants per sample 
were generated through augmentation (e.g., verti-
cal flips) and used to train two models: ResNet-18 
and a lightweight custom variant, ResNet-SP. The 
latter achieved 83.4% accuracy and outperformed 
ResNet-18 (79.9%) with reduced training time 
(242 s vs. 640 s), showing better efficiency for re-
al-time applications. The authors highlighted the 
importance of preserving real and imaginary parts 
of the radar signal for optimal learning. Addi-
tional techniques included anomaly filtering and 
gradient clipping to stabilize training. The radar 
data were collected within a range of 100 meters, 
but the dataset was not made publicly available. 
Limitations included constrained UAV movement 
scenarios and limited radar visibility for fast or 
low-RCS UAVs like the Disco model.

Rai et al. [39] proposed a method for drone 
localization and activity classification using 
mmWave FMCW radar (76–79 GHz, 4 GHz 
bandwidth) with 3 TX and 4 RX antennas, ori-
ented vertically to estimate elevation angle and 
localize the UAV from a ground station. A small 
commercial drone (322 × 242 × 84 mm) was used 
as the target, detectable up to ~10 meters. Signal 
processing involved range estimation via 1D FFT 
and micro-Doppler signature extraction through a 
custom 2D FFT-based algorithm. For classifica-
tion, they built a dataset of 400 time-frequency 
images (rotating vs. non-rotating UAV), evalu-
ated on multiple ML models: logistic regression, 
SVM, LightGBM (93% accuracy), and a custom 
lightweight CNN that achieved 95% accuracy, 
outperforming larger pre-trained models (e.g., 
ResNet50, InceptionResNet). The custom CNN 
was optimized for edge devices due to its low 
complexity (~93,000 parameters, ~1MB size). 
Limitations included short detection range and a 
binary activity classification (only rotating vs. not 
rotating), leaving room for expanding UAV types 
and behaviors.

In [40], Yoon et al. proposed an efficient pro-
tocol for classifying multiple UAVs and birds us-
ing FMCW radar operating at 9.6 GHz (X-band). 
The study relied on simulated micro-Doppler sig-
natures and employed short-time Fourier trans-
form (STFT) and the Zao–Atlas–Marks (ZAM) 
transform, a high-resolution time–frequency 
analysis method that enhances the visibility of 

Table 1. The latest research on drone detection using FMCW radar and artificial intelligence.
Reference 

(Year) Radar frequency Detected drones DSP methods Classifier Dataset info Accuracy/results

[37]
2019 Not specified Unspecified UAV STFT + Mel-

spectrogram 6-layer CNN 1,937 samples  
(aug. to 3,944)

32.1% UAV 
accuracy

[38] 
 2021

X-band  
(8–12 GHz)

Metafly, Mavic 
Air 2, Disco STFT ResNet-18, 

 ResNet-SP
18 variants/sample, 

not public
83.4%  

(ResNet-SP)

[39] 
2021

mmWave  
(76–79 GHz)

Single UAV type  
(not named)

1D FFT +  
Custom micro-

Doppler

Custom 
CNN, 

LightGBM
400 TFIs (2 classes) 95% (custom 

CNN)

[40]
2022

X-band  
(9.6 GHz)

Multiple 
simulated drones

STFT + ZAM 
transform

CNN 
(custom)

Synthetic TF 
images

Up to 100% 
(simulated)

[41] 
2022) 77 GHz

DJI Mavic 2, 
Matrice 200, 
Phantom 3

Fourier-based 
transform + 

normalization
5-layer CNN Public dataset 

(Zenodo)
95% (known), 
86% (OOD)

[42] 
2022)

K-band 
 (23.8 GHz)

DJI Mavic Air 2, 
Inspire 2, SJRC

STFT + range–
time fusion + 

amplitude

Modified 
multi-scale

Custom dataset 
(indoor/outdoor), 

range ≤12 m

Outperformed 
AlexNet (+9.4%) 

and VGG16
[43]  

 (2023) 77 GHz DJI Mavic Mini 2, 
RadioFLY

MTI filter +  
micro-Doppler Custom CNN 136 real, 32,000 

synthetic
78.68% (model-

based CNN)

[44] 
 (2024) 24 GHz

DJI Inspire 2, 
Phantom 4 Pro, 

Mavic 2 Pro

Range–Doppler 
images + overlay

AlexNet, 
GoogLeNet, 
SqueezeNet

3600 images/class 99.96% 
(GoogLeNet)
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Doppler modulations caused by moving targets. 
These time–frequency representations were 
used to train CNN classifiers to distinguish be-
tween combinations of 1–2 drones and 1–2 birds. 
Among the three evaluated protocols, the most 
realistic setup achieved up to 100% classification 
accuracy under favorable conditions (clutter-to-
signal ratio ≥ 15 dB).

Despite excellent performance in simulation, 
the study lacked real radar data and faced chal-
lenges in distinguishing scenarios with similar 
Doppler patterns (e.g., 2 vs. 3 drones), highlight-
ing the need for real-world datasets and adaptive 
training strategies.

In [41], Karlsson et al. proposed a CNN-based 
method for drone classification using data from a 
77 GHz FMCW radar (SAAB SIRS 1600) with 
160 MHz bandwidth and 1 m range resolution. 
The radar captured micro-Doppler signals from 
six drone models (e.g., DJI Matrice 200 V2, Mavic 
2 Pro, Phantom 3), as well as birds, humans, and 
passive reflectors. Each data sample included five 
range bins collected over a 9 ms dwell time. The 
digital signal processing (DSP) pipeline consisted 
of Fourier-based transformations and amplitude 
normalization to ensure uniform signal-to-noise 
ratio across inputs. A 5-layer CNN was trained 
using the Adam optimizer. To improve robustness 
against out-of-distribution (OOD) drones, syn-
thetic data generated from a mathematical propel-
ler motion model was incorporated into training. 
This led to an increase in classification accuracy 
from 78% to 86% for unknown drones, and up to 
95% for known drone classes at SNR > 17.5 dB. 
The authors emphasized the challenges of class 
generalization and short dwell times, proposing 
synthetic augmentation and convolutional filter 
analysis as strategies for improving interpretabil-
ity and robustness. 

In [42], a method was proposed to classify five 
rotary-wing drones (including DJI Mavic Air 2, 
Inspire 2, and SJRC S70 W) and birds (bionic and 
seagull) using K-band FMCW radar operating at 
23.8 GHz. The radar captured micro-Doppler (m-
D) signatures under various conditions (indoor 
and outdoor, distances up to 12 m). A novel data-
set was constructed by combining time-frequen-
cy (T-F) spectrograms with range–time plots and 
applying custom data augmentation via display 
amplitude modulation and feature fusion. The 
signals were processed with STFT, and a modi-
fied multi-scale CNN was trained, outperform-
ing baseline models like AlexNet and VGG16 by 

9.4% and 4.6% respectively. The study empha-
sized the value of range–time and m-D fusion for 
robust classification and addressed dataset scar-
city, but was limited to short-range measurements 
and a fixed set of UAV and bird types.

In [43], the authors proposed a model-based 
data augmentation technique to improve drone 
classification using a 77 GHz FMCW MIMO (Mul-
tiple-Input, Multiple-Output) radar system. The 
study aimed to classify UAVs based on the number 
of rotors, comparing quadcopters (DJI Mavic Mini 
2) and single-engine helicopters (RadioFLY). In-
stead of relying solely on costly and time-consum-
ing measurements, a deterministic physical model 
was used to synthetically generate micro-Doppler 
radar signatures for UAVs, allowing efficient data-
set creation. The authors applied a moving target 
indicator (MTI) filter to extract range profiles and 
used 400-point data vectors as CNN input. The 
best performance (78.68% accuracy) was achieved 
with the CNN trained on model-augmented data 
(σP = 0.20), significantly outperforming a con-
ventional signal augmentation approach (66.18%), 
which also showed a strong bias. The dataset used 
included real measurements (136 signatures) and 
32.000 synthetic samples. The approach enabled 
high-fidelity classification without extensive real-
world measurements, highlighting a key advantage 
for scalable UAV detection research. However, the 
method did not incorporate angular features from 
MIMO processing, and the classification task was 
limited to only two UAV types.

In [44], the authors proposed a novel drone 
detection method using overlaid range–Dop-
pler maps generated by a 24 GHz FMCW radar 
(Eval-DEMORAD). Three DJI drones (Inspire 
2, Phantom 4 Pro, Mavic 2 Pro) were detected at 
distances between 2 and 12 meters. The digital 
signal processing (DSP) relied on convention-
al range–Doppler image generation, enhanced 
through an image overlay technique that accu-
mulates micro-Doppler signatures (MDS) from 
multiple frames. This approach significantly im-
proved classification performance using CNN 
architectures including AlexNet, GoogLeNet, 
and SqueezeNet. The dataset consisted of 3600 
images per drone type, with 600 overlaid images 
generated from six-frame sequences. The best 
results were achieved with GoogLeNet, reach-
ing 99.96% accuracy for drone detection, outper-
forming both standard CNN and SVM baselines. 
The study highlighted that even small and distant 
drones could be effectively detected, although 
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limitations included a maximum test distance of 
12 m and reliance on proprietary image data in-
stead of raw radar signals. 

CONCLUSIONS

This paper presents a novel approach for de-
tecting UAVs near airport runways using FMCW 
radar, time-frequency signal analysis, and AI-based 
classification methods. The review of recent stud-
ies demonstrates a variety of approaches to UAV 
detection, each with its strengths and limitations.

In comparison to previous methods, the in-
tegration of FMCW radar with CNNs for clas-
sification offers several advantages, particularly 
in terms of cost-effectiveness and compactness. 
While traditional radar systems often struggle 
with multipath effects and detecting small, low-
RCS drones at long distances, FMCW radar is 
able to detect UAVs at relatively shorter ranges, 
especially when combined with advanced signal 
processing techniques such as STFT and micro-
Doppler signature extraction.

Among the reviewed approaches, CNN-
based methods demonstrate significant potential 
for UAV classification in radar signals. How-
ever, the performance of these systems heavily 
depends on the quality and size of the training 
datasets. Studies have shown promising results 
with CNN architectures such as ResNet-18 and 
custom lightweight models, which outperform 
traditional models in terms of both accuracy and 
training time. However, these methods face chal-
lenges related to real-world applicability, such as 
limited training data, constrained UAV movement 
scenarios, and radar visibility issues, particularly 
for fast-moving or low-RCS drones.

In terms of signal processing, the use of STFT 
has proven effective for generating time-frequen-
cy representations of radar signals, but it suffers 
from fixed time-frequency resolution. As noted 
in several studies, the adoption of more adaptive 
transforms, such as wavelets or chirplets, may im-
prove the detection capabilities by providing bet-
ter time-frequency localization. For example, the 
use of wavelet transforms could potentially offer 
more flexibility in analyzing UAVs with rapidly 
changing Doppler signatures.

Alternative radar architectures, such as 
MIMO and SAR (synthetic aperture radar), offer 
promising directions for future research. MIMO 
radar, with its ability to transmit and receive 

multiple signals simultaneously, can improve 
range resolution and accuracy, making it suitable 
for detecting small UAVs at longer distances. 
SAR, on the other hand, offers high-resolution 
imaging that can be useful for identifying objects, 
including drones, in complex environments. The 
combination of FMCW radar with MIMO or SAR 
technologies could significantly enhance UAV 
detection capabilities, especially in challenging 
environments like airport runways, where precise 
detection and localization are critical. Future re-
search directions include:
 • developing publicly available datasets based 

on real FMCW radar measurements in airport 
environments, which would help improve the 
performance of ai models;

 • optimizing lightweight and interpretable ai 
models for deployment in edge or onboard 
devices, making them more suitable for real-
time applications;

 • exploring multimodal sensor fusion, combin-
ing radar with visual or rf sensors, to increase 
robustness and accuracy in detection systems;

 • investigating the use of MIMO and SAR ra-
dar architectures to further enhance detection 
capabilities, especially for small, low-RCS 
UAVs at longer ranges;

 • validating the entire detection pipeline in real 
operational conditions at airports to ensure the 
feasibility and reliability of the proposed solu-
tion. this targeted approach may significantly 
enhance the safety of air operations in light of 
the increasing threat posed by UAV incursions.

By addressing these challenges and exploring 
these future research directions, this work aims to 
significantly enhance the safety of air operations, 
especially as the threat posed by UAV incursions 
continues to grow.
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