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INTRODUCTION

Titanium and its alloys, due to their excep-
tional mechanical, physical [1], and chemical 
properties [2], are key materials in the aerospace 
[3, 4], defense [5, 6], lightweight construction [7, 
8], medical [9], and space technology industries 
[10]. They exhibit a high strength-to-weight ra-
tio[11], excellent corrosion resistance, and the 
ability to operate in extreme conditions [12, 13]. 
The high cost of this metal also contributes to the 
perception that titanium applications are limited 
to industries and products with high-quality re-
quirements [14, 15]. The global demand for ti-
tanium materials is expected to increase by 34% 
between 2025 and 2035 [16]. However, welding 

titanium remains a technological challenge [17, 
18], primarily due to its high affinity for atmo-
spheric gases such as oxygen, nitrogen, and hy-
drogen, which, at elevated temperatures, lead to 
material embrittlement and a deterioration of its 
mechanical properties [19, 20]. The belief that ti-
tanium is difficult to weld likely stems from its 
physical [21] and chemical characteristics [22, 
23], including its higher melting point compared 
to other metals and alloys [24], as well as the nec-
essary precautions to prevent contamination dur-
ing welding and protective layers to avoid oxi-
dation [25]. Experience in titanium welding in-
dicates that welding techniques for titanium and 
its alloys are very similar to those used for nickel 
alloys [26] and stainless steels, which improves 

Influence of process parameters in tungsten inert gas welding 
of titanium supported by you only look once – based defect 
detection algorithm 

Przemysław Frankiewicz1, Tomasz Góral1, Michał Bembenek1*

1 Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 
Krakow, Poland 

* Corresponding author’s e-mail: bembenek@agh.edu.pl

ABSTRACT
Welding titanium remains a significant challenge because of its high reactivity with atmospheric gases at elevated 
temperatures, leading to potential defects. This study investigates the effect of welding parameters in tungsten 
inert gas (TIG) welding on the quality of titanium welds. Experimental trials were conducted on Grade 2 titanium 
sheets, varying key process factors such as current, shielding gas flow, and nozzle geometry. Additionally, artificial 
intelligence-based defect detection model using the YOLO convolutional neural network was applied to evaluate 
the weld quality. The results demonstrate that optimizing these parameters significantly reduces oxidation and 
improves weld penetration. The highest-quality weld was obtained using a welding current of 83 A, a shielding 
gas flow rate of 15 L/min at the weld face, 14 L/min from an auxiliary device, and 3 L/min at the weld root. A 14 
mm nozzle with a gas lens effectively minimized surface oxidation, leading to a defect-free weld as confirmed by 
AI-based detection. The YOLO-based defect detection model achieved high precision and recall for most defect 
classes, including non-conformance (95.1% / 80.0%), geometric (87.8% / 71.4%), and post-processing defects 
(100% / 72.1%), with lower performance observed for adjacent (74.8% / 60.5%) and integrity defects (86.4% / 
27.3%).This study confirms the potential of integrating AI into welding process evaluation, highlighting the role 
of shielding gas distribution in achieving high-quality titanium welds.

Keywords: titanium welding, TIG welding, weld quality, welding defect detection, artificial intelligence,
YOLO algorithm.

Received: 2025.02.17
Accepted: 2025.06.15
Published: 2025.07.01

Advances in Science and Technology Research Journal, 2025, 19(8), 1–14
https://doi.org/10.12913/22998624/203803
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal

https://orcid.org/0000-0002-7665-8058


2

Advances in Science and Technology Research Journal 2025, 19(8), 1–14

the perception of its weldability [27, 28]. Tung-
sten inert gas (TIG) welding is one of the most 
commonly used techniques for joining titanium 
and its alloys [29, 30]. This method allows for the 
production of high-quality welds [31], provided 
that process parameters are precisely controlled 
[32, 33]. Their optimization can significantly im-
prove the microstructure and mechanical proper-
ties of welds [34], which is particularly important 
in industrial applications [35, 36]. The dynamic 
development of artificial intelligence-based tech-
nologies opens new possibilities in monitoring 
and evaluating weld quality [37, 38]. Systems 
based on deep neural networks enable rapid and 
precise detection of welding defects [39]. The 
introduction of such tools into production pro-
cesses allows for automation and acceleration of 
weld quality assessment while reducing the risk 
of human errors [40, 41]. Despite progress in ti-
tanium welding, the literature indicates a short-
age of studies combining TIG welding parameter 
optimization with modern machine learning sys-
tems for weld quality assessment [42, 43]. The 
objective of this study is to analyze the impact 
of TIG welding parameters on the quality of tita-
nium welds, considering factors such as welding 
current, shielding gas flow, and nozzle geometry. 
Additionally, the feasibility of using the YOLO 
convolutional neural network for welding defect 
detection was evaluated, contributing to the de-
velopment of effective tools supporting quality 
control in the industry.

METHODOLOGY

The first step in the research process was the 
acquisition of materials. The availability of tita-
nium on the Polish market is limited, as it is not 
commonly found in metal suppliers specializing 
in non-ferrous metals. For this reason, commer-
cially available Grade 2 titanium sheets with 
a thickness of 3 mm and dimensions of 100 × 
300 mm were purchased for the study. This mate-
rial is characterized by an excellent balance be-
tween strength and ductility while maintaining a 
low level of impurities. As part of the preparation, 
the chemical composition of the purchased titani-
um sheets was analyzed. The material properties 
are presented in Table 1.

To prevent heat-induced degradation of me-
chanical properties, the titanium sheets were cut 
into 42 × 100 mm test samples using a guillotine 
shear. This method minimized the risk of ther-
mal damage during processing. In addition, TIG 
welding rods were required as filler material for 
the welding process. Prior to welding, specific 
procedures were followed to ensure the integrity 
of the process and the quality of the welds:
 • Cleaning the groove and surrounding base 

material with a 30 mm diameter stainless steel 
brush on both sides of the weld seam.

 • Using new and clean welding gloves and pro-
tective equipment.

 • Inspecting the welding machine, power ca-
bles, and gas supply hoses.

Table 1. Material certification of Grade 2 titanium sheets. [44]
Chemical composition

Chemical element Requirement [%] Content [%]

Fe < 0.2 0.028

C < 0.06 0.0085

N < 0.05 0.003

H < 0.013 0.00085

O < 0.16 0.14

Basic mechanical properties

Material property Requirement [MPa] Result [MPa]

Tensile strength 390–540 433–451

Yield strength 1% > 270 336–338

Yield strength 0.2% > 250 302–316

Other mechanical properties

Material property Requirement [-] Result [-]

Elongation > 22 [%] 30 [%]

Hardness (HRB) < 100 84.6
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 • Cleaning the tungsten electrode tip before 
starting the welding process, and properly in-
troducing the filler material into the weld pool 
during welding. Ensuring shielding gas pro-
tection by maintaining a 25-second gas flow 
before and after welding, allowing the weld 
temperature to drop below 300 °C.

The experiments were conducted using an 
inverter-based welding power source, Kemppi 
MasterTig MLS 2300ACDC. To ensure proper 
shielding, a gas protection system was used, pro-
viding a stable argon flow to both the front and 
back sides of the weld.

The study involved six different sets of weld-
ing parameters to assess their influence on weld 
quality. The analyzed factors included:
 • Welding current. The current was set in two 

stages: initial and continuous. This approach 
allowed for controlled material preheating and 
ensured process stability. The tested current 
values ranged from 70A to 85A for the initial 
phase and from 60 A to 83 A for the continuous 
phase. Higher currents aimed to improve weld 
penetration, while lower currents were used to 
minimize overheating and oxidation risks.

 • Shielding gas flow. The shielding gas flow 
rate was varied for both the front (face) and 
back (root) of the weld, ranging from 2 L/
min to 16.5 L/min. Industrial-grade high-
purity argon (99.999%) was used to protect 

the weld from atmospheric contamination, 
such as oxygen, nitrogen, and hydrogen, 
which could degrade mechanical properties 
[45]. Higher gas flow rates were applied to 
the weld face to ensure a uniform surface, 
whereas lower flow rates on the weld root 
helped reduce gas loss [46, 47].

 • Nozzle geometry and type. Two types of weld-
ing nozzles were tested: 14 mm and 20 mm in 
diameter, with and without gas lenses. The use 
of gas lenses aimed to improve the distribution 
of shielding gas, thereby reducing oxidation 
and enhancing weld uniformity [48].

 • Additional shielding gas supply. In some ex-
periments, additional gas supply devices were 
used to increase shielding gas flow on the weld 
face. These devices were implemented to min-
imize common defects, such as porosity and 
oxidation, which can occur under challenging 
welding conditions.

The specific nozzles and auxiliary gas devices 
used in this study are presented in Figure 1 and 
Figure 2.

Each of the six welding parameter sets was 
designed to allow for:
 • The evaluation of weld penetration based on 

varying current values.
 • The analysis of weld face and root surface 

quality, focusing on uniformity and defect 
presence.

Figure 1. The 14 mm nozzle with a gas lens (A) and the 20 mm nozzle without a gas lens (B)
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 • The examination of nozzle geometry impact 
on gas distribution and its effect on weld sur-
face quality.

To assist in the visual analysis of titanium 
weld quality obtained using the TIG method, a 
YOLO (you only look once) convolutional neu-
ral network was implemented [49]. The purpose 
of this approach was to enable automatic detec-
tion and classification of welding defects based 
on image analysis, which significantly acceler-
ated the evaluation process and reduced subjec-
tive errors associated with human inspection. The 
YOLO network was trained using a customized 
dataset consisting of photographic images of 
welds captured with conventional cameras. This 
dataset was specifically adapted for weld defect 
detection and was sourced from a publicly avail-
able dataset on the Kaggle platform. The dataset 
used in the analysis was designed for detecting 
welding defects in conventional images, exclud-
ing HDR, radiographic, or X-ray images. The 
dataset consists of annotated images formatted 
for YOLO training and includes the following 
weld defect categories: adjacent defects, such as 
spatter and arc marks; integrity defects, includ-
ing porosity, cracks, and inclusions; geometric 
defects, such as undercuts and lack of fusion; 
post-processing defects, including scratches and 

burrs; and non-conformance defects, specifically 
lack of fusion and incomplete penetration. The 
data was divided into three subsets: the training 
set (85%), used for model training; the validation 
set (10%), used to evaluate model performance 
during training; and the test set (5%), used for 
final assessment on previously unseen data. The 
distribution of annotated weld defects within each 
subset was unevenly spread across defect catego-
ries, reflecting their natural frequency of occur-
rence in welding processes. Common defects, 
such as spatter or surface irregularities, appeared 
more frequently, whereas critical defects, such as 
lack of penetration, were less common. Table 2 
presents the detailed distribution of defects in the 
training and validation datasets. Despite the un-
even distribution of defect categories, this dataset 
was accepted for training, as frequently occurring 
defects, such as spatter, are representative of most 
welding processes, while rarer defects, such as 
lack of penetration, are easier to detect at earlier 
welding stages. The YOLO model was designed 
to account for this imbalance, assigning higher 
weights to rare but critical defects to improve de-
tection accuracy [50, 51].

The number of detected defects alone is not 
sufficient for a comprehensive evaluation of weld 
acceptability, as each defect class has a different 
impact on the structural integrity of the welded 

Figure 2. Two types of the auxiliary shielding gas devices (A) and (B)

Table 2. Distribution of defects in the training and validation sets
Defect class Training Set Validation Set

Adjacent defects: spatter, arc marks (adj) 1278 238

Integrity defects: porosity, cracks, inclusions (int) 657 124

Geometric defects: undercuts, lack of Fusion (geo) 855 160

Post-processing defects: scratches, burrs (pro) 225 46

Non-conformance defects: lack of fusion, incomplete penetration (non) 161 34
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joint. Therefore, an acceptability index (WA) was 
introduced, which considers not only the number 
of detected defects but also their severity, size, 
and technical significance. This approach allows 
for an objective and consistent assessment of re-
sults, particularly in cases where defect classes 
are unevenly distributed in the dataset (Table 3).

The WA index is defined by Equation 1, 
where each defect class is assigned a specific 
weight that reflects its significance for the integ-
rity of the weld:

 
𝑊𝑊𝑊𝑊 =  ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖

𝑛𝑛
𝑖𝑖=1  × 

× 𝐷𝐷𝑤𝑤𝐷𝐷𝑤𝑤𝐷𝐷𝑡𝑡 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 × 𝑆𝑆𝑤𝑤𝑆𝑆𝑤𝑤 𝑚𝑚𝑐𝑐𝑚𝑚𝑤𝑤𝐷𝐷𝑤𝑤𝑤𝑤𝑚𝑚𝑖𝑖 
 (1)

where: Class weight – a coefficient assigned to 
each defect class, indicating its impact on 
weld integrity, Defect count – the number 
of defects detected for a given class, Size 
modifier – a coefficient that considers the 
size of the bounding box in relation to the 
overall image area.

The weights were assigned based on the im-
pact of each defect type on weld integrity. For 
example, defects in the non-conformance (non) 
category, such as incomplete penetration, can 
significantly weaken the weld, whereas post-
processing (pro) defects, like scratches or burrs, 
have primarily cosmetic effects and do not com-
promise structural integrity.

To further account for defect size, a bounding 
box size modifier was introduced:
 • Size modifier = 1.5 if the bounding box covers 

more than 2% of the total image area,
 • Size modifier = 1.0 if the bounding box covers 

less than 2% of the total image area.

This coefficient helps to highlight large 
defects that may have a greater impact on the 
overall integrity of the weld, as opposed to small 
surface irregularities. A threshold criterion was 
established to define whether a weld is accept-
able. If the acceptability index WA ≥ 5, the weld 
is considered unacceptable, meaning it contains 

too many or too severe defects. This approach 
allows not only for the identification of samples 
with the highest number of defects but also for 
their assessment based on their impact on me-
chanical strength and structural integrity. For 
example, a weld with multiple adjacent defects 
(adj) may still be deemed acceptable, whereas 
the presence of a single critical defect (non) 
would result in rejection.

RESULTS

In this study, the YOLOv5s model was trained 
on a dataset of welding seam images with precise-
ly labeled defect classes. The dataset contained a 
diverse distribution of defect types, including ad-
jacent, integrity, geometric, post-processing, and 
non-conformance defects. Figure 3 illustrates the 
distribution of defect classes in the training dataset, 
highlighting the imbalance in defect occurrence, 
which was accounted for during model training.

To evaluate the effectiveness of the model, 
YOLO-based defect detection was performed on 
test images, allowing for visual assessment of de-
tected defects. The detection results were overlaid 
on sample weld images, where bounding boxes 
indicate the identified defects and their respective 
classifications. The effectiveness of the model in 
distinguishing between different defect types is 
presented in Figure 4.

The training process involved the follow-
ing network parameters. All input images were 
resized to 640 × 640 pixels (imgsz) to ensure a 
consistent visual representation for the model. 
The training was conducted over 50 full itera-
tions (epochs), allowing the model to gradually 
learn while minimizing the risk of overfitting. 
The batch size was set to 16 images per iteration, 
striking a balance between processing speed and 
the stability of weight updates. For optimization, 
the AdamW optimizer was employed [52], which 
dynamically adjusted the initial learning rate and 
momentum, enhancing training stability.

Table 3. Assigned weights for each defect class and their impact on weld acceptability
Defect class Class weight Technical significance

Adjacent defects (adj) 0.5 Minor defects, acceptable in most cases

Integrity defects (int) 3.0 Major defects that result in weld rejection

Geometric defects (geo) 2.0 Moderate defects that affect weld strength

Post-processing defects (pro) 0.2 Cosmetic defects, generally acceptable

Non-conformance defects (non) 4.0 Critical defects, always unacceptable
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Figure 3. Uneven distribution of welding defects in the training dataset

Figure 4. Example of weld defect detection using the YOLO model
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Throughout the training process, loss func-
tion values were monitored in three categories:
 • Box Loss indicates how well the predicted 

bounding boxes align with actual objects. The 
loss initially measured 4.27 and decreased to 
1.81 after 50 epochs.

 • Class Loss represents the accuracy of defect 
classification. Its value dropped from 5.71 to 
1.39, indicating improved class assignments.

 • DFL Loss (distribution focal loss) quanti-
fies the precision of key point predictions for 
objects, reducing from 4.16 to 1.66 over the 
training period.

These loss function trends are illustrated in 
Figure 5. The loss values steadily declined over 
the course of successive training epochs. The ini-
tial values of 4.27 (Box Loss), 5.71 (Class Loss), 
and 4.16 (DFL Loss) underwent a significant re-
duction, reaching 1.81, 1.39, and 1.66, respective-
ly, in the final training stages. The stable nature of 
these loss curves suggests that the model success-
fully adapted to the training dataset without signs 
of overfitting [53].

After completing the training phase, the mod-
el was validated on an independent test dataset. 
The results are presented in Table 4 and Figure 6.

The geo, non, and pro defect categories ex-
hibit a broad area under the Precision-Recall 
curve, confirming their high detection accuracy. 
However, for the int and adj categories, steeper 
declines were observed, indicating that the model 
struggles to maintain high precision as recall in-
creases. The classification performance metrics 
presented in Table 5 and the Precision-Recall 
curve demonstrate that the model is particularly 
effective at detecting geometric and post-process-
ing defects, whereas the detection of adjacent and 
integrity defects requires further optimization.

After validating the YOLOv5 model, an anal-
ysis of test samples was conducted to evaluate the 
quality of welds produced under different techno-
logical parameters.

Test sample 1

For this sample, moderate welding param-
eters were applied. The initial current was set 

Figure 5. Loss function variations during training, where the Y-axis shows the dimensionless loss value,
while the X-axis indicates the epoch number

Table 4. Classifier performance metrics
Defect class Precision Recall mAP50 mAP50-95

Adjacent defects (adj) 0.747890 0.605263 0.680528 0.289413

Integrity defects (int) 0.863606 0.272727 0.379583 0.181580

Geometric defects (geo) 0.877534 0.714286 0.887691 0.519983

Post-processing defects (pro) 1.000000 0.720885 0.828551 0.305944

Non-conformance defects (non) 0.951027 0.800000 0.802355 0.454421
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to 70 A, while the continuous current was main-
tained at 60 A. The shielding gas was supplied at 
a flow rate of 15 L/min for the weld face and 4 L/
min for the weld root. The absence of additional 
shielding gas devices resulted in limited oxida-
tion protection. However, the 14 mm diameter 
nozzle with a gas lens provided moderate pro-
tection for the weld face.

The YOLOv5 model did not detect any de-
fects in this weld, and the sample was classified 
as acceptable. The results for this test sample are 
summarized in Table 5 and illustrated in Figure 7.

Test sample 2

For this test, higher welding parameters were 
applied. The initial current was set to 83A, while 
the continuous current was maintained at 75 A. 
The shielding gas flow rate was 16.5 L/min for 
the weld face and 2 L/min for the weld root. Ad-
ditionally, an auxiliary shielding gas device was 
used, supplying an extra 6 L/min of gas to the 
weld face. A 20 mm diameter nozzle without a 
gas lens was used, which provided less oxidation 
protection compared to the previous test using a 

Figure 6. Precision-Recall curve

Table 5. Technological parameters for welding test sample 1
Test sample 1 Parameter value

Welding current Initial – 70 A, continuous – 60 A

Shielding gas (weld face) 15 L/min

Shielding gas (weld root) 4 L/min

Nozzle type ø14 mm with a gas lens

Additional shielding gas device None

Figure 7. The test sample from the weld face (A) and weld root perspectives (B) 
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Figure 8. The test sample from the weld face (A) and weld root perspectives (B)

Table 6. Technological parameters for welding test sample 2
Test sample 2 Parameter value

Welding current Initial – 83 A, continuous – 75 A

Shielding gas (weld face) 16.5 L/min

Shielding gas (weld root) 2 L/min

Nozzle type ø20 mm without a gas lens

Additional shielding gas device 6 L/min

gas lens-equipped nozzle. However, the YOLOv5 
model did not detect any defects, and the sample 
was classified as acceptable.

The results for this test sample are summa-
rized in Table 6 and illustrated in Figure 8.

Test sample 3

For this test, the initial welding current was set 
to 80 A, while the continuous current was main-
tained at 70 A. The shielding gas flow rate was 
15 L/min for the weld face and 4 L/min for the 
weld root. The absence of an auxiliary shielding 
gas device resulted in reduced oxidation protec-
tion, despite the use of a 14 mm diameter nozzle 
with a gas lens.

Nevertheless, the YOLOv5 model did not 
detect any defects, and the sample was classi-
fied as acceptable. The results for this test sam-
ple are summarized in Table 7 and illustrated 
in Figure 9.

Test sample 4

The welding parameters in this test were very 
similar to those used in test sample 2. The initial 
welding current was set to 83 A, while the con-
tinuous current remained at 75 A. The shielding 
gas flow rate was 16.5 L/min for the weld face 
and 2 L/min for the weld root, with an additional 
10 L/min of shielding gas supplied by an auxil-
iary gas device.

Table 7. Technological parameters for welding test sample 3
Test sample 3 Parameter value

Welding current Initial – 80 A, continuous – 70 A

Shielding gas (weld face) 15 L/min

Shielding gas (weld root) 2 L/min

Nozzle type Ø14 mm with a gas lens

Additional shielding gas device None

Figure 9. The test sample from the weld face (A) and weld root perspectives (B)
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A 20 mm diameter nozzle without a gas lens 
was used. The YOLOv5 model did not detect any 
defects, confirming the acceptability of the weld. 
The results for this test sample are summarized in 
Table 8 and illustrated in Figure 10.

Test sample 5

Test sample 5 was identified as the most op-
timal configuration in terms of technological pa-
rameters. The welding process was conducted 
with a stable current of 83 A, a shielding gas flow 
rate of 15 L/min for the weld face, 3 L/min for the 
weld root, and an additional 14 L/min of shield-
ing gas supplied by an auxiliary gas device. These 
conditions created ideal welding parameters, en-
suring high-quality welds.

A 14 mm diameter nozzle with a gas lens was 
used, providing excellent oxidation protection. 
The YOLOv5 model confirmed that the weld was 
free of defects, classifying the sample as accept-
able. The results for this test sample are summa-
rized in Table 9 and illustrated in Figures 11.

Test sample 6

The final test was conducted with an initial 
welding current of 85 A, while the continuous 
current was maintained at 80 A. The shielding 
gas flow rate was 15 L/min for the weld face and 
2 L/min for the weld root, with an additional 
16 L/min of shielding gas supplied by an auxil-
iary gas device.

Table 8. Technological parameters for welding test sample 4
Test sample 4 Parameter value

Welding current Initial – 83 A, continuous 75 A

Shielding gas (weld face) 16,5 L/min

Shielding gas (weld root) 2 L/min

Nozzle type Ø20 mm without a gas lens

Additional shielding gas device 10 L/min

Figure 10. The test sample from the weld face (A) and weld root perspectives (B)

Table 9. Technological parameters for welding test sample 5
Test sample 5 Parameter value

Welding current Initial – 83 A, continuous – 83 A

Shielding gas (weld face) 15 L/min

Shielding gas (weld root) 3 L/min

Nozzle type Ø14 mm with a gas lens

Additional shielding gas device 14 L/min

Figure 11. The test sample from the weld face (A) and weld root perspectives (B)
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A 14 mm diameter nozzle with a gas lens 
was used, ensuring good oxidation protection. 
The YOLOv5 model did not detect any defects, 
and the sample was classified as acceptable. The 
results for this test sample are summarized in 
Tables 10, 11 and illustrated in Figure 12.

To provide a clear overview of all welding 
trials, a summary table has been added below, 
listing the technological parameters and classifi-
cation outcomes for each test sample.

DISCUSSION

The weld samples were evaluated using expert 
visual inspection (VT2) supported by AI-based 
analysis [40]. The YOLOv5s model detected no 
defects, likely due to its limitation in identify-
ing surface oxidation, which is a critical issue in 

titanium welding but falls outside the model’s de-
tection capabilities [42, 43]. Test sample 5 exhib-
ited the best results due to an optimized shielding 
gas flow, a gas-lens-equipped nozzle, and a stable 
welding current, which collectively reduced defect 
occurrence. A key factor in its superior quality was 
minimized oxidation. The 14 mm gas-lens nozzle 
provided stable argon shielding, effectively dis-
placing reactive atmospheric gases, while an aux-
iliary gas supply of 14 L/min further protected the 
heat-affected zone. Additionally, the welding cur-
rent of 83 A ensured deep penetration and structur-
al integrity without excessive heat input, avoiding 
grain growth and internal stresses. The controlled 
3 L/min gas flow at the weld root prevented con-
tamination from oxygen and nitrogen exposure. 
These findings emphasize the importance of pre-
cise shielding gas distribution in TIG welding to 
achieve defect-free titanium joints [35].

Table 10. Technological parameters for welding test sample 6
Test sample 6 Parameter value

Welding current Initial – 85 A, continuous – 80 A

Shielding gas (weld face) 15 L/min

Shielding gas (weld root) 2 L/min

Nozzle type Ø14 mm with a gas lens

Additional shielding gas device 16 L/min

Table 11. Summary of technological parameters for all welding test samples
Test 

sample
Initial current 

[A]
Continuous 
current [A]

Shielding gas 
(face) [L/min]

Shielding gas 
(root) [L/min]

Additional gas 
device [L/min] Nozzle type YOLOv5 

classification

1 70 60 15 4 None Ø14 mm with 
gas lens Acceptable

2 83 75 16.5 2 6
Ø20 mm 

without gas 
lens

Acceptable

3 80 70 15 2 None Ø14 mm with 
gas lens Acceptable

4 83 75 16.5 2 10
Ø20 mm 

without gas 
lens

Acceptable

5 83 83 15 3 14 Ø14 mm with 
gas lens Acceptable

6 85 80 15 2 16 Ø14 mm with 
gas lens Acceptable

Figure 12. The test sample from the weld face (A) and weld root perspectives (B)
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CONCLUSIONS

The conducted research demonstrated that 
the quality of titanium welds strongly depends 
on the precise selection of welding parameters 
and shielding gas technology. The best results 
were obtained in test sample 5, where the optimal 
conditions included a welding current of 83 A, a 
shielding gas flow rate of 15 L/min for the weld 
face, 14 L/min from the auxiliary gas device, and 
3 L/min for the weld root, along with a gas-lens-
equipped nozzle, which significantly reduced ox-
idation. The trained YOLOv5 model effectively 
assisted in visual weld inspection, particularly 
in identifying common defects, such as geomet-
ric irregularities. However, it struggled with the 
detection of rare defects affecting structural in-
tegrity. The absence of detected defects in certain 
samples might be related to the specific nature of 
titanium welds, where oxidation remains the pri-
mary concern. The results confirm that AI-based 
systems can enhance weld quality assessment, 
but human expertise and thorough visual inspec-
tion remain essential. The findings highlight the 
need for further advancements in shielding gas 
technologies and analytical algorithms to meet 
the challenges associated with welding titanium. 
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