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INTRODUCTION

Relative humidity (RH) is one of the most 
important hydroclimatic factors directly af-
fecting the environment. In the current cli-
mate, environmental disturbances, particularly 
global climate change, represent a major con-
cern in the climatological research sector. In 
view of the global challenges we face, there 
is an imperative to enhance our compression 

and predict RH, given its significant impact on 
human health, ecological systems and the in-
creasing frequency of extreme weather events. 
RH is defined as the ratio between the maxi-
mum quantity of water vapor in the atmosphere 
and the amount of water vapor that the air can 
contain at a certain temperature [1]. The tem-
perature of the air can affect its relative humid-
ity. An increase in air temperature leads to an 
increase in the amount of water vapor in the 
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air, thereby enhancing the humidity level. Low 
humidity has been linked to the development 
of respiratory viruses such as influenza and 
coronaviruses [2–5]. Furthermore, excessive 
humidity can reduce the body’s ability to regu-
late its temperature and promote the growth of 
bacteria and fungi, which can have a negative 
impact on respiratory health.

In view of the critical role of relative hu-
midity in environmental processes, a number 
of studies have concentrated on enhancing its 
predictive accuracy. Forecasting relative humid-
ity has become increasingly important due to its 
significant impact on ecological systems, human 
health, and climate change. A variety of machine 
learning algorithms have been used, with vary-
ing degrees of success in predicting RH. Recent 
advancements in forecasting techniques have 
been driven by the need to better understand and 
predict climate-related phenomena in the face of 
these challenges [6, 7]. 

Machine learning models, in particular artifi-
cial neural networks (ANNs), have demonstrated 
considerable potential in predicting RH. However, 
existing models frequently encounter difficulties 
accounting for regional climatic variations. In this 
regard, multilayer perceptron (MLP) and radial 
basis function (RBF) networks have demonstrated 
superior performance in predicting environmental 
variables, especially when handling non-linear re-
lationships in the data. Research has demonstrated 
that MLP and RBF networks provide enhanced 
flexibility in modelling environmental parameters 
in comparison to traditional methods [8, 9]. 

The present study uniquely focuses on the 
Fez region in Morocco, where there is limited 
research on predicting relative humidity using 
MLP and RBF networks. The objective of this 
study is to enhance the accuracy of RH predic-
tions by integrating regional climatic condi-
tions and local meteorological data. This ap-
proach aims to address the challenges associ-
ated with the application of machine learning 
models in specific geographic contexts. The 
selection of these models is predicated on their 
demonstrated capacity to manage the complex, 
non-linear relationships between meteorologi-
cal parameters and RH. A recent study evalu-
ated several machines learning algorithms, in-
cluding gradient boosting tree (GBT), random 
forest (RF), linear regression (LR), and two 
ANN architectures (MLP and RBF). The study 
concluded that the MLP-NN model performed 

best for daily temperature and humidity predic-
tions [10]. This supports the efficacy of MLP 
and RBF networks in modelling temperature 
and humidity dynamics, further justifying their 
use in this study. For instance, Ben Yahia et al. 
[11] found that RBF networks performed bet-
ter than exponential regression in predicting 
humidity variations, while Khatibi et al. [12] 
showed that ANN outperformed GEP when in-
corporating both current and historical data in 
the presence of noisy data.

The objective of this study is to develop a 
precise mathematical model for predicting rela-
tive humidity based on different meteorological 
factors, specifically tailored to the Fez region. 
This will be comparing the performance of MLP 
and RBF networks, which is expected to pro-
vide valuable insights into the modelling of RH 
in regions with unique climatic conditions. The 
findings of this study are expected to contribute 
to the development of robust and region-specific 
predictive models for RH, aiding in environ-
mental monitoring, public health applications, 
and climate-related studies. The cost/loss func-
tion employed in this case to measure the per-
formance of the model on the entire dataset is 
the mean squared error (MSE). This is the loss 
function that evaluates the errors between the 
model’s predictions and the actual values and 
the correlation coefficient (R).

MATERIALS AND METHODS

Materials

Database

In this study, we used a daily database of 
13879 days and eight meteorological variables 
for the city of Fez (Fig. 1), recorded between 
January 1985 and December 2022. The database 
included the following: 
	• Seven independent explanatory variables: 

temperature at 2 m, shortwave radiation, dif-
fuse shortwave radiation, precipitation total, 
evapotranspiration, vapor pressure deficit and 
wind speed.

	• The dependent variable to be predicted is the 
relative humidity.

Table 1 presents a meteorological variable, 
with their respective abbreviations and units of 
measurement.
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Database normalization

The database has undergone a pre-processing 
stage that includes appropriate normalization of its 
data, taking into consideration the amplitude of the 
values accepted by the network. The database has 
been normalized to a range between -1 and 1 for its 
maximum and minimum values, as detailed in the 
following normalization equation [13].

	 𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

	 (1)

where:	 𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

 – normalized values of variable i; X𝒊 – 
raw, non-normalized values of variable i; 
Xi (𝑚𝑖𝑛) – minimum values of variable i; and 
Xi (𝑚𝑎𝑥) – maximum values of variable i.

Methods 

Multiple linear regression

MLR is a statistical tool used to predict the 
values of a dependent variable based on indepen-
dent variables. The goal is to identify the most 
accurate model for predicting the dependent val-
ue to minimize error. The equation for the MLR 
model is represented as follows [14].

	

𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

	 (2) 

where:	Y – dependent variable; X1, X2, …, Xn – in-
dependent variables; a0 – estimated inter-
cept; a1; a2; …; an – slopes (partial regres-
sion coefficients); n – number of explana-
tory variables; and ɛi – a residual.

Artificial neural network design

An artificial neural network (ANN) is a 
methodology used in the field of artificial in-
telligence. It is defined by a structured set of 
units (neurons) that operate in parallel and in a 
distributed manner to achieve the optimal out-
come according to a defined set of objectives. 
The network is capable of receiving inputs and 
producing an output result [15, 16].

An artificial neuron is capable of receiving 
a variable number of inputs, with each input 
being associated with a weight that represents 
the strength of the connection. Each processor 
generates a distinct output, which then serves 
as an input to feed a variable number of neu-
rons [17].

Table 1. The meteorological parameters used in this study and their respective designations
Meteorological variables Designation Unit Types de variable

Temperature T °C

Independent variables

Shortwave radiation SR W/m²

Diffuse shortwave radiation DSR W/m²

Precipitation total PT mm

Evapotranspiration Ev mm

Vapor pressure deficit VPD hPa

Wind speed WS Km/h

Relative humidity RH % Dependent variable

Figure 1. Geographical location of the study area
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MLP artificial neural networks

Neural networks are categorized into distinct 
classification, each with its specific applications 
and utilization. For the purposes of this study, the 
multilayer perceptron has been selected as the 
network model. The rationale behind this selec-
tion is twofold: firstly, its rapid and straightfor-
ward construction for databases with limited vari-
ables and secondly, its efficacy in addressing the 
research questions at hand [18] (Fig. 2).

A multilayer perceptron consists of neurons 
distributed over several layers, with information 
flowing exclusively from the input layer to the 
output layer. The input layer contains neurons in 
accordance with the number of dimensions pres-
ent in the input space, while the output layer con-
sists of a single neuron that represents the predict-
ed value. Additionally, the network contains one 
or more hidden layers located between the input 
and output layers, with the number of neurons in 
each layer varying [19].

Artificial neural networks of the RBF type

The radial basis function network is a type of 
supervised artificial neural network. It consists of 
three layers: an input layer, a single hidden layer 
with neurons activated by the gaussian activation 
function [19, 20] and an output layer with neurons 
activated by the linear activation function (Fig. 3).

The information begins at the input layer, then 
moves to the hidden layer, and finally ends at the 
output layer. A principal feature of RBF networks 
pertains to the training process employed to ad-
just the weights of the two layers of neurons [22].

The hidden layer consists of k nodes, with 
each node applying a non-linear transformation 
to the input variables. Each node, designed by ‘j’ 

possesses a center, denoted by Cj, which is a vec-
tor with dimensions equal to the number of in-
puts. Upon reception of a new input vector X= 
[X1, X2,..., Xn], the Euclidean distance between 
the input vector and the node center is calculated 
using the following formula:

	 υj (X) = ‖Cj - X‖ = √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  1 

 2 

	 (3)

where:	υj – the norm of the Euclidean distance 
between the input vector and the node 
center; Cj – the center associated with 
neuron, j – a vector of dimension equal to 
the number of inputs. 

	 X = [x1, x2, …, xn]: input vector.

The output of the hidden layer nodes is de-
termined by a non-linear activation function, spe-
cifically a Gaussian function:

	

𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

	 (4)

where:	σ – standard deviation of the activation 
function.

In this context, σ represents the standard devi-
ation of the activation function. As a general guide-
line, the following approach is recommended:

	

𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

	 (5)

where:	dj – the maximum distance between cen-
ter j and the other remaining centers; M – 
the total number of centers in the hidden 
layer.

The connections between the hidden layer 
and the output layer are assigned a set of synap-
tic weights Wj, where j = 1, 2..., k. The nodes in 
the output layer essentially perform a summation 

Figure 2. Example of an MLP neural network 
architecture with a Tansig activation function in the 

hidden layer

Figure 3. Example of an RBF neural network 
architecture with a gaussian activation function in the 

hidden layer
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function to produce the final output of the net-
work. The output of the output layer is provided 
as follows:

	

𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
𝜎𝜎²) (4) 

 
𝜎𝜎j = 

𝑑𝑑𝑗𝑗
√2𝑀𝑀 (5) 

 
Y = L(∑ 𝑊𝑊𝑗𝑗𝑍𝑍𝑗𝑗 +  𝑏𝑏𝑗𝑗) 𝑘𝑘

𝑗𝑗=1  (6) 
 
W = inv (ZT Z) ZT YT (7) 
 

R= √1 − ∑ ( 𝑌𝑌𝑃𝑃𝑃𝑃 −𝑌𝑌𝑂𝑂𝑂𝑂 𝑁𝑁
𝑗𝑗=1 )

∑ ( 𝑌𝑌𝑂𝑂𝑂𝑂 −𝑌𝑌𝑚𝑚𝑁𝑁
𝑗𝑗=1 )  (8) 

 

	 (6)

where:	L(n) = n linear function; wj, j = 1,2..., 	
k – set of synaptic weights; bj – the bias. 

The connections between the hidden layer 
and the output layer are determined based on the 
target vector, Y = [Y1, Y2,..., Yn] [21]:

	

𝑋𝑋𝑖̅𝑖 = 2(𝑋𝑋𝑖𝑖−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚))
(𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)−𝑋𝑋𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚)) − 1 (1) 

 
Y = a0 + a1 X1+ a2 X2 + ⋯ + 

+ an Xn + ɛi, 
(2) 

 
υj (X) = ‖Cj - X‖ = 

= √∑ (𝑋𝑋𝑖𝑖 − 𝐶𝐶𝑗𝑗𝑗𝑗)²𝑛𝑛
𝑖𝑖=1  

(3) 
 

𝑓𝑓(υ) = exp (− 𝜐𝜐²
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where:	 inv – the inverse.

Statistical performance criteria

In this research, two criteria were employed 
to assess the performance of the model: the cor-
relation coefficient (R) [13] and the mean squared 
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to compare the accuracy of various models. To 
conduct these calculations, two sets of predic-
tions and observations of relative humidity are 
required. The following equations are employed 
to derive these values:
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where:	YPj and Yoj – predicted and observed values 
correspondingly; N – number of observa-
tions; Ym – mean of the observed values.

	 MSE =   
 

	 (9)

RESULTS AND DISCUSSION

Multiple linear regression (MLR)

A multiple linear regression analysis was con-
ducted using XLSTAT software to identify an ap-
propriate linear model for predicting relative hu-
midity, based on the independent variables. The 
resulting equation for this model is as follows:

RH (%) = 63.236 + 1.110 × T – 7.439 × 10-3 × 
SR – 8.023 × 10-2 × DSR + 0.706 × PT + 52.464 

× Ev – 1.844× VPD + 5.554 × 10-2 × WS

The coefficient obtained by the MLR model 
is R = 0.902, and the mean square error is MSE 
= 58.08. The relatively low value of R and the 

high value of MSE, in comparison with those of 
MLP-type neural models, confirm that there is 
no linear correlation between RH and the other 
meteorological parameters. Furthermore, they 
demonstrate the limitations of the MLR model in 
terms of its capacity for modeling.

The analysis of the model predictor variables 
reveals that all variables, including temperature, 
solar radiation, precipitation, evapotranspira-
tion, vapor pressure deficit, and wind speed are 
statistically significant, with very low p-values 
(< 0.0001 for the majority), indicating their sub-
stantial influence in predicting relative humidity. 
While certain variables, including direct and dif-
fuse solar radiation, are strongly correlated, they 
provide distinct information and justify their in-
clusion in the model. No variable was considered 
to be redundant or statistically insignificant. Nev-
ertheless, it is acknowledged that techniques such 
as principal component analysis (PCA) could be 
employed in future studies to address any pos-
sible multicollinearity.

In order to predict this parameter with greater 
accurately, mathematical models have been de-
veloped based on artificial neural networks.

Artificial neural networks

MLP neural network

In this study, we employed supervised neural 
networks of the MLP type, as they are well-suit-
ed to the predictive modeling tasks of the study. 
It is acknowledged that these networks are ca-
pable of addressing non-linear problems in addi-
tion to prediction. 

To identify the optimal configuration for the 
MLP network, a series of experiments where con-
ducted. These experiments studied the effect of 
data distribution, number of hidden layers, num-
ber of neurons in each hidden layer, activation 
function pairs, and learning algorithms [23]. 

Initially, the database is divided into three 
distinct sets: a training set, a test set and a valida-
tion set, with respective proportions of 70%, 15% 
and 15% respectively. This distribution of data is 
a common practice in the relevant literature, with 
the aim of avoiding overlearning and ensuring ro-
bust evaluation of the models [24].

The following Table 2 illustrates the values 
of the performance indicators R and MSE as a 
function of the number of hidden layers. It was 
observed that an increase in the number of hidden 
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layers leads to a decrease in model performance 
and an increase in computation time. As the num-
ber of layers grows, the correlation coefficient (R) 
decreases and the MSE rises. This phenomenon 
can be attributed to the increasing complexity of 
the model, which, as it becomes excessively spe-
cialized in memorizing the training data, fails to 
generalize effectively to new data. This results a 
decrease R and an increase in MSE.

Consequently, the most compelling model-
ing results, characterized by favorable conver-
gence and optimal model performance, are ob-
served when using a single hidden layer. These 
results are in line with those of El Badaoui and 
colleagues [25]. In the interest of identifying the 
optimal model, the present study will be limited 
to a single hidden layer.

In order to identify the optimum number of 
neurons in the hidden layer, a study was con-
ducted in which the number was varied from 1 to 
20. The most effective characteristics for database 
distribution and the number of hidden layers were 
utilized. The figure below illustrates the variations 
in the MSE and the correlation coefficient (R) for 
different numbers of neurons in the hidden layer. 

The results indicate that the MLP model has 
the highest correlation coefficient and the lowest 
mean square error when there are fifteen neurons 
in the hidden layer, compared to those for other 
hidden neuron numbers, ranging between 1 and 

20. This configuration is characterized by an op-
timal balance between model complexity and 
accuracy. The finding suggests that a reduction 
in the number of neurons may result in underfit-
ting, which could potentially lead to suboptimal 
outcomes. Conversely, an excess of neurons can 
lead to overfitting, resulting in unnecessary com-
plexity without significant performance enhance-
ments. This phenomenon, known as the overfit-
ting problem, is well-documented in the field of 
neural network optimization, as demonstrated in 
the Figure 4 that increasing the number of neu-
rons beyond a certain point does not necessarily 
improve performance and may even worsen it 
due to overfitting and increasing computational 
complexity[26]. 

A decision operator is defined as the activa-
tion function that evaluates the neuron’s output 
condition based on its potential [27].

Various activation functions limit the ampli-
tude of the neuron’s output signal, thereby en-
abling the replication of the threshold effect ob-
served in neurons. The main transfer functions 
that can be used as the neuron’s activation func-
tion are shown in Table 3. 

The sigmoid activation function is notable in 
that it facilitates the network capacity to handle 
both pure linear and non-linear problems. Con-
sidering this, we conducted a comprehensive in-
vestigation, assessing all possible combinations 
of activation functions in both the hidden and out-
put layers. As demonstrated in the Table 4 below, 
the combination of activation functions (Tansig 
and Purelin) yielded the most favorable statisti-
cal results, with a correlation coefficient value of 
0.9782 and a mean squared error of 1.58 × 10+2. In 
this study, four distinct learning algorithms were 
utilized. Each of them is used in a specific way 
because of its high performance:

Table 2. Values of R and MSE as a function of the 
number of hidden layers

Number of hidden layers R MSE x 10+2

1 0.9783 1.14

2 0.9277 3.40

3 0.8663 3.75

4 0.8482 4.55

Figure 4. Values of the performance indicators R and MSE as a function of the number of neurons in the hidden layer
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	• gradient descent back propagation (GD), 
	• scaled conjugate gradient (SCG), 
	• resilient back propagation (RBP), 
	• Levenberg-Marquardt (LM). 

The performance of each learning algorithm 
was assessed by considering the MSE, correlation 
coefficient (R), and the number of iterations. 

As demonstrated in the following table, the 
Levenberg-Marquardt algorithm exhibits supe-
rior performance in terms of convergence speed 
and the statistical indicators R and MSE. This can 

be attributed to the fact that the algorithm rapidly 
converges towards the minimum squared error 
value, that it is highly processing efficient, and 
that it is suitable for meteorological prediction. 
The method is based on iterative gradient de-
scent of the quasi-Newton family, incorporating 
non-linear least-squares methodologies, and the 
Gauss-Newton algorithm with constrained neigh-
borhoods [28]. 

Table 5 provides a summary of the examined 
learning algorithms including their designations, 

Table 3. Most commonly used activation functions in neural networks: formulas and graphs
Activation function Formulas Graphs Application 

Sigmoid f(x) = Logsig (x) = 1
1 + exp (−𝑋𝑋) 

Output range: (0,1) 

 

Classification, regression 

Hyperbolic tangent f(x) = Tansig (x) = 2
1 + exp (−2𝑋𝑋) – 1 

Output range: (-1,1) 

 

Classification, regression 

Pure linear function f(x) = Purelin (x) = x 
range: (-∞, +∞) 

 

 

Output layers in regression 
problems 

Gaussian f(x) = exp (-  𝑥𝑥²
2 ) 

 

Radial basis function 
networks 

Modeling, clustring 
 

 

Table 4. Mean square errors and correlation coefficients in the learning phase for different combinations of 
activation functions

Hidden layers Output layers Designation R MSE x 10+2

Tansig Tansig TT 0.9621 1.76

Tansig Logsig TL 0.8512 8.57

Tansig Purelin TP 0.9782 1.58

Logsig Logsig LL 0.7967 10.97

Logsig Tansig LT 0.9139 2.68

Logsig Purelin LP 0.9109 4.19

Purelin Purelin PP 0.9020 2.96

Purelin Logsig PL 0.8864 7.89

Purelin Tansig PT 0.9254 2.17
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the values of the R and MSE statistical indicators, 
and the number of iterations.

The optimal MLP model developed for pre-
dicting relative humidity in the city of Fez uses 
the pair of activation functions (Tansig-Purelin) 
and the Levenberg-Marquardt learning algorithm. 
The configuration of this model is [7-15-1], as il-
lustrated in Figure 5. 

The model comprises seven neurons in the 
input layer for the independent variables, fifteen 
neurons in the hidden layer, and one neuron in 
the output layer for the dependent variable (rela-
tive humidity).

RBF neural network 

The RBF artificial neural network consists 
of an input layer with seven neurons and an 

output layer. The input layer neurons are acti-
vated by the following inputs: Temperature at 2 
m, shortwave radiation, diffuse shortwave radia-
tion, precipitation total, evapotranspiration, va-
por pressure deficit and wind speed. The hidden 
layer neurons are activated by a gaussian func-
tion, while the output layer neuron is activated 
by a linear function (Table 6).

The RBF network demonstrated optimal per-
formance when the gaussian function was used 
in the hidden layer and the linear function in the 
output layer, utilizing a [7-16-1] architecture. 
This configuration resulted in the highest correla-
tion coefficient (R = 0.9603) and the lowest mean 
square error, demonstrating its superior predictive 
capacity (Fig. 6). 

Figure 5. Architecture of the multilayer perceptron neural network developed in this configuration study [7-15-1]

Table 5. Mean square errors and correlation coefficients in the learning phase for different learning algorithms
Learning algorithms Designation R MSE x 10+2 Iterations

Gradient descent (GD) Traingd 0.8718 8.02 1000

Scaled conjugate gradient (SCG) Trainscg 0.9747 1.25 287

Baysian regulation (BR) Trainbr 0.9606 1.04 5

Levenberg-Marquardt (LM) Trainlm 0.9809 0.99 4
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Comparison of the models developed 

This study has produced several models 
that will be compared to determine the most 
suitable and effective model for predicting the 
relative humidity of the city of Fez (Morocco). 
The models include the classical MLR model, 
as well as the MLP and RBF artificial neural 
network models. We will compare the perfor-
mance indicators (R and MSE) of these models 
to ascertain which one performs best.

According to the values of R and MSE sta-
tistical indicators (Table 7), the MLP model 
using artificial neural networks outperforms 
the model obtained by MLR. The MLP model 
performs better in all three phases: learning, 
validation, and testing, and maintains consis-
tent performance across all three phases com-
pared to the MLR-based model.

The Table 7 results demonstrate that both 
the MLP and RBF artificial neural network 
models are effective in the learning, validation, 
and testing phases. The predictive models de-
veloped by these networks show a strong cor-
relation between the estimated and observed 
values, as indicated by the close correlation 

Table 6. Performance of the RBF neural network 
model as a function of the number of neurons in the 
hidden layer

Number of neurons in the 
hidden layer R MSE × 10+2

1 0.8242 6.36

2 0.9070 3.44

3 0.8561 4.51

4 0.9000 3.50

5 0.9113 3.21

6 0.9341 2.50

7 0.9157 3.27

8 0.9360 2.24

9 0.9352 2.39

10 0.9500 1.85

11 0.9492 1.79

12 0.9441 2.29

13 0.9463 2.30

14 0.9413 2.34

15 0.9603 1.50

16 0.9603 1.41

17 0.9552 1.69

18 0.9467 1.91

19 0.9525 1.86

20 0.9582 1.63

Figure 6. Architecture of the radial basis function neural network developed in this configuration study [7-16-1]
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coefficients obtained for all three phases. This 
highlights the advantage of using these ANN 
models for predicting relative humidity in 
Fez. Additionally, the MLP network’s learning 
phase is faster than that of the RBF network, 
converging rapidly with a smaller number of 
iterations.

The difference between the predicted and 
measured values for the RBF model is less 

than 0.3 (Figure 7), while for the MLP model, 
it is less than 0.2 (Figure 8). This suggests that 
the MLP is more resilient than the RBF model 

The developed MLP model exhibits a high 
degree of accuracy, with the majority of pre-
dictions demonstrating an error margin of less 
than 0.2. This finding indicates that, in the 
majority of cases, the observed and predicted 
values are similar, suggesting an optimal pre-
diction for this data set.

Table 7. Statistical indicator values for the two models MLR and ANN (MLP and RBF)

Model
R MSE

Training Validation Test Learning Validation Test

MLR 0.9023 0.8882 0.8882 58.0803 63.3014 63.3014

MLP 0.9809 0.9813 0.9813 0.0099 0.0097 0.0097

RBF 0.9603 0.9607 0.9607 0.0141 0.0140 0.0140

Figure 7. Difference between real and predicted values of relative humidity using an MLP model in forecasting

Figure 8. Difference between real and predicted values of relative humidity using an RBF model in forecasting
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CONCLUSIONS 

It is crucial to develop a mathematical mod-
el using artificial neural networks to predict 
relative humidity in aquatic environments. Ac-
curate relative humidity forecasts, updated by 
this model are vital for water resource manage-
ment and conservation. Predicting changes in 
humidity enables better management of water 
reservoirs, maximizes agricultural irrigation 
and protects aquatic ecosystems from severe 
weather events such as floods and droughts. In 
conclusion, the ANN to the modeling of rela-
tive humidity is a major step toward the effec-
tive and sustainable management of water re-
sources, benefiting both the environment and 
the populations who depend on these resources.

To this end we developed black box mod-
els to predict the relative humidity in the city 
of Fez using MLP and RBF artificial neural 
networks. 

In our case study, we created several math-
ematical models, including the classical MLR 
model, as well as the MLP and RBF artificial 
neural network models. To assess their pre-
dictive performance, we examined their ar-
chitectures, learning algorithms, correlation 
coefficients, and mean square errors. The com-
parison between the two MLR models and the 
MLP neural networks showed that the relative 
humidity of the city of Fez is related to the oth-
er meteorological parameters by a non-linear 
relationship. This work verified the ability of 
neural networks for learning and prediction in 
the meteorological domain.

The study concluded that MLP models 
are generally more flexible and adaptable to 
a variety of problems. They can approximate 
functions of different shapes, unlike RBF net-
works. The findings of the present study in-
dicate that the Architectural MLP [7-15-1] is 
the most suitable model for predicting relative 
humidity. This model employs the pair activa-
tion functions (Tansig-Purelin) and the Leven-
berg-Marquardt algorithm, yielding a correla-
tion coefficient of 0.9809 and a reduced mean 
square error of 0.0099.

Acknowledgement

We would like to extend our sincerest grati-
tude to our research team for their invaluable sup-
port throughout this work.

REFERENCES

1.	 Xie B., Zhang Q., and Ying Y. Trends in pre-
cipitable water and relative humidity in China: 
1979–2005. Journal of Applied Meteorology and 
Climatology. 2011; 50(10): 1985–1994. https://doi.
org/10.1175/2011JAMC2446.1

2.	 Lowen A. C., Mubareka S., Steel J., and Palese P. 
Influenza virus transmission is dependent on relative 
humidity and temperature. PLoS Pathogens. 2007; 
3(10): 1470–1476. https://doi.org/10.1371/journal.
ppat.0030151

3.	 Park J.-E., Son W.-S., Ryu Y., Choi S. B., Kwon O., 
and Ahn I. Effects of temperature, humidity, and 
diurnal temperature range on influenza incidence 
in a temperate region. Influenza and Other Respi-
ratory Viruses. 2020; 14 (1): 11–18. https://doi.
org/10.1111/irv.12682

4.	 Ma Y. et al. Effects of temperature variation and humid-
ity on the death of COVID-19 in Wuhan, China. The 
Science of the Total Environment, 2020; 724: 138226. 
https://doi.org/10.1016/j.scitotenv.2020.138226

5.	 Mecenas P., Bastos R. T. da R. M., Vallinoto A. C. 
R., and Normando D. Effects of temperature and 
humidity on the spread of COVID-19: A systematic 
review. PloS One. 2020; 15(9): e0238339. https://
doi.org/10.1371/journal.pone.0238339

6.	 Bennedsen M. Designing a statistical procedure 
for monitoring global carbon dioxide emissions. 
Climatic Change. 2021; 166(3): 32. https://doi.
org/10.1007/s10584-021-03123-y

7.	 Sisco M. R., Bosetti V., and Weber E. U. When do 
extreme weather events generate attention to climate 
change Climatic Change. 2017; 143(1): 227–241. 
https://doi.org/10.1007/s10584-017-1984-2

8.	 Kuzugudenli E. Relative humidity modeling with 
artificial neural networks. Applied Ecology En-
vironmental Research. 2018; 16(4): 5227–5235. 
https://doi.org/10.15666/aeer/1604_52275235

9.	 Liaw A. and Wiener M. Classification and regres-
sion by random forest. R News. 2007; 2(3): 18–22. 

10.	Hanoon M. S. et al. Developing machine learning 
algorithms for meteorological temperature and hu-
midity forecasting at Terengganu state in Malaysia. 
Scientific Reports. 2021; 11(1): 18935. https://doi.
org/10.1038/s41598-021-96872-w

11.	Yahia B. A., Abdallaoui A., and Kadir I. Develop-
ment of a stochastic model of RBF neural network 
for forecasting relative humidity rates. International 
Conference on Circuit, Systems and Communica-
tion (ICCSC). 2024; 1–7. https://doi.org/10.1109/
iccsc62074.2024.10617431

12.	Khatibi R., Naghipour L., Ghorbani M. A., and Aal-
ami M. T. Predictability of relative humidity by two 
artificial intelligence techniques using noisy data 



425

Advances in Science and Technology Research Journal 2025, 19(6), 414–425

from two Californian gauging stations Neural Com-
puting and Applications. 2013; 23(7): 2241–2252. 
https://doi.org/10.1007/s00521-012-1175-z

13.	El Badaoui H., Abdallaoui A., & Chabaa S. Using 
MLP neural networks for predicting global solar 
radiation. The International Journal of Engineering 
and Science (IJES). 2013; 2: 48–56.

14.	Touzet C. Artificial neural networks, introduction 
to connectionism. EC2 (in Frenche). https://doi.
org/10/document

15.	Heidari E., Sobati M. A., and Movahedirad S. 
Accurate prediction of nanofluid viscosity using 
a multilayer perceptron artificial neural network 
(MLP-ANN). Chemometrics and Intelligent Lab-
oratory Systems. 2016; 155: 73–85. https://doi.
org/10.1016/j.chemolab.2016.03.031

16.	Derras B., Bekkouche A., and Zendagui D. Neuro-
nal Approach and the Use of KIK-NET N Response 
Spectrum on the Surfaceetwork to Generate. Jordan 
Journal of Civil Engineering. 2010; 4(1).

17.	Manssouri I., Manssouri M., and Kihel B. Fault 
detection by K-NN algorithm and MLP neural net-
works in a distillation column: Comparative study. 
Knowledge Management and Communication in the 
Information. 2013 ; 201–215.

18.	Bélanger M., El-Jabi N., Caissie D., Ashkar F., and 
Ribi J. Estimation de la température de l’eau de ri-
vière en utilisant les réseaux de neurones et la ré-
gression linéaire multiple. Revue Science de l’eau/ 
Journal of Water Science. 2005 18(3) : 403–421. 
https://doi.org/ 10.7202/705565ar

19.	Ghorbani M. A., Zadeh H. A., Isazadeh M., and 
Terzi O. A comparative study of artificial neural net-
work (MLP, RBF) and support vector machine mod-
els for river flow prediction. Environmental Earth 
Sciences. 2016; 75(6): 476. https://doi.org/10.1007/
s12665-015-5096-x

20.	Broomhead D. S. and Lowe D. Multivariable 

functional interpolation and adaptive networks. 
Complex Syst. 1988; 2(3).

21.	Moody J. and Darken C. J. Fast learning in networks 
of locally-tuned processing units neural computa-
tion. 1989; 1(2): 281–294. https://doi.org/10.1162/
neco.1989.1.2.281

22.	Boudebbouz B., Manssouri I. Mouchtachi A., Mans-
souri T., and Kihel B. E., Use of RBF artificial neural 
networks to model the normal regime with variable 
operating point of an industrial plant. European Sci-
entific Journal, ESJ. 2015; 11(18) (in French).

23.	Chen K. T., Chou C. H., Chang S. H., and Liu Y. H. In-
telligent active vibration control in an isolation plat-
form. Applied Acoustics. 2008; 69(11): 1063–1084. 
https://doi.org/10.1016/j.apacoust.2007.06.008

24.	El Azhari K., Abdallaoui B., Dehbi A., Abdallaoui A., 
and Zineddine H. Development of a neural statistical 
model for the relative humidity levels prediction in the 
Region of Rabat-Kenitra (Morocco) Research Square. 
2021. https://doi.org/10.21203/rs.3.rs-385467/v1

25.	El Badaoui H., Abdallaoui A., & Chabaa S. Multi-
layer Perceptron and Radial Basis Function network 
to predict the moisture. International Journal of In-
novation and Scientific Research. 2014; 5(1).

26.	Hinton G. E. and Salakhutdinov R. R. Reducing the 
dimensionality of data with neural networks. Sci-
ence. 2006; 313 (5786): 504–507. https://doi.org/ 
10.1126/science.1127647

27.	El Badaoui H., Abdallaoui A., & Chabaa S. Opti-
mization numerical the neural architectures by per-
formance indicator with LM learning algorithms. 
Journal of Materials and Environmental Science. 
2017; 8: 169–179.

28.	Wilamowski B. M., Iplikci S., Kaynak O., and Efe 
M. O. An algorithm for fast convergence in training 
neural networks. International Joint Conference on 
Neural Networks (IJCNN’01). 2001; 3: 1778–1782. 
https://doi.org/10.1109/ijcnn.2001.938431


