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INTRODUCTION

Damping plays a crucial role in FEM-based 
structural dynamics and vibration analysis. How-
ever, numerical methods used in FEM simulations 
rely exclusively on Rayleigh damping Equation 1, 
which lacks a direct physical justification [1]

[C] = α[M] + β[K] (1)
where:	 [C] is the damping matrix of the physical 

system, [M] is the mass matrix, [K] is the 
stiffness matrix, and α and β are constants. 

It can be challenging to guess meaningful val-
ues for the Rayleigh damping coefficients α and β, 
especially for systems with single degrees of free-
dom [2]. Unlike mass and stiffness systems, the 
understanding of damping is considerably less 
comprehensive, making it challenging to predict 

vibration parameters for damping in practice [3]. 
Rayleigh damping, characterized by predefined 
constants α and β are, provides an approximate 
approach but is limited to global damping repre-
sentation rather than individual element behavior. 
While effective in large-scale simulations, it does 
not offer a clear physical interpretation, making it 
insufficient for discrete one-dimensional elements 
such as springs and dampers. 

Despite various studies exploring damping 
in single and multi-degree-of-freedom systems, 
most approaches focus on modal damping ratios 
or empirical tuning rather than a direct measure-
ment-based methodology. Moreover, widely used 
damping models in FEM simulations are predom-
inantly suited for large-scale systems rather than 
individual discrete elements. Our study addresses 
this gap by providing a direct, efficient method to 
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obtain a damping coefficient in SI units, ensur-
ing realistic simulation behavior in FEM software 
such as LS-DYNA but it is also applicable to any 
FEM system

Review of existing damping estimation 
methods: limitations and the need 		
for a novel approach

General problem of viscous damping and 
evaluated MEMS accelerometers for damping 
identification but there is a lack of the direct des-
ignation of the damping coefficient. The work [4] 
presents an experimental performance evaluation 
of six low-cost MEMS accelerometers for identi-
fying natural frequencies and damping ratios of 
a three-storey frame model and a reinforced con-
crete slab and their noise characteristics. The re-
sults showed an overall good performance of the 
MEMS accelerometers, but with identified natu-
ral frequencies only (Fig. 1).

In the [5] a novel method of identification of 
the coefficients of the damped parametric oscilla-
tor. The method is dedicated to periodic signals 

and relatively complicated laboratory set up. The 
authors focus on the difficulty of analyzing real 
sliding and rolling frictional contact pairs, such 
as those in bearings. In their methodology, they 
do not independently determine the damping co-
efficient but rather adjust it to achieve agreement 
between numerical results and experimental data. 
The main objective of their work is to analyze the 
system’s behavior and identify parameters influ-
encing its dynamics, rather than independently 
determining the damping coefficient (Fig. 2).

In [6], similar numerical results obtained 
through continuation and collocation methods 
were successfully compared to experimental re-
sults on nonlinear vibrations of a rectangular 
stainless steel plate. However, the damping co-
efficient was provided as a damping ratio rather 
than a real value, making the solution difficult to 
apply in practice. Moreover, the damping coeffi-
cient was adjusted for a long time until it matched 
the experiment, meaning that damping was not 
determined directly but rather adjusted.

The authors of paper [7] focused on the de-
sign and identification of parameters of a tuned 

Figure 1. Time domain and PSD with Peak-Picking results plot (SHM equipment test) [4]

Figure 2. Comparison of two-time histories confirming discrepancy between the experimental trajectory, 
and correspondingly, the analytical exact solution [5]
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mass damper (TMD) with an inverter. They 
conducted experimental studies to validate their 
model and analyzed energy dissipation mecha-
nisms, including viscous and Coulomb damping. 
Regarding the damping coefficient, they did not 
independently determine it from first principles or 
experimental measurements alone. Instead, they 
followed a two-step procedure to identify the 
damping coefficients, starting with an analytical 
estimation and then refining the values through 
numerical fitting to experimental data. This 
means they adjusted the damping coefficients to 
match their experimental results, rather than de-
riving them purely from theoretical calculations 
or direct independent measurements. To validate 
the model they compare the numerical and exper-
imental time traces. Good matching of the results 

prove well-posedness of the model and confirm 
the obtained parameters values (Fig. 3).

In [8] the authors investigated the role of Ray-
leigh damping only in the nonlinear numerical 
seismic analysis of tunnels. They focused on how 
different approaches to selecting damping pa-
rameters influence tunnel response during earth-
quakes. Their study was based on numerical sim-
ulations using a two-dimensional finite difference 
model (FLAC), incorporating the Mohr-Coulomb 
failure criterion for soil behavior. Regarding the 
damping coefficient, the authors did not indepen-
dently determine it based on direct measurements 
or theoretical derivation. Instead, they analyzed 
different empirical approaches for selecting Ray-
leigh damping parameters. They examined how 
the choice of target damping ratio (ξtar) (Fig. 4) 

Figure 3. Comparison of the experimentally and numerically obtained time traces of free vibrations of the main 
oscillator with the classical tuned mass dampers and the continuously variable transmission [6]

Figure 4. Rayleigh damping as a function of frequency [8]
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and the frequency range for Rayleigh damping 
influenced numerical results. The damping val-
ues were not uniquely identified but rather chosen 
based on common engineering assumptions and 
guidelines from previous studies.

In [9] the authors present results from tests 
on typical shock absorber designs using various 
rubber and elastomer types. The studies, conduct-
ed on a tensile testing machine, assessed static 
and dynamic stiffness, while a lightweight drop 
hammer measured the damping coefficient char-
acteristics under high-speed wave interactions, 
specifically the Shock Response Spectrum (SRS). 
Additionally, the research included rheological 
analysis on the impact of harmonic vibrations on 
stiffness and damping coefficients in shock ab-
sorber materials, although damping coefficients 
were not directly determined.

Many authors have studied the problems aris-
ing from the use (or misuse) of Rayleigh damping 
[3, 10, 11]. The use of the proportional stiffness 
part of the damping based on the original ambigu-
ous damping forces may result in overestimated 

designs and a lack of static equilibrium. Various 
models are used to address this issue [12–14]. 
Consequently, many researchers have shifted to 
experiment-based fitting methods (Fig. 5) [15, 16] 
to determine the damping properties. Estimating 
damping in a structure composed of different ma-
terials and processes remains one of the most dif-
ficult challenges (Fig. 6a) [17]. Typically, the de-
termination of the damping ratio requires sophisti-
cated laboratory equipment, gauges, and stationary 
measurements (Fig. 6b) [18]. The authors of the 
paper recommend a novel approach using a low-
cost MEMS accelerometer and a Python-based al-
gorithm to directly measure damping coefficients 
in SI units, providing an alternative to existing ex-
perimental and numerical estimation methods.

METHODOLOGY OF DAMPING 
COEFFICIENT DETERMINATION

The primary challenge in this study is de-
termining the damping coefficient based on 

Figure 5. Experimental setups: (a) ultrasonic flaw detector DIO-1000 STARMANS next to the aluminum coated 
plate [15] (b) the layered beam with the granular damping element marked with X [16]

Figure 6. Experimental setups: (a) the layered beam with the granular damping element marked with X [17] 
(b) ultrasonic flaw detector DIO-1000 STARMANS next to the aluminum coated plate [18]
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displacement data derived from acceleration 
measurements. The conventional approach in-
volves double integration of acceleration signals 
to obtain displacement; however, this method 
introduces drift and significant errors. Standard 
solutions do not provide a straightforward way 
to correct this issue. In this work, we address 
this problem by implementing advanced filtering 
techniques in Python, which are widely available 
and accessible, making this solution novel com-
pared to existing industrial applications.

Acceleration measurement and accuracy 
considerations

Accelerometers are the most commonly used 
transducers for measuring the vibration responses 
of structures. There are many methods for ex-
tracting the parameters of a measured signal de-
scribed in the literature, ranging from classical 
Fourier transformation methods [19–21] to state-
of-the-art ones [22–25]. Some relatively simple 
attempts have been made to determine the damp-
ing ratio by measuring displacement as a low-cost 
’plug-and-play’ method. The solutions described 
in [26] are the easiest and the cheapest ones, but 
they are a little hard to use as a mobile set and 
have relatively low accuracy.

The common experimental method of deter-
mining the damping coefficient using MEMS 
starts from the reconstruction of the displacement 
signal by taking the inverse Fourier transform of 
the magnitude of the significant frequency com-
ponents of the Fourier transform of the accelera-
tion signal [27]. However, reconstructing low-
frequency signals in the frequency domain will 
produce biased errors [28].

The authors chose the double integration of 
the time domain’s acceleration signal as the meth-
od for determining the damping coefficient. This 
method has also a serious drawback, in that there 
is a high amount of zero-shift and drift [29] but 
it is intuitive and fast if the mentioned obstacles 
were removed, which was solved using Python 
software and presented in the paper. To perform 
the verification of the obtained results, the well-
known data of a spring (Fig. 7a) were chosen. 
The authors intended to make the measuring sta-
tion (Fig. 7b) as simple as possible so that the re-
sults obtained could be easily replicated without 
complicated apparatus.

Observing the simplicity of the measurement 
setup, including the phone mounting and conse-
quently the accelerometer placement, one might 
question the professionalism and repeatability of 
the results. However, this setup was intentionally 

Figure 7. The data of spring: (a) spring’s parameters: d = 1.91 mm, L0 = 76.20 mm, De = 21.59 mm, 
Ln = 161.54 mm, Fn = 81.85 N–maximum allowable load at Ln, (b) simple measuring station 

with the mass of the weight m = 5.3 kg and the initial deflection u0 = 4 cm
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designed to demonstrate both the simplicity and 
effectiveness of the proposed solution. The 
strength of this approach lies in showing that 
complex apparatus is not always necessary.

Multiple repeated trials have confirmed that 
the mounting method does not significantly affect 
the results, which remain consistent and repro-
ducible. This is easily verifiable through repeated 
measurements. In contrast, performing the same 
task with a more complex system would intro-
duce additional variability and dependencies. The 
key factor is not how the system is mounted, but 
rather how the accelerometer captures displace-
ment data, as the sought damping coefficient is 
embedded in this displacement. The crucial step 
is extracting this value accurately, which has been 
successfully achieved in this study. 

The acceleration was recorded within 10 
seconds (Fig. 8–10) with a sampling frequen-
cy of 𝑓sample = 500 Hz (dt = 0.002 s). The record-
ing was performed using a MEMS accelerometer, 
which is available on any mobile phone, with the 
freely available application Resonance [30] or 
Phyphox [31]. Applications like Resonance (and 
many others) generally record only acceleration 

and are not capable of calculating a specific value 
for the damping. The authors want to emphasize 
that the procedure for determining the damping 
coefficient can be available with ordinary equip-
ment, which is also the outcome of the paper.

Figure 8 shows the recorded acceleration sig-
nal. The acceleration signal from Figure 8 was 
then integrated to obtain the velocity Figure 9. Fi-
nally, the velocity signal was integrated to obtain 
the displacement vs. time plot of the vibrating 
system (Fig. 10). 

It was expected that the simple procedure of 
integrating the acceleration and velocity signals 
to obtain the displacement waveform over time 
would lead to a determining envelope of the signal. 
Then the damping coefficient, however in practice 
was not possible to do in the first stage (Fig. 10). 
If there is nothing suspicious at first glance in 
Figure 8 and Figure 9, then in Figure 10, we can 
see that integrating the previous signals leads to a 
displacement that takes almost half a meter in 10 
seconds, which is nonsensical. As stated in [29], 
the phenomenon shown in Figure 11 is referred to 
as “drift”, and it is primarily caused by friction and 
elasticity in the sliding guide. To confirm that the 

Figure 8. Acceleration: m = 5.3 kg, u0 = 4 cm, fsample = 500 Hz, dt = 0.002 s; acceleration due to gravity was 
intentionally excluded from the measurement

Figure 9. Velocity as the integral of acceleration from Fig. 8
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signal distortion was caused by “drift”, the mea-
surements were repeated and recording time was 
extended to 𝑡 = 60 s (Fig. 12–14). During the new 
measurements, drift was observed again, revealing 

Figure 10. Displacement as double integral of velocity from Fig. 9

Figure 11. Drift because of friction and elasticity in 
the sliding guide according to [29]

Figure 12. Acceleration: m = 5.3 kg, u0 = 4 cm, fsample=500 Hz, dt = 0.002 s

the same distortion in displacement as observed 
previously (compare Fig. 10 and Fig. 14). 

Above steps revealed that “drift” is caused by 
integration constants that needed to be removed. 
This is the main obstacle in directly determining 
the damping coefficient from acceleration mea-
surements, as documented in the literature [29], but 
no methods for overcoming this problem are pro-
vided. With knowledge of signal processing, proce-
dures available in Python can be applied to extract 
displacement signals by filtering out noise. This 
approach has not been found in the scientific lit-
erature and constitutes a novel aspect of this study.

Acceleration signal filtering

The main frequencies are most conveniently 
represented in the frequency domain. Figure 15 dis-
plays the acceleration spectral amplitude on a linear 
scale, while Figure 16 represents the same amplitude 
in decibel scale. The notable frequency is 1.72 Hz, 
corresponding to the spring oscillation frequency.  
For illustration, the sought frequency is shown 
alongside the frequency of gravitational 
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acceleration ɡ, which is not relevant in this context. 
It can be filtered out using the same methodology 
as a constant component or excluded at the accel-
eration measurement stage. In this study, the latter 
approach was applied from the beginning of the 
measurements. Filters, as depicted in Figure 17, 
were applied to remove the effects of drift and the 
integration constant, to isolate the dominant fre-
quency. Figure 18 presents both a simplified and a 
detailed version of the algorithm for damping ratio 
determination.  After extracting the frequency of 

1.72 Hz, the data can be presented on the decibel 
scale (Fig. 19), which reveals the removal of all 
distortions derived from the MEMS accelerometer 
(Fig. 16). Multiple filters were tested, and the most 
effective one was chosen, represented by the blue 
line ultimately (butter irr 20), a clear signal was 
obtained (Fig. 19) without drift error. An envelope 
could be created (Fig. 20) which is needed to de-
termine the damping coefficient. Finally damp-
ing factor obtained by the implementation the al-
gorithm from Figure 18, was c ≈ 0.2 ≈ 
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. The 

Figure 13. Velocity from integration of acceleration data

Figure 14. Displacement from integration of velocity data

Figure 15. Acceleration spectral amplitude on the linear scale
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Figure 16. Acceleration spectral amplitude (Fig. 16) in decibel scale

source codes in the papers are always problematic 
and limited in terms of editing. Nevertheless, they 
have been graphically presented in both a simple 
and a detailed version. The detailed version should 
be readable for IPython users, who should easily 
take advantage of it and find the relevant issues of 
interest. If this is not the case, upon request in the 
editor board or directly from [35], the code is avail-
able for review. Before running it, users should 
configure their own Jupyter environment with the 
required libraries.

Analytical and numerical verification of the 
determined damping coefficient

Points through which the envelope passes 
(Fig. 20) were approximated by the function
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Beforehand, the parameter p must be calculat-
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i.e. a straight line fit

	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	 (4)

Then the damping factor, determined for the 
case under consideration, is: 

	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	

To verify the obtained damping factor c, the 
calculations were repeated using independent mea-
surements of the damping degree 𝛾 for the spring 
under consideration for 𝑛 = 97, where 𝑛 is the num-
ber of complete vibration cycles. In the case of har-
monic damped oscillations, the value of both the 
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Figure 17. Characteristics of bandpass filters 1 Hz to 2 Hz
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Figure 18. Python algorithm designation of damping ratio: (a) a simplified; 
(b) detailed version of the algorithm [35]



285

Advances in Science and Technology Research Journal 2025, 19(6), 275–290

Figure 19. Acceleration spectral amplitude (Fig. 17) in decibel scale after filtration

Figure 20. Displacement with envelope. Superimposition of the estimated envelope

From here we calculate
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𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	(10)

because the logarithmic decrement of damping

	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	 (11)

thereby 

 	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	 (12)

then by transforming (14), to determine the de-
gree of damping

	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 

	 (13)

using the formula 

	

 

 [𝐶𝐶]  =  𝛼𝛼 [𝑀𝑀]  +  𝛽𝛽 [𝐾𝐾]      (1) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝𝐾𝐾 sin(𝑞𝑞𝑞𝑞)     (2) 
 
𝐾𝐾 =  𝑢𝑢𝑎𝑎0(𝑡𝑡=0)  
 

 𝑞𝑞 =  √( 𝑐𝑐
2𝑚𝑚)

2
− 𝑘𝑘

𝑚𝑚, 𝑐𝑐  
 

𝑝𝑝 = 𝑐𝑐
2𝑚𝑚 

 
 𝑐𝑐 = 𝑝𝑝 ∙ 2𝑚𝑚     (3) 
 
𝑢𝑢(𝑡𝑡) = 𝑒𝑒−𝑝𝑝𝑝𝑝 then − 𝑝𝑝 = 1

𝑡𝑡 ln (𝑢𝑢(𝑡𝑡))     (4) 
 

𝑐𝑐 = −𝑝𝑝 ∙ 2𝑚𝑚 = 

= −(−0.0179) ∙ 5.3 = 0.1897 ≈ 0.2 𝑁𝑁
𝑚𝑚 𝑠𝑠 

 
 
 𝑢𝑢𝑎𝑎𝑛𝑛 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎0𝑒𝑒−𝑛𝑛𝑛𝑛 (5) 
 
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (6) 

 
 −𝑛𝑛𝑛𝑛 = ln 𝑢𝑢𝑎𝑎𝑛𝑛

𝑢𝑢𝑎𝑎0
 (7) 

 
 𝛿𝛿 = − 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎𝑛𝑛
𝑢𝑢𝑎𝑎0

  (8) 

 
 𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

 (9) 

 
𝛿𝛿 = 1

𝑛𝑛 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎𝑛𝑛

= 1
97 ln 4

0.679 = 0.0182827682 (10) 

 
𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 2𝜋𝜋 𝑝𝑝

𝑞𝑞 = 2𝜋𝜋𝜋𝜋
√1−𝛾𝛾2 (11) 

  
 𝛿𝛿2 − 𝛿𝛿2𝛾𝛾2 = 4𝜋𝜋2𝛾𝛾2 (12) 
 

𝛾𝛾 = 𝛿𝛿
√4𝜋𝜋2 + 𝛿𝛿2 = 1

√(2𝜋𝜋
𝛿𝛿 )

2
+ 1

= 

= 1

√( 2𝜋𝜋
0.0182827682)

2
+ 1

=  0.0029097806 

 
(13)  
 
𝛾𝛾 = 𝑐𝑐

𝑐𝑐𝑘𝑘𝑘𝑘
 (14) 

 
	 (14)

where:	

 

𝑐𝑐𝑐𝑐𝑐𝑐 = 2√𝑘𝑘𝑘𝑘  
 
𝑐𝑐 = 𝛾𝛾 ∙ 2√𝑘𝑘𝑘𝑘 = 0.0029097806 ∙ 2 ∙  √676.169 ∙ 5.3 = 0.3798290195 N

m s  (15)  
 

𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 𝑙𝑙𝑙𝑙 𝑢𝑢𝑛𝑛
𝑢𝑢𝑎𝑎𝑎𝑎 + 1 

𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

 (16) 

 
 −𝑝𝑝𝑝𝑝 = ln 𝑢𝑢𝑎𝑎(𝑡𝑡)

𝑢𝑢𝑎𝑎0
  (17) 

 
− 𝑐𝑐

2𝑚𝑚 𝑡𝑡 = ln 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

  (18) 

 
 𝑐𝑐
2𝑚𝑚 = − 1

𝑡𝑡 ln 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

 (19) 

 
 𝑐𝑐
2𝑚𝑚 = − 1

𝑡𝑡 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎(𝑡𝑡)  (20) 

 
 𝑐𝑐 = 2𝑚𝑚

𝑡𝑡 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎(𝑡𝑡) = 2∙5.3

4.98 ∙ ln 3.3
2.9 = 

= 2.128 ∙ 0.1292 = 0.27 N
m s  

 
(21) 
 
0.1897 ≈ 0.2 N

m s  
 

0.27 N
m s 

 
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑑𝑑2 + 𝑐𝑐

𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑘𝑘

𝑚𝑚 𝑢𝑢 = 𝐹𝐹(𝑡𝑡)  (22) 
[1]  

 – is the critical damping 
for the spring, the damping ratio can be 
determined as 

	

 

 
𝑐𝑐 = 𝛾𝛾 ∙ 2√𝑘𝑘𝑘𝑘 = 

= 0.0029097806 ∙ 2 ∙  √676.169 ∙ 5.3 = 

= 0.3798290195 𝑁𝑁
𝑚𝑚 s 

 
(15)  
 

 

	(15)

The measurements were repeated to perform 
the final theoretical verification and validate the 
accuracy of the determined damping factor us-
ing the MEMS accelerometer. The spring vibra-
tions were recorded using the slow-motion op-
tion under the same conditions and the time be-
tween amplitudes was measured. The logarithmic 
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decrement of damping, 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = 2√𝑘𝑘𝑘𝑘  
 
𝑐𝑐 = 𝛾𝛾 ∙ 2√𝑘𝑘𝑘𝑘 = 0.0029097806 ∙ 2 ∙  √676.169 ∙ 5.3 = 0.3798290195 N

m s  (15)  
 

𝛿𝛿 = 𝑝𝑝𝑝𝑝 = 𝑙𝑙𝑙𝑙 𝑢𝑢𝑛𝑛
𝑢𝑢𝑎𝑎𝑎𝑎 + 1 

𝑒𝑒−𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

 (16) 

 
 −𝑝𝑝𝑝𝑝 = ln 𝑢𝑢𝑎𝑎(𝑡𝑡)

𝑢𝑢𝑎𝑎0
  (17) 

 
− 𝑐𝑐

2𝑚𝑚 𝑡𝑡 = ln 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

  (18) 

 
 𝑐𝑐
2𝑚𝑚 = − 1

𝑡𝑡 ln 𝑢𝑢𝑎𝑎(𝑡𝑡)
𝑢𝑢𝑎𝑎0

 (19) 

 
 𝑐𝑐
2𝑚𝑚 = − 1

𝑡𝑡 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎(𝑡𝑡)  (20) 

 
 𝑐𝑐 = 2𝑚𝑚

𝑡𝑡 ln 𝑢𝑢𝑎𝑎0
𝑢𝑢𝑎𝑎(𝑡𝑡) = 2∙5.3
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factor has been numerically designated (Fig. 21) 
and verified with the equation of motion (Equa-
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algorithm (Fig. 19) both using an independent 
program written in Python and corresponding to 
the experiment with given parameters (Fig. 7)
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0.1897 ≈ 0.2 N

m s  
 

0.27 N
m s 

 
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑑𝑑2 + 𝑐𝑐

𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑘𝑘

𝑚𝑚 𝑢𝑢 = 𝐹𝐹(𝑡𝑡)  (22) 
[1]  

	 (22)

where:	F(t) – is a forcing force. The results are 
correct.

Finally, simulations of the operation of the 
spring under consideration were carried out using 
a discrete elastic element with damping (Fig. 22) 
in LS-Dyna [35]. The numerical simulation of the 
spring-mass system with damping was conducted 
in LS-Dyna using a discrete element approach. 
The system was modeled with an *ELEMENT_
DISCRETE definition, where the mass m = 5.3 
kg was assigned using the *ELEMENT_MASS 
card, and the elastic and damping properties were 
implemented via *MAT_SPRING_ELASTIC 
and *MAT_DAMPER_VISCOUS, respectively. 
The stiffness coefficient was set to k = 676.2 N/
mk, and the damping coefficient was initially 
chosen as c = 0.2 Ns/m. The gravitational load 
was applied using the *LOAD_BODY_Y func-
tion. In the LS-DYNA model, there is no need 
for a separate implementation of preload due to 
gravity, as gravitational forces are automatically 
considered in the dynamic analysis. Additionally, 
the interaction between bodies, including friction 
and the influence of the air medium, was not re-
quired for the objectives of the simulation. 	
The simulation was carried out for t = 60 s during 
which the displacement of the mass was recorded. 
Initial conditions were imposed by prescribing 
an initial displacement of u0 = 4 cm. The results 
were compared with analytical solutions and ex-
perimental data, confirming the correctness of the 
damping coefficient and overall model behavior.

If the damping coefficient had been designat-
ed properly, the simulated vibration would have 
behaved in the same way as in the real experi-
ment and theoretical computation (Fig. 21), es-
pecially from the damping point of view. Figure 
23 shows the confirmation that the damping coef-
ficient was determined correctly, all of the sig-
nals match, which means that the methodology is 
satisfied. For the graph (Fig. 23) an error analysis 

Figure 21. Verification of the determined damping factor with an in-house program; initial displacement u0 = 4 cm
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Figure 22. Representation of FEM discrete element 
as the spring with damping

was performed to assess the fit between MEMS 
displacement measurements and LS-DYNA 
simulation results using MAE (Mean Absolute 
Error  

 

1/𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛|𝑖𝑖 )  
 

1/𝑛𝑛∑(𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛)2
𝑖𝑖

 

 
 𝑐𝑐𝑐𝑐𝑐𝑐 = 2 ∙ √𝑘𝑘 ∙ 𝑚𝑚 = 119.73 Ns/m  

 

) and MSE (Mean Square 
Error 

 

1/𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛|𝑖𝑖 )  
 

1/𝑛𝑛∑(𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛)2
𝑖𝑖

 

 
 𝑐𝑐𝑐𝑐𝑐𝑐 = 2 ∙ √𝑘𝑘 ∙ 𝑚𝑚 = 119.73 Ns/m  

 

). The obtained results were 
MAE=1.84 i MSE=5.56 (Fig. 24). The red line 
represents the ideal fit (y = x), while the black line 
shows the actual relationship between MEMS 
and LS-DYNA results. High MAE and MSE val-
ues indicate significant deviations, suggesting the 
need for further calibration or filtering. However, 
from the FEM simulation perspective, this evalu-
ation method may not be well suited, as it natu-
rally results in high MAE and MSE values.

This indicates that future work should focus 
on refining the filtering method, but achieving 

100% accuracy is not the goal from the FEM per-
spective. For the FEM simulation itself, the ob-
tained damping coefficient provides satisfactory 
results and physically represents the damping 
element, which is a qualitative advantage. This 
is particularly relevant because, in general, FEM 
simulations are performed without damping.

The make sure that the FEM simulation 
was carried out correctly, the damping coef-
ficient was increased from c = 0.2 to c = 71.83 
Ns/m as 60% of the critical spring damping 

 

1/𝑛𝑛∑ |𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛|𝑖𝑖 )  
 

1/𝑛𝑛∑(𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑛𝑛)2
𝑖𝑖

 

 
 𝑐𝑐𝑐𝑐𝑐𝑐 = 2 ∙ √𝑘𝑘 ∙ 𝑚𝑚 = 119.73 Ns/m  

 
 and the results 

were compared with the theoretical one (Fig. 25). 
The results were satisfactory. Several additional 
steps were taken to ensure the correctness of the 
simulation. In this instance (Fig. 26), the damp-
ing ratio was increased from 0.2 Ns/m to 5.2 

Figure 23. Comparison of the influence of the spring rate and damping on the results obtained  
using the MEMS signal, the proprietary Python program, and the LS-Dyna

Figure 24. Comparison of MEMS displacement 
measurements with LS-DYNA simulation results 

using MAE and MSE regression metrics
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Ns/m, and the results were compared with those 
obtained in Python. To provide a basis for com-
parison, the simulation results for c = 0.2 Ns/m 
are also shown in the background. Figure 26 il-
lustrates a well-established phenomenon and con-
firms the accuracy of the simulations.

Upon analyzing the initial signal, it became 
evident that the first amplitude remained rela-
tively constant in both cases, with the stiffness 
coefficient being primarily responsible for this 
behavior. On the other hand, the damping ratio 
governs the damper’s performance during the re-
maining period, offering insights into the duration 
of damper movement or the speed of damping.

In conclusion, relying solely on the stiffness 
coefficient to evaluate dampers provides infor-
mation about their rigidity and impact amplitude, 
but it falls short of assessing their behavior over 
time. This study contributes to a more comprehen-
sive understanding of damper modelling in FEM 
simulations by introducing the damping coefficient 
and the method outlined in this paper. The method 

presented here can be applied to any spring-damp-
er element where a periodic signal is observed.

CONCLUSIONS

The outlined method presents a novel ap-
proach to determining the damping coefficient us-
ing a MEMS accelerometer, particularly for FEM 
simulations discrete elements where damping is 
required. The primary innovation lies in its ability 
to determine the damping coefficient in SI units 
directly from acceleration data, without requiring 
complex and costly laboratory setups or arbitrary 
empirical adjustments. The algorithm effectively 
reconstructs displacement data while addressing 
issues such as drift and noise interference, which 
are common limitations in conventional double-
integration approaches. 

The question arises as to whether the proposed 
method can be extended to any arbitrary signal. In 
general, the answer is affirmative, as preliminary 

Figure 25. Comparison of the vibration waveform with the critical spring damping for a discrete elastic 
element with damping modeled in Python

Figure 26. Vibration waveform for the discrete elastic element with damping modeled in LS-DYNA c = 0.2 
Ns/m compared with the simulation for c = 5.2 Ns/m and the theoretical one from Python



289

Advances in Science and Technology Research Journal 2025, 19(6), 275–290

tests have yielded promising initial results. First 
positive results have been obtained; however, at 
this stage, they have been resigned from the ar-
ticle as they require further research and diverging 
from its primary focus. However, further research 
and refinements, particularly in signal filtering, 
are necessary. At this stage, the method has been 
validated for periodic signals typical of springs, 
dampers, and other structured attenuators. 

Future work will focus on extending the meth-
odology to more complex signals by incorporating 
advanced mathematical and numerical techniques, 
particularly in filtering and signal identification. 
Future iterations of the algorithm will integrate en-
hanced data processing techniques to mitigate in-
terference from non-periodic components. Refin-
ing filtering methods and signal extraction will be 
crucial in improving the algorithm’s capability to 
isolate relevant data in complex, multi-frequency 
environments. Analyzing the noise spectrum across 
accelerometer axes will aid in designing a high-
pass filter to suppress low-frequency noise, while 
applying an inverse Fourier transform will further 
refine acceleration data and minimize interference. 
As the approach continues to evolve, it presents a 
valuable alternative to traditional damping coef-
ficient determination methods, offering enhanced 
physical realism and broad applicability in struc-
tural dynamics, vibration analysis, and mechanical 
system optimization.

Computations were carried out using the 
computers of Centre of Informatics Tricity Aca-
demic Supercomputer & Network.
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