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INTRODUCTION

The reliability and safety of machinery are im-
portant to ensure smooth operation in any industries. 
In various industries, rotating machinery equipment 
always subjected to operate in harsh working en-
vironment, such as high temperatures, unsuitable 
humidity, poor lubrication, and beyond its designed 
limits [1]. This will cause a performance deteriora-
tion and defects propagates in rotating machinery 
components such as gear, bearing, and shaft [2, 3]. 
As reported by Zheng et al., bearing component ex-
hibited the highest failure rate, ranging from 45% to 
90% as compared with other components in specific 
rotating machinery equipment [4]. Condition moni-
toring and fault diagnosis (CMFD) is mainly used 
for accessing rotating machinery operation to ensure 
safe operation and avoiding failure or losses.

In recent literature, there are several CMFD 
approach had been developed which are vibration-
based analysis [5–7], temperature-based analysis 
[8], pressure-based analysis [9], and oil-based 
analysis [10]. Vibration-Based Analysis effec-
tively detects changes and early faults in rotating 
machines by capturing both linear and nonlinear 
traits. Its adaptability to various operating con-
ditions enhances its monitoring capabilities. In 
contrast, Temperature-Based Analysis is straight-
forward but may miss early faults due to reliance 
on significant temperature variations. Its effec-
tiveness diminishes in environments with stable 
temperatures. Pressure-Based Analysis provides 
direct insights into system health, particularly in 
pressure-sensitive systems, but is limited to spe-
cific applications and may fail to detect subtle 
faults. Oil-Based Analysis assesses wear through 
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lubricant condition, signalling impurities, yet re-
quires frequent sampling and may miss faults not 
affecting the lubricant. Vibration-based analysis 
is preferred and popular tool used for CMFD of 
rotating machinery equipment. This is because of 
its simple, high sensitivity, low implementation 
costs, and capability to deliver the important in-
formation about the equipment or machine.

Recently, there are many CMFD approaches 
had been developed for diagnosing rotating ma-
chinery equipment using vibration signals. For 
an example, Saha et al. introduced a method for 
intelligent diagnostics of bearings utilizing sup-
port vector machines (SVM) and particle swarm 
optimization (PSO) with the aid of vibration sig-
nals [11], Youcef et al. proposed bearing fault 
diagnosis using vibration spectrum and convolu-
tional neural network (CNN) [12], Shao et al. also 
proposed bearing fault diagnosis using vibration 
signal optimization using Harris-hawks optimiza-
tion and SVM [13], etc. 

However, current CMFD approach mainly 
developed for single machine diagnosis which re-
quires new diagnosis approach to be established 
when replacing the rotating machinery equipment 
or machine. This is due to domain shift causing 
reduced accuracy of the prior CMFD method 
when applied to the modified equipment. Hence, 
a demand from the industry for an efficient and 
reliable fault diagnosis especially on different ma-
chine diagnosis, a cross-machine diagnosis stud-
ied had been gain a lot of attentions recently [14–
16]. Jia et al. and Li et al. proposed cross-machine 
diagnosis for bearing components (DBDP-Net) 
[14, 16]. He and Shen proposed cross-machine 
diagnosis mode for spindle motors [15]. Wang et 
al. proposed cross-machine diagnosis for bearing 
component based on semi-supervised adversarial 
domain adaptation [17]. Lv et al. proposed cross-
machine diagnosis using deep learning approach 
[18]. Zhang et al. also proposed cross-machine di-
agnosis based on pseudo-label transitive domain 
adaptation networks [19]. Yuan et al. proposed 
cross-machine using variational autoencoder 
and deep learning approach [20]. The studies on 
cross-machine diagnosis have been continuously 
conducted by many scholars by proposing a new 
diagnosis approach that uses diagnosis knowl-
edge from an older machine as a source domain 
and apply to another machine as a target domain. 
However, the problem on cross-machine diag-
nosis study remains open to be explored where 
the domain difference is due to changed working 

condition and mechanical structure characteristic, 
as agreed by [21]. 

Therefore, this paper proposes novel cross-
machine bearing fault diagnosis based on se-
lected statistical features generalization (SFG) 
and improved extreme learning machines based 
on eel and grouper optimization (EGO) method, 
so called SFG-IELM method. In 2006, Huang 
et al. pioneered the extreme learning machine 
(ELM) algorithm [22]. The SFG will be selected 
from time-domain and frequency-domain statis-
tical features. Then, the generalized factor will 
be determined based on the relationship between 
source domain features and target domain features 
for each operational condition. The ELM method 
has a capability to provide fast learning speed and 
excellent generalization performance as com-
pared to the conventional back-propagation algo-
rithm and support vector machine [23–25]. The 
ELM method has been proposed to solve various 
tasks in many industries; for instance, biomedical 
image classification [26], automatic spoken lan-
guage identification [27], forecasting air quality 
index [28], and traffic flow forecasting [29]. Due 
to its limitation, the ELM method had been im-
proved recently using a meta-heuristic algorithm 
to select an optimized number of its parameters 
such as number of hidden neurons, input weight, 
bias, etc [30, 31]. Recently, Ali and Mirjalili had 
proposed a new meta-heuristic algorithm known 
as eel and grouper optimizer (EGO) method [32]. 
The EGO method will be used to improve the 
ELM method in this paper to select an optimized 
number of hidden neurons, input weight and bias. 

The structure of this paper is as follows: Sec-
tion 2 provides a concise overview of the ELM 
method, EGO method, and the proposed method. 
Section 3 discuss and present the datasets and ex-
perimental configuration. Section 4 provides an 
exposition of the findings and further analysis. 
The final conclusions are formulated in Section 5.

THEORETICAL BACKGROUND

Extreme learning machine

The ELM algorithm is a highly efficient and 
simple technique for training single-hidden layer 
feedforward neural networks (SLFNs) [22]. This 
method relies on the random initialization of 
connection weights between the input and hid-
den layers, as well as the biases for the neurons 
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in the hidden layer, without any modifications 
throughout the training phase. Furthermore, it at-
tains an optimal solution by varying the number 
of hidden layer neurons as the only parameter 
that needs to be set and only output weights are 
calculated within the algorithm training. Thus, 
achieves quicker learning rate and enhanced gen-
eralization performance compared to traditional 
feedforward network training methods [22]. The 
ELM algorithm addresses the difficulties encoun-
tered by gradient-based methods in SLFNs, such 
as instability and divergence with high learning 
rates, slow convergence with low learning rates, 
and the risk of converging to local minima that 
are far from the global minima, which can result 
in overfitting and prolonged training times [22].

The ELM algorithm consists of three layers: an 
input layer, a hidden layer, and an output layer. The 
input layer is comprised of neurons that correspond 
to the number of input features, while the hidden 
layer contains a number of neurons that requires 
adjustment but normally set equal to the number of 
input features. The output layer consists of neuron 
number that represents the output classes number, 
as illustrated in the topology of the ELM algorithm 
shown in Figure 1. From the input layer, various 
features (xi), input weights (wij), and biases (bj) are 
integrated, where i ∈ 1, 2, 3 ... n and n is number of 
features; j ∈ 1, 2, 3 ... η and η is number of hidden 
layer neurons; and ij denotes the number of con-
nections between input neuron  i and hidden layer 
neuron j. These features are then processed in the 
hidden neuron layer incorporating an activation 
function, f as according to Equation 1, leading to 
the formation of a matrix H as shown in Equation 2.
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The output matrix can subsequently be rep-
resented as shown in Equation 3 and Equation 
4, including an output layer (yk) and an output 
weight (βjk), where k ∈ 1, 2, 3...N  and N is num-
ber of output classes; while jk denotes the number 
of connections between hidden layer neuron  j to 
output neuron k.
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Eel and grouper optimizer

EGO, a novel meta-heuristic optimization 
method, draws inspiration from the collaborative 
hunting behaviour of moray eels and grouper fish. 
Groupers hunt in the open waters around coral 
reefs, while moray eels pursue their prey within 
the reefs at night. When these two species work 
together, the chances of their prey escaping from 
both the grouper in open water and the moray eel 
in the reefs are significantly reduced [33]. 

The mutualistic relationship observed during 
hunting typically initiates when the groupers’ at-
tempts to hunt in open water fail, prompting their 
prey to seek refuge within the reefs. In response, 
the groupers swim towards nearby eels, signalling 
and guiding them to the location of the concealed 
prey. The eels then navigate the reef’s crevices to 
hunt for the prey while the groupers remain near 

Figure 1. ELM topology
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the reef in case the prey escapes back into open 
water. Should one of the predatory species suc-
cessfully consume the prey, the other species does 
not retaliate, suggesting that this non-aggression 
is part of their cooperative arrangement. 

In phase 1, a random search agent is employed 
to adjust the location of a search agent during the 
exploration phase. This mechanism, along with 
specific coefficient values, improves explora-
tion and allows the EGO algorithm to conduct 
a global search. The mathematical model is out-
lined as follows in Equation 5 and 6 respectively, 
where t is the current iteration in ith dimension, 
Xrand represents the random position vector, XG is 
the best solution from previous iteration, C1 and 
C2 represent the coefficient vector with controlled 
random values which is more than 1 and less than 
-1 to ensure exploration, and Xi is a current lo-
cation vector. Moreover, the fitness is evaluated 
based on objective function that will be described 
in methodology section.
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𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (5)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (6)

XG should changes in each iteration repre-
senting the grouper position hunting movement. 
As iteration increases, C1 and C2 is updated using 
Equation 7, 8 and 9, where r1  and r2 are random 
number between 0 and 1. Equation 9 and 10 en-
sures shrinking encircling behaviour as α value 
decreases as iteration increases.
 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (7)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (8)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (9)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (10)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (11)
Grouper then signals nearby eel based on 

starvation rate that increases with iteration as de-
scribed in Equation 12. Thus, initializes eel po-
sition using Equation 13 that will then join the 
hunt signifying the start of phase 2 of EGO with 
exploitation algorithm depending on relationship 
between Equation 11 and 12.

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (12)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (13)
Initially, XP is initialized based on best par-

ticle according to fitness. Then, it updates ac-
cording to cooperative exploitation movement 
of eel (X1) and exploration movement of grouper 

(X2) as simulated in Equation 14 and 15 respec-
tively. Equation 16 shows the influence of X1 and 
X2 according to randomized value of p (between 
0 to 1); thus, ensuring the algorithm to balance 
between exploration and exploitation. Then, per-
formance of each search agent is evaluated and  
XP is updated if better solution is present. The 
operation continues until the maximum iteration 
set. The position of prey is the solution obtained 
by EGO algorithm.

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14) 

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15) 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2 ) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5 
(16) 

 
. 

𝑋𝑋𝐺𝐺 = 

=  𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 

(17) 
 

 
𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 = 

= 100 −  [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2 ] (18) 

 

 (14)

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6) 
 

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7) 
𝐶𝐶2 = 2𝑟𝑟2 (8) 

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9) 
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10) 

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11) 
 

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 = 
=  100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12) 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
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In summary, the EGO algorithm effectively 
enhances both optimal and diverse solutions 
while avoiding local optima. Additionally, EGO 
mitigates the risks associated with local optima 
due to its population-based approach and adapt-
able transitions between exploration and ex-
ploitation phases. A thorough explanation and 
benchmark performance results of the optimizer 
can be found in [33] where EGO has been tested 
with various benchmark functions, spanning uni-
modal, multimodal, and composite varieties. The 
study shows that EGO outperforms many promi-
nent algorithms like Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), and Differ-
ential Evolution (DE) when it comes to achieving 
global optima with remarkable precision and swift 
convergence. The mathematical model presented 
is based on single dimension or single variable; 
thus, the proposed method requires 3 variables for 
optimization resulting to a combination of 3 di-
mensions. Figure 2 illustrates the computational 
model flowchart of the joint hunting activity per-
formed by these two predatory fish.

METHODOLOGY

As presented in Figure 3, the method is com-
prised of 2 phases. The first phase process flow is 
as depicted in the left side of Figure 3. The pur-
pose of the first phase of this method is to deter-
mine which features are suitable to classify faults 
and to obtain the generalization factor. Initially, 
labelled source domain dataset consisting of 3 dif-
ferent bearing conditions is divided into samples 
according to cycles of revolution as demonstrated 
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Figure 2. EGO algorithm flowchart

Figure 3. Proposed method flowchart
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in Figure 4. 900 signal samples from 3 bearing 
conditions are taken to be used for feature extrac-
tion. A total of 14 statistical features, 8 features 
from time domain and 6 features from frequency 
domain are then extracted from the samples.

Within time domain, the features to be ob-
served are RMS, range, skewness, kurtosis, crest 
factor, shape factor, impulse factor and margin 
factor; obtained using equations in Table 1. While 
frequency domain features to be considered are 
RMS, skewness, kurtosis, maximum, mean and 
standard deviation; acquired through equations in 
Table 2. The features are then selected according 
to human observation of the features data distri-
bution clustering pattern that displays distinctive 
borders between bearing conditions. The selected 
feature will then be utilised for the remaining fea-
ture extraction processes of the research.

Afterwards, samples from healthy bearing of 
target domain dataset; annotated with 300 samples 
in Figure 3 will be subjected to selected feature 
extraction. This process is within the assumption 

that only healthy bearing of target domain dataset 
is available. Thus, by leveraging source domain 
healthy bearing extracted features previously 
procured; generalization factor (GF) for each se-
lected feature is then calculated using Equation 
17. The purpose of GF is to find the domain shift 
between source domain and target domain; which 
will be utilized to in second phase.
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The econd phase of the methodology, diagno-
sis model development is as presented in the right 
side of Figure 4 where 900 samples from all bear-
ing conditions of both domains’ datasets are pre-
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is expected to be aligned with testing data; thus, 
reducing the domain shift between source domain 
and target domain as demonstrated in Figure 5.

The training data are labelled and then fed 
into EGO optimizer to obtain the ideal ELM 
parameters; number of hidden layer neurons, 
weight values and bias values for improved 
ELM method. The importance of this proce-
dure is because the parameter significantly af-
fects ELM accuracy as demonstrated in Figure 6 
where ELM is run for 200 times with increasing 
neuron number ranging from 1 to 200. Highest 
diagnostic accuracy is observed to be obtained 
using 9 hidden layer neurons.

Afterwards, the training data is fed into im-
proved ELM to develop the proposed bearing 
FD model. After the training process, unlabelled 

testing data are fed into the model for bearing 
condition prediction. The output is then compared 
with experimental data label to determine the 
fault classification accuracy. Equation 18 details 
the objective function for the EGO.

 

 
ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1) 

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2) 

 
𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3) 

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4) 

 

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5) 
 

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖
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𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13) 
 

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
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2 ] (18) 

 

 (18)

The datasets utilized in this study were ob-
tained from CWRU and an experimental testing 
rig. The CWRU dataset was employed for the 
formulation of the ELM model, while the ex-
perimental dataset was used to assess the model’s 
performance. The CWRU dataset, acted as the 
source domain, was primarily utilized to train the 
proposed ELM model and was sourced from the 
CWRU bearing data centre website. 

Figure 4. Sampling process procedure

Figure 5. Generalization effect on frequency-domain mean feature
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The online dataset comprises three sets of vi-
bration signals with distinct bearing conditions: 
healthy, ball fault, and inner race fault. The sig-
nals were captured in the laboratory using bear-
ings with artificially induced faults. Each induced 
fault measures 0.007 inches in diameter running 
at 1797 RPM with 12 kHz sampling frequency. 
The test rig configuration was depicted in Figure 7 
(a), sourced from CWRU. More details regarding 
the configuration were available on the website. 

The experimental dataset was obtained from 
the experimental test rig. The test rig simulates a 
real rotating machine with three bearing conditions: 
healthy, ball fault, and inner race fault. The test rig is 
the Machinery Fault and Rotor Dynamics Simulator 

(MFS-RDS) made by Spectra Quest, as illustrated 
in Figure 7b operating at 1800 RPM speed with 
sampling rate 25.6 kHz. The labelled dataset pro-
duced by this test rig served as the target domain for 
this study. Raw vibration signals from both online 
and experimental datasets were shown in Figure 8.

RESULTS

The result will be presented similarly to the 
methodology which consists of two phases. Phase 
1 presents the results and discussion of features 
selection and generalization. While phase 2 fo-
cuses towards FD model development process.

Figure 6. Number of neuron effect on ELM algorithm accuracy

Figure 7. (a) Online test rig and (b) experimental test rig
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Features selection and generalization

Initially, both datasets; CWRU and experimen-
tal are subjected to sampling process as accordance 
to their sampling rate. Details of sampling param-
eter of phase 1 are as described in Table 3.

Subsequently, A total of 14 statistical fea-
tures were extracted from the signal samples 
and specific features were selected according to 
features distribution clustering. These selections 
were based on the visualizations as demonstrated 
in Figure 9 and Figure 10. For this visualization 

Figure 8. Raw vibration signals of CWRU and experimental datasets

Table 3. Datasets configuration for features selection and generalization
Datasets Condition Signal samples Data per samples

Case western reserve 
university (CWRU)

Healthy 300 400

Ball fault 300 400

Inner fault 300 400

Experimental Healthy 300 856

Figure 9. Clustering of CWRU time domain statistical features
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and selection, only features from CWRU will 
be used, as it is considered the source domain 
for this study. Figure 9 shows the clustering for 
each statistical feature from the time-domain. 
Based on the clustering, RMS, range, shape 
factor and impulse factor show 3 clusters as ac-
cordance to bearing conditions, which indicates 
the most sensitive features for these datasets. 
The selection is according to 1-dimensional 
cluster; for instance, x-axis on top left chart in 
Figure 9 labelled with ‘1. t-RMS’ is selected as 
3 1-dimensional clusters of data points can be 
observed. Based on the same selection criteria, 
that is also the reason for ‘3. t-Skewness’ in top 
right chart in the same Figure 9 is not selected 
because no clear clusters can be observed from 
the feature axis perspective. Figure 10 presented 
the frequency-domain clustering for each statis-
tical feature. Based on the clustering, the stan-
dard deviation and mean are selected with the 
same reason as previous selections. Frequency 
domain RMS is not selected as the distribution 
is similar to time domain RMS.

Hence, a total of six features are selected 
and used for feature generalization as depicted 
in Figure 11. For feature generalization, only 
healthy condition from both CWRU and ex-
perimental datasets are used. Then, selected 
features are extracted from the healthy sig-
nal samples of both datasets. Mean from each 

feature of both domains are obtained and GF 
value are calculated as Equation 17. The same 
approach was implemented all 6 selected fea-
tures accordingly, and the GF value for each is 
described in Table 4.

Cross-machine fault classification

For cross-machine fault classification, 300 
signal samples had been extracted from each 
dataset, as described in Table 5. Selected sta-
tistical features were then extracted from each 
signal sample and CWRU features are gener-
alized by multiplying to GF value as accord-
ing to type of feature as stated in Table 4. The 
same GF value was used for each condition of 
source dataset, which are healthy, ball fault, 
and inner race fault.

The classification was based on the ELM al-
gorithm enhanced with parameters; number of 
neurons, weight values and bias values optimized 
by EGO method. The EGO method was employed 
with input parameters according to Table 6 to find 
the best parameters for the study. Variables are set 
to 3 as the 3 parameters for optimized ELM al-
gorithm and boundary set to control range of the 
values for the IELM parameters. As observed in 
Figure 12, the convergence rate of the optimizer 
managed to obtain the optimum values of IELM 
parameters after 15 iterations.

Figure 10. Clustering of CWRU frequency domain statistical features
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The optimum values of IELM parameters 
obtained by EGO; hidden neuron number of 5, 
input weight coefficient of 0.0015, and bias coef-
ficient of 0.0047 are used to train the proposed 
SFG-IELM. To measure the effect of generaliza-
tion method employed in this study, 2 different 
transfer learning FD models based on conven-
tional ELM were trained using non-generalized 
CWRU selected features and generalized CWRU 
selected features respectively. To ensure fair-
ness, training and testing dataset configuration 

of these 2 models are kept consistent with pro-
posed method. Besides, all models were run for 
30 times; where performance is recorded after 
each fully trained run to obtain the average accu-
racy of each model for better performance repre-
sentation and tabulated in Table 7.

The average and overall accuracy are pre-
sented in Figure 13 where generalization pro-
cedure has improved testing accuracy of con-
ventional ELM model from 70.5% to 85.3% 
as observed in comparison between Non Gen 

Figure 11. Selected features from time domain and frequency domain

Table 5. Datasets configuration for classification
Purpose Datasets Condition Number of samples

Training Generalized CWRU
Healthy 

Inner race fault 
Ball fault

300 
300 
300

Testing Experimental
Healthy 

Inner race fault 
Ball fault

300 
300 
300

Table 4. GF value for each selected feature
Statistical feature GF value

Time-domain RMS 0.9109

Time-domain range 1.0014

Time-domain shape factor 0.9070

Time-domain impulse factor 0.9584

Frequency-domain mean 0.5726

Frequency-domain standard deviation 0.6327

Table 6. EGO parameters
EGO parameter Value

Population size 200

Iteration 30

Variable 3

Lower bound [0 0 1]

Upper bound [1 1 700]

Others Default
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Figure 12. EGO convergence curve

Table 7. Detailed accuracy of 30 runs of non-generalized ELM, generalized ELM and SFG-IELM

Run

Accuracy (%)

Non-generalized ELM Generalized ELM SFG-IELM

Training Testing Training Testing Training Testing

1 96.0 73.4 95.0 88.9 92.8 99.3

2 93.0 53.7 93.8 91.9 92.6 98.6

3 95.6 68.0 95.4 87.3 92.3 99.3

4 92.0 69.4 97.4 99.4 92.8 99.3

5 93.6 72.0 90.1 71.3 92.4 99.3

6 94.4 54.7 95.7 99.0 92.4 98.0

7 93.3 70.8 92.2 88.6 93.2 99.7

8 96.0 68.2 94.7 91.4 92.7 99.3

9 89.4 67.6 95.3 87.4 92.2 97.8

10 92.6 77.0 95.6 93.8 92.7 98.6

11 91.3 76.3 97.3 99.4 92.7 99.3

12 91.2 69.6 96.2 81.8 92.4 99.2

13 97.8 95.9 94.2 74.3 92.6 97.9

14 91.0 67.8 89.7 69.9 92.4 97.9

15 91.8 73.9 94.6 85.8 92.9 98.9

16 96.2 88.7 96.6 96.1 92.3 97.4

17 97.0 75.8 94.8 91.3 92.2 97.8

18 96.6 62.4 90.3 71.7 92.7 99.0

19 90.6 67.0 98.2 97.9 93.1 99.6

20 94.2 73.9 91.1 77.3 93.6 99.7

21 90.8 69.0 96.9 94.2 92.6 98.6

22 93.6 75.2 93.3 76.9 92.3 99.2

23 95.1 81.0 92.0 80.3 92.4 98.3

24 90.7 66.3 90.1 67.9 92.7 99.6

25 90.0 67.3 91.8 77.2 92.0 99.1

26 92.3 69.7 96.9 91.6 92.0 99.4

27 91.2 73.9 95.6 73.4 92.1 99.2

28 92.1 55.9 90.3 73.1 92.6 98.9

29 92.7 62.2 96.6 96.3 92.6 99.0

30 90.7 68.9 97.3 82.2 92.8 98.9

Average 93.1 70.5 94.3 85.3 92.6 98.9

Overall 81.8 89.8 95.7



419

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

ELM and Gen ELM. Furthermore, the proposed 
EGO optimization has further improved testing 
accuracy to 98.9% as shown in Figure 13 la-
belled with SFG-IELM. Figure 14 represents 
the stability of the 3 models when trained for 
30 times. SFG-IELM is discerned to be more 
stable when compared to 2 other models; thus, 
proving that controlling weight and bias values 
using EGO optimization managed to stabilize 
the model with optimum performance.

Within transfer learning FD models, testing 
accuracy is prioritized as it represents the pur-
pose of transfer learning where performance of 

the model in target domain is pursued. Hence, 
the testing performance of the proposed meth-
od is compared to other recent cross-machine 
bearing FD models; dictionary domain adap-
tation transformer (DDAT) [34] and cross-
domain manifold structure preservation (CD-
MSP) [35] as presented in Figure 15 bar chart. 
Both of these methods also deployed CWRU 
bearing dataset as source domain. SFG-IELM 
accuracy in this study is slightly better than 
other 2 cross-machine FD models; therefore, 
indicating the performance to be on par with 
recent literatures.

Figure 13. Average accuracy comparison

Figure 14. Detailed performance of 30 runs of non-generalized ELM, generalized ELM and SFG-IELM
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CONCLUSIONS

This study proposed an alternative approach 
for cross-machine bearing diagnosis based on sta-
tistical feature generalization and IELM. Selected 
statistical features were also presented, with six 
out of fourteen statistical features from the time-
domain and frequency-domain selected. The gen-
eralized factor (GF) value was also presented for 
each selected statistical parameter feature, which 
will be used for generalizing source-domain to tar-
get-domain. A comparison result presented in this 
paper suggests that the generalization and optimi-
zation improved the cross-machine diagnosis per-
formance from 70.5% to 98.9%, which is very sig-
nificant with 28.4% differences. Moreover, SFG-
IELM also exhibits a similar level of performance 
with recent cross-machine bearing FD literatures. 
As per future remarks, the proposed cross-machine 
diagnosis should also be tested with other machine 
components such as gear, shaft, and blade.
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