
407

INTRODUCTION

The reliability and safety of machinery are im-
portant to ensure smooth operation in any industries.
In various industries, rotating machinery equipment
always subjected to operate in harsh working en-
vironment, such as high temperatures, unsuitable
humidity, poor lubrication, and beyond its designed
limits [1]. This will cause a performance deteriora-
tion and defects propagates in rotating machinery
components such as gear, bearing, and shaft [2, 3].
As reported by Zheng et al., bearing component ex-
hibited the highest failure rate, ranging from 45% to
90% as compared with other components in specific
rotating machinery equipment [4]. Condition moni-
toring and fault diagnosis (CMFD) is mainly used
for accessing rotating machinery operation to ensure
safe operation and avoiding failure or losses.

In recent literature, there are several CMFD
approach had been developed which are vibration-
based analysis [5–7], temperature-based analysis
[8], pressure-based analysis [9], and oil-based
analysis [10]. Vibration-Based Analysis effec-
tively detects changes and early faults in rotating
machines by capturing both linear and nonlinear
traits. Its adaptability to various operating con-
ditions enhances its monitoring capabilities. In
contrast, Temperature-Based Analysis is straight-
forward but may miss early faults due to reliance
on significant temperature variations. Its effec-
tiveness diminishes in environments with stable
temperatures. Pressure-Based Analysis provides
direct insights into system health, particularly in
pressure-sensitive systems, but is limited to spe-
cific applications and may fail to detect subtle
faults. Oil-Based Analysis assesses wear through

Bearing fault diagnosis based on cross-machine statistical
features generalization and improved extreme learning machine

Muhammad Harith Mohd Kamal1* , Muhammad Firdaus Bin Isham1 ,
Amirulaminnur Raheimi2 , Mohd Syahril Ramadhan Mohd Saufi1,
Wan Aliff Abdul Saad1

1 Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
2 Institute of Noise and Vibration, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
* Corresponding author’s e-mail: mdharithkamal@gmail.com

ABSTRACT
Asset reliability is among the primary objectives in technological advancements and effective maintenance is es-
sential to guarantee optimal performance of machineries while upholding safety requirements. Intelligent models
based on machine learning and deep learning techniques have been extensively suggested for advanced maintenance
procedures. In recent times, there has been a trend in fault diagnosis studies towards cross-machine diagnosis which
involves multiple machines. Therefore, this paper proposes a cross-machine bearing fault diagnosis trained without
faulty data of target machine; based on selected generalized statistical vibration features and improved extreme learn-
ing machine. This work utilized an online bearing dataset from a source machine and experimental datasets from a
target machine. The statistical vibration features were derived from both datasets (online and experimental) and sub-
sequently chosen based on distinctive characteristics in features. Next, specific characteristics will be input into the
improved extreme learning machine (ELM) technique for the purpose of fault categorization. The suggested model
demonstrated substantial cross-machine classification ability, with an accuracy rate of up to 98.9%.

Keywords: fault diagnosis, bearing, vibration, cross-machine, eel and grouper optimizer, extreme learning machine.

Received: 2025.02.28
Accepted: 2025.03.15
Published: 2025.04.01

Advances in Science and Technology Research Journal, 2025, 19(5), 407–421
https://doi.org/10.12913/22998624/202742
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0009-0004-9311-6287
https://orcid.org/0000-0002-9382-4257
https://orcid.org/0009-0005-6483-1449

408

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

lubricant condition, signalling impurities, yet re-
quires frequent sampling and may miss faults not
affecting the lubricant. Vibration-based analysis
is preferred and popular tool used for CMFD of
rotating machinery equipment. This is because of
its simple, high sensitivity, low implementation
costs, and capability to deliver the important in-
formation about the equipment or machine.

Recently, there are many CMFD approaches
had been developed for diagnosing rotating ma-
chinery equipment using vibration signals. For
an example, Saha et al. introduced a method for
intelligent diagnostics of bearings utilizing sup-
port vector machines (SVM) and particle swarm
optimization (PSO) with the aid of vibration sig-
nals [11], Youcef et al. proposed bearing fault
diagnosis using vibration spectrum and convolu-
tional neural network (CNN) [12], Shao et al. also
proposed bearing fault diagnosis using vibration
signal optimization using Harris-hawks optimiza-
tion and SVM [13], etc.

However, current CMFD approach mainly
developed for single machine diagnosis which re-
quires new diagnosis approach to be established
when replacing the rotating machinery equipment
or machine. This is due to domain shift causing
reduced accuracy of the prior CMFD method
when applied to the modified equipment. Hence,
a demand from the industry for an efficient and
reliable fault diagnosis especially on different ma-
chine diagnosis, a cross-machine diagnosis stud-
ied had been gain a lot of attentions recently [14–
16]. Jia et al. and Li et al. proposed cross-machine
diagnosis for bearing components (DBDP-Net)
[14, 16]. He and Shen proposed cross-machine
diagnosis mode for spindle motors [15]. Wang et
al. proposed cross-machine diagnosis for bearing
component based on semi-supervised adversarial
domain adaptation [17]. Lv et al. proposed cross-
machine diagnosis using deep learning approach
[18]. Zhang et al. also proposed cross-machine di-
agnosis based on pseudo-label transitive domain
adaptation networks [19]. Yuan et al. proposed
cross-machine using variational autoencoder
and deep learning approach [20]. The studies on
cross-machine diagnosis have been continuously
conducted by many scholars by proposing a new
diagnosis approach that uses diagnosis knowl-
edge from an older machine as a source domain
and apply to another machine as a target domain.
However, the problem on cross-machine diag-
nosis study remains open to be explored where
the domain difference is due to changed working

condition and mechanical structure characteristic,
as agreed by [21].

Therefore, this paper proposes novel cross-
machine bearing fault diagnosis based on se-
lected statistical features generalization (SFG)
and improved extreme learning machines based
on eel and grouper optimization (EGO) method,
so called SFG-IELM method. In 2006, Huang
et al. pioneered the extreme learning machine
(ELM) algorithm [22]. The SFG will be selected
from time-domain and frequency-domain statis-
tical features. Then, the generalized factor will
be determined based on the relationship between
source domain features and target domain features
for each operational condition. The ELM method
has a capability to provide fast learning speed and
excellent generalization performance as com-
pared to the conventional back-propagation algo-
rithm and support vector machine [23–25]. The
ELM method has been proposed to solve various
tasks in many industries; for instance, biomedical
image classification [26], automatic spoken lan-
guage identification [27], forecasting air quality
index [28], and traffic flow forecasting [29]. Due
to its limitation, the ELM method had been im-
proved recently using a meta-heuristic algorithm
to select an optimized number of its parameters
such as number of hidden neurons, input weight,
bias, etc [30, 31]. Recently, Ali and Mirjalili had
proposed a new meta-heuristic algorithm known
as eel and grouper optimizer (EGO) method [32].
The EGO method will be used to improve the
ELM method in this paper to select an optimized
number of hidden neurons, input weight and bias.

The structure of this paper is as follows: Sec-
tion 2 provides a concise overview of the ELM
method, EGO method, and the proposed method.
Section 3 discuss and present the datasets and ex-
perimental configuration. Section 4 provides an
exposition of the findings and further analysis.
The final conclusions are formulated in Section 5.

THEORETICAL BACKGROUND

Extreme learning machine

The ELM algorithm is a highly efficient and
simple technique for training single-hidden layer
feedforward neural networks (SLFNs) [22]. This
method relies on the random initialization of
connection weights between the input and hid-
den layers, as well as the biases for the neurons

409

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

in the hidden layer, without any modifications
throughout the training phase. Furthermore, it at-
tains an optimal solution by varying the number
of hidden layer neurons as the only parameter
that needs to be set and only output weights are
calculated within the algorithm training. Thus,
achieves quicker learning rate and enhanced gen-
eralization performance compared to traditional
feedforward network training methods [22]. The
ELM algorithm addresses the difficulties encoun-
tered by gradient-based methods in SLFNs, such
as instability and divergence with high learning
rates, slow convergence with low learning rates,
and the risk of converging to local minima that
are far from the global minima, which can result
in overfitting and prolonged training times [22].

The ELM algorithm consists of three layers: an
input layer, a hidden layer, and an output layer. The
input layer is comprised of neurons that correspond
to the number of input features, while the hidden
layer contains a number of neurons that requires
adjustment but normally set equal to the number of
input features. The output layer consists of neuron
number that represents the output classes number,
as illustrated in the topology of the ELM algorithm
shown in Figure 1. From the input layer, various
features (xi), input weights (wij), and biases (bj) are
integrated, where i ∈ 1, 2, 3 ... n and n is number of
features; j ∈ 1, 2, 3 ... η and η is number of hidden
layer neurons; and ij denotes the number of con-
nections between input neuron i and hidden layer
neuron j. These features are then processed in the
hidden neuron layer incorporating an activation
function, f as according to Equation 1, leading to
the formation of a matrix H as shown in Equation 2.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (1)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (2)

The output matrix can subsequently be rep-
resented as shown in Equation 3 and Equation
4, including an output layer (yk) and an output
weight (βjk), where k ∈ 1, 2, 3...N and N is num-
ber of output classes; while jk denotes the number
of connections between hidden layer neuron j to
output neuron k.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (3)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (4)

Eel and grouper optimizer

EGO, a novel meta-heuristic optimization
method, draws inspiration from the collaborative
hunting behaviour of moray eels and grouper fish.
Groupers hunt in the open waters around coral
reefs, while moray eels pursue their prey within
the reefs at night. When these two species work
together, the chances of their prey escaping from
both the grouper in open water and the moray eel
in the reefs are significantly reduced [33].

The mutualistic relationship observed during
hunting typically initiates when the groupers’ at-
tempts to hunt in open water fail, prompting their
prey to seek refuge within the reefs. In response,
the groupers swim towards nearby eels, signalling
and guiding them to the location of the concealed
prey. The eels then navigate the reef’s crevices to
hunt for the prey while the groupers remain near

Figure 1. ELM topology

410

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

the reef in case the prey escapes back into open
water. Should one of the predatory species suc-
cessfully consume the prey, the other species does
not retaliate, suggesting that this non-aggression
is part of their cooperative arrangement.

In phase 1, a random search agent is employed
to adjust the location of a search agent during the
exploration phase. This mechanism, along with
specific coefficient values, improves explora-
tion and allows the EGO algorithm to conduct
a global search. The mathematical model is out-
lined as follows in Equation 5 and 6 respectively,
where t is the current iteration in ith dimension,
Xrand represents the random position vector, XG is
the best solution from previous iteration, C1 and
C2 represent the coefficient vector with controlled
random values which is more than 1 and less than
-1 to ensure exploration, and Xi is a current lo-
cation vector. Moreover, the fitness is evaluated
based on objective function that will be described
in methodology section.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (5)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (6)

XG should changes in each iteration repre-
senting the grouper position hunting movement.
As iteration increases, C1 and C2 is updated using
Equation 7, 8 and 9, where r1 and r2 are random
number between 0 and 1. Equation 9 and 10 en-
sures shrinking encircling behaviour as α value
decreases as iteration increases.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (7)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (8)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (9)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (10)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (11)
Grouper then signals nearby eel based on

starvation rate that increases with iteration as de-
scribed in Equation 12. Thus, initializes eel po-
sition using Equation 13 that will then join the
hunt signifying the start of phase 2 of EGO with
exploitation algorithm depending on relationship
between Equation 11 and 12.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (12)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (13)
Initially, XP is initialized based on best par-

ticle according to fitness. Then, it updates ac-
cording to cooperative exploitation movement
of eel (X1) and exploration movement of grouper

(X2) as simulated in Equation 14 and 15 respec-
tively. Equation 16 shows the influence of X1 and
X2 according to randomized value of p (between
0 to 1); thus, ensuring the algorithm to balance
between exploration and exploitation. Then, per-
formance of each search agent is evaluated and
XP is updated if better solution is present. The
operation continues until the maximum iteration
set. The position of prey is the solution obtained
by EGO algorithm.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (14)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (15)

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (16)

In summary, the EGO algorithm effectively
enhances both optimal and diverse solutions
while avoiding local optima. Additionally, EGO
mitigates the risks associated with local optima
due to its population-based approach and adapt-
able transitions between exploration and ex-
ploitation phases. A thorough explanation and
benchmark performance results of the optimizer
can be found in [33] where EGO has been tested
with various benchmark functions, spanning uni-
modal, multimodal, and composite varieties. The
study shows that EGO outperforms many promi-
nent algorithms like Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and Differ-
ential Evolution (DE) when it comes to achieving
global optima with remarkable precision and swift
convergence. The mathematical model presented
is based on single dimension or single variable;
thus, the proposed method requires 3 variables for
optimization resulting to a combination of 3 di-
mensions. Figure 2 illustrates the computational
model flowchart of the joint hunting activity per-
formed by these two predatory fish.

METHODOLOGY

As presented in Figure 3, the method is com-
prised of 2 phases. The first phase process flow is
as depicted in the left side of Figure 3. The pur-
pose of the first phase of this method is to deter-
mine which features are suitable to classify faults
and to obtain the generalization factor. Initially,
labelled source domain dataset consisting of 3 dif-
ferent bearing conditions is divided into samples
according to cycles of revolution as demonstrated

411

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

Figure 2. EGO algorithm flowchart

Figure 3. Proposed method flowchart

412

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

in Figure 4. 900 signal samples from 3 bearing
conditions are taken to be used for feature extrac-
tion. A total of 14 statistical features, 8 features
from time domain and 6 features from frequency
domain are then extracted from the samples.

Within time domain, the features to be ob-
served are RMS, range, skewness, kurtosis, crest
factor, shape factor, impulse factor and margin
factor; obtained using equations in Table 1. While
frequency domain features to be considered are
RMS, skewness, kurtosis, maximum, mean and
standard deviation; acquired through equations in
Table 2. The features are then selected according
to human observation of the features data distri-
bution clustering pattern that displays distinctive
borders between bearing conditions. The selected
feature will then be utilised for the remaining fea-
ture extraction processes of the research.

Afterwards, samples from healthy bearing of
target domain dataset; annotated with 300 samples
in Figure 3 will be subjected to selected feature
extraction. This process is within the assumption

that only healthy bearing of target domain dataset
is available. Thus, by leveraging source domain
healthy bearing extracted features previously
procured; generalization factor (GF) for each se-
lected feature is then calculated using Equation
17. The purpose of GF is to find the domain shift
between source domain and target domain; which
will be utilized to in second phase.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (17)

The econd phase of the methodology, diagno-
sis model development is as presented in the right
side of Figure 4 where 900 samples from all bear-
ing conditions of both domains’ datasets are pre-
pared similarly to previous sampling parameter.
Then, the selected features are extracted from both
domain datasets; features extracted from target
domain are assigned as testing data while features
extracted from source domain are generalized uti-
lizing generalization factor obtained and then as-
signed as training data. Generalized training data

Table 1. Vibration time-domain statistical featuresTable 1. Vibration time-domain statistical features
Statistical feature Equation Statistical feature Equation

Range max(𝑥𝑥𝑖𝑖) − min(𝑥𝑥𝑖𝑖) Crest factor
𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|

√1𝑁𝑁∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1

RMS √∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1
𝑁𝑁 Shape factor

√1𝑁𝑁∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1

1
𝑁𝑁∑ |𝑥𝑥𝑖𝑖|𝐼𝐼

𝑖𝑖=1

Skewness

1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3𝐼𝐼

𝑖𝑖=1

(√1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝐼𝐼

𝑖𝑖=1)
3 Impulse factor

𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|
1
𝑁𝑁∑ |𝑥𝑥𝑖𝑖|𝐼𝐼

𝑖𝑖=1

Kurtosis

1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)4𝐼𝐼

𝑖𝑖=1

(√1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝐼𝐼

𝑖𝑖=1)
4 Margin factor

𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|

(1𝑁𝑁∑ √|𝑥𝑥𝑖𝑖|𝐼𝐼
𝑖𝑖=1)

2

Table 2. Frequency-domain statistical features

Statistical feature Equation Statistical feature Equation

RMS √∑ 𝑠𝑠𝑘𝑘2𝐾𝐾
𝑘𝑘=1
𝑁𝑁 Mean, �̅�𝑠

∑ 𝑠𝑠𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑁𝑁

Standard deviation √∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1

𝑁𝑁 Kurtosis

1
𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)4𝐾𝐾

𝑘𝑘=1

(√1𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1)

4

Skewness

1
𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)3𝐾𝐾

𝑘𝑘=1

(√1𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1)

3 Maximum max(𝑠𝑠)

Table 1. Vibration time-domain statistical features
Statistical feature Equation Statistical feature Equation

Range max(𝑥𝑥𝑖𝑖) − min(𝑥𝑥𝑖𝑖) Crest factor
𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|

√1𝑁𝑁∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1

RMS √∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1
𝑁𝑁 Shape factor

√1𝑁𝑁∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1

1
𝑁𝑁∑ |𝑥𝑥𝑖𝑖|𝐼𝐼

𝑖𝑖=1

Skewness

1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3𝐼𝐼

𝑖𝑖=1

(√1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝐼𝐼

𝑖𝑖=1)
3 Impulse factor

𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|
1
𝑁𝑁∑ |𝑥𝑥𝑖𝑖|𝐼𝐼

𝑖𝑖=1

Kurtosis

1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)4𝐼𝐼

𝑖𝑖=1

(√1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝐼𝐼

𝑖𝑖=1)
4 Margin factor

𝑚𝑚𝑚𝑚𝑥𝑥|𝑥𝑥𝑖𝑖|

(1𝑁𝑁∑ √|𝑥𝑥𝑖𝑖|𝐼𝐼
𝑖𝑖=1)

2

Table 2. Frequency-domain statistical features

Statistical feature Equation Statistical feature Equation

RMS √∑ 𝑠𝑠𝑘𝑘2𝐾𝐾
𝑘𝑘=1
𝑁𝑁 Mean, �̅�𝑠

∑ 𝑠𝑠𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑁𝑁

Standard deviation √∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1

𝑁𝑁 Kurtosis

1
𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)4𝐾𝐾

𝑘𝑘=1

(√1𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1)

4

Skewness

1
𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)3𝐾𝐾

𝑘𝑘=1

(√1𝑁𝑁∑ (𝑠𝑠𝑘𝑘 − �̅�𝑠)2𝐾𝐾
𝑘𝑘=1)

3 Maximum max(𝑠𝑠)

Table 2. Frequency-domain statistical features

413

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

is expected to be aligned with testing data; thus,
reducing the domain shift between source domain
and target domain as demonstrated in Figure 5.

The training data are labelled and then fed
into EGO optimizer to obtain the ideal ELM
parameters; number of hidden layer neurons,
weight values and bias values for improved
ELM method. The importance of this proce-
dure is because the parameter significantly af-
fects ELM accuracy as demonstrated in Figure 6
where ELM is run for 200 times with increasing
neuron number ranging from 1 to 200. Highest
diagnostic accuracy is observed to be obtained
using 9 hidden layer neurons.

Afterwards, the training data is fed into im-
proved ELM to develop the proposed bearing
FD model. After the training process, unlabelled

testing data are fed into the model for bearing
condition prediction. The output is then compared
with experimental data label to determine the
fault classification accuracy. Equation 18 details
the objective function for the EGO.

ℎ𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗) × 𝑓𝑓 (1)

𝐻𝐻 = [
(𝑤𝑤11𝑥𝑥1 + 𝑏𝑏1) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛1𝑥𝑥𝑛𝑛 + 𝑏𝑏1) × 𝑓𝑓

⋮ ⋱ ⋮
(𝑤𝑤1ƞ𝑥𝑥1 + 𝑏𝑏ƞ) × 𝑓𝑓 ⋯ (𝑤𝑤𝑛𝑛ƞ𝑥𝑥𝑛𝑛 + 𝑏𝑏ƞ) × 𝑓𝑓

] (2)

𝑦𝑦 = 𝐻𝐻𝐻𝐻 (3)

𝑦𝑦𝑘𝑘 = ∑ 𝐻𝐻𝑗𝑗𝑘𝑘𝑓𝑓[𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘] (4)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 + 𝐶𝐶1. |�⃗�𝑋𝑖𝑖

𝑡𝑡 − 𝐶𝐶2. �⃗�𝑋𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟| (5)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡+1 = �⃗�𝑋𝑖𝑖

𝑡𝑡+1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (�⃗�𝑋𝑖𝑖
𝑡𝑡+1) > 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 (6)

𝐶𝐶1 = 2𝑎𝑎 × 𝑟𝑟1 − 𝑎𝑎 (7)
𝐶𝐶2 = 2𝑟𝑟2 (8)

𝑎𝑎 = 2 − 2 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (9)
𝑟𝑟3 = (𝑎𝑎 − 2) × 𝑟𝑟2 + 2 (10)

𝑟𝑟4 = 100 × 𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟 (11)

𝑆𝑆𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 =
= 100 × (𝑓𝑓/𝑀𝑀𝑎𝑎𝑥𝑥_𝑖𝑖𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓) (12)

𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 = 𝐶𝐶2. 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑟𝑟4 ≤ 𝑓𝑓𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓_𝑟𝑟𝑎𝑎𝑓𝑓𝑓𝑓 (13)

𝑋𝑋1 = 𝑓𝑓𝑏𝑏𝑟𝑟3. sin(2𝜋𝜋𝑟𝑟3) . 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡| + 𝑋𝑋𝑋𝑋⃗⃗⃗⃗ ⃗⃗ 𝑖𝑖
𝑡𝑡 (14)

𝑋𝑋2 = 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡 + 𝐶𝐶1|𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖

𝑡𝑡 − 𝑋𝑋𝑋𝑋⃗⃗⃗⃗⃗⃗ 𝑖𝑖
𝑡𝑡| (15)

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.8𝑋𝑋1 + 0.2𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 < 0.5

�⃗�𝑋𝑖𝑖
𝑡𝑡+1 = (0.2𝑋𝑋1 + 0.8𝑋𝑋2

2) , 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 0.5
(16)

.

𝑋𝑋𝐺𝐺 =

= 𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑎𝑎𝑟𝑟𝑡𝑡𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓
𝑚𝑚𝑓𝑓𝑎𝑎𝑓𝑓 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑟𝑟𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

(17)

𝑂𝑂𝑏𝑏𝑂𝑂. 𝐺𝐺𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 =

= 100 − [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%) + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝐴𝐴𝑠𝑠𝑠𝑠. (%)
2] (18)

 (18)

The datasets utilized in this study were ob-
tained from CWRU and an experimental testing
rig. The CWRU dataset was employed for the
formulation of the ELM model, while the ex-
perimental dataset was used to assess the model’s
performance. The CWRU dataset, acted as the
source domain, was primarily utilized to train the
proposed ELM model and was sourced from the
CWRU bearing data centre website.

Figure 4. Sampling process procedure

Figure 5. Generalization effect on frequency-domain mean feature

414

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

The online dataset comprises three sets of vi-
bration signals with distinct bearing conditions:
healthy, ball fault, and inner race fault. The sig-
nals were captured in the laboratory using bear-
ings with artificially induced faults. Each induced
fault measures 0.007 inches in diameter running
at 1797 RPM with 12 kHz sampling frequency.
The test rig configuration was depicted in Figure 7
(a), sourced from CWRU. More details regarding
the configuration were available on the website.

The experimental dataset was obtained from
the experimental test rig. The test rig simulates a
real rotating machine with three bearing conditions:
healthy, ball fault, and inner race fault. The test rig is
the Machinery Fault and Rotor Dynamics Simulator

(MFS-RDS) made by Spectra Quest, as illustrated
in Figure 7b operating at 1800 RPM speed with
sampling rate 25.6 kHz. The labelled dataset pro-
duced by this test rig served as the target domain for
this study. Raw vibration signals from both online
and experimental datasets were shown in Figure 8.

RESULTS

The result will be presented similarly to the
methodology which consists of two phases. Phase
1 presents the results and discussion of features
selection and generalization. While phase 2 fo-
cuses towards FD model development process.

Figure 6. Number of neuron effect on ELM algorithm accuracy

Figure 7. (a) Online test rig and (b) experimental test rig

415

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

Features selection and generalization

Initially, both datasets; CWRU and experimen-
tal are subjected to sampling process as accordance
to their sampling rate. Details of sampling param-
eter of phase 1 are as described in Table 3.

Subsequently, A total of 14 statistical fea-
tures were extracted from the signal samples
and specific features were selected according to
features distribution clustering. These selections
were based on the visualizations as demonstrated
in Figure 9 and Figure 10. For this visualization

Figure 8. Raw vibration signals of CWRU and experimental datasets

Table 3. Datasets configuration for features selection and generalization
Datasets Condition Signal samples Data per samples

Case western reserve
university (CWRU)

Healthy 300 400

Ball fault 300 400

Inner fault 300 400

Experimental Healthy 300 856

Figure 9. Clustering of CWRU time domain statistical features

416

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

and selection, only features from CWRU will
be used, as it is considered the source domain
for this study. Figure 9 shows the clustering for
each statistical feature from the time-domain.
Based on the clustering, RMS, range, shape
factor and impulse factor show 3 clusters as ac-
cordance to bearing conditions, which indicates
the most sensitive features for these datasets.
The selection is according to 1-dimensional
cluster; for instance, x-axis on top left chart in
Figure 9 labelled with ‘1. t-RMS’ is selected as
3 1-dimensional clusters of data points can be
observed. Based on the same selection criteria,
that is also the reason for ‘3. t-Skewness’ in top
right chart in the same Figure 9 is not selected
because no clear clusters can be observed from
the feature axis perspective. Figure 10 presented
the frequency-domain clustering for each statis-
tical feature. Based on the clustering, the stan-
dard deviation and mean are selected with the
same reason as previous selections. Frequency
domain RMS is not selected as the distribution
is similar to time domain RMS.

Hence, a total of six features are selected
and used for feature generalization as depicted
in Figure 11. For feature generalization, only
healthy condition from both CWRU and ex-
perimental datasets are used. Then, selected
features are extracted from the healthy sig-
nal samples of both datasets. Mean from each

feature of both domains are obtained and GF
value are calculated as Equation 17. The same
approach was implemented all 6 selected fea-
tures accordingly, and the GF value for each is
described in Table 4.

Cross-machine fault classification

For cross-machine fault classification, 300
signal samples had been extracted from each
dataset, as described in Table 5. Selected sta-
tistical features were then extracted from each
signal sample and CWRU features are gener-
alized by multiplying to GF value as accord-
ing to type of feature as stated in Table 4. The
same GF value was used for each condition of
source dataset, which are healthy, ball fault,
and inner race fault.

The classification was based on the ELM al-
gorithm enhanced with parameters; number of
neurons, weight values and bias values optimized
by EGO method. The EGO method was employed
with input parameters according to Table 6 to find
the best parameters for the study. Variables are set
to 3 as the 3 parameters for optimized ELM al-
gorithm and boundary set to control range of the
values for the IELM parameters. As observed in
Figure 12, the convergence rate of the optimizer
managed to obtain the optimum values of IELM
parameters after 15 iterations.

Figure 10. Clustering of CWRU frequency domain statistical features

417

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

The optimum values of IELM parameters
obtained by EGO; hidden neuron number of 5,
input weight coefficient of 0.0015, and bias coef-
ficient of 0.0047 are used to train the proposed
SFG-IELM. To measure the effect of generaliza-
tion method employed in this study, 2 different
transfer learning FD models based on conven-
tional ELM were trained using non-generalized
CWRU selected features and generalized CWRU
selected features respectively. To ensure fair-
ness, training and testing dataset configuration

of these 2 models are kept consistent with pro-
posed method. Besides, all models were run for
30 times; where performance is recorded after
each fully trained run to obtain the average accu-
racy of each model for better performance repre-
sentation and tabulated in Table 7.

The average and overall accuracy are pre-
sented in Figure 13 where generalization pro-
cedure has improved testing accuracy of con-
ventional ELM model from 70.5% to 85.3%
as observed in comparison between Non Gen

Figure 11. Selected features from time domain and frequency domain

Table 5. Datasets configuration for classification
Purpose Datasets Condition Number of samples

Training Generalized CWRU
Healthy

Inner race fault
Ball fault

300
300
300

Testing Experimental
Healthy

Inner race fault
Ball fault

300
300
300

Table 4. GF value for each selected feature
Statistical feature GF value

Time-domain RMS 0.9109

Time-domain range 1.0014

Time-domain shape factor 0.9070

Time-domain impulse factor 0.9584

Frequency-domain mean 0.5726

Frequency-domain standard deviation 0.6327

Table 6. EGO parameters
EGO parameter Value

Population size 200

Iteration 30

Variable 3

Lower bound [0 0 1]

Upper bound [1 1 700]

Others Default

418

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

Figure 12. EGO convergence curve

Table 7. Detailed accuracy of 30 runs of non-generalized ELM, generalized ELM and SFG-IELM

Run

Accuracy (%)

Non-generalized ELM Generalized ELM SFG-IELM

Training Testing Training Testing Training Testing

1 96.0 73.4 95.0 88.9 92.8 99.3

2 93.0 53.7 93.8 91.9 92.6 98.6

3 95.6 68.0 95.4 87.3 92.3 99.3

4 92.0 69.4 97.4 99.4 92.8 99.3

5 93.6 72.0 90.1 71.3 92.4 99.3

6 94.4 54.7 95.7 99.0 92.4 98.0

7 93.3 70.8 92.2 88.6 93.2 99.7

8 96.0 68.2 94.7 91.4 92.7 99.3

9 89.4 67.6 95.3 87.4 92.2 97.8

10 92.6 77.0 95.6 93.8 92.7 98.6

11 91.3 76.3 97.3 99.4 92.7 99.3

12 91.2 69.6 96.2 81.8 92.4 99.2

13 97.8 95.9 94.2 74.3 92.6 97.9

14 91.0 67.8 89.7 69.9 92.4 97.9

15 91.8 73.9 94.6 85.8 92.9 98.9

16 96.2 88.7 96.6 96.1 92.3 97.4

17 97.0 75.8 94.8 91.3 92.2 97.8

18 96.6 62.4 90.3 71.7 92.7 99.0

19 90.6 67.0 98.2 97.9 93.1 99.6

20 94.2 73.9 91.1 77.3 93.6 99.7

21 90.8 69.0 96.9 94.2 92.6 98.6

22 93.6 75.2 93.3 76.9 92.3 99.2

23 95.1 81.0 92.0 80.3 92.4 98.3

24 90.7 66.3 90.1 67.9 92.7 99.6

25 90.0 67.3 91.8 77.2 92.0 99.1

26 92.3 69.7 96.9 91.6 92.0 99.4

27 91.2 73.9 95.6 73.4 92.1 99.2

28 92.1 55.9 90.3 73.1 92.6 98.9

29 92.7 62.2 96.6 96.3 92.6 99.0

30 90.7 68.9 97.3 82.2 92.8 98.9

Average 93.1 70.5 94.3 85.3 92.6 98.9

Overall 81.8 89.8 95.7

419

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

ELM and Gen ELM. Furthermore, the proposed
EGO optimization has further improved testing
accuracy to 98.9% as shown in Figure 13 la-
belled with SFG-IELM. Figure 14 represents
the stability of the 3 models when trained for
30 times. SFG-IELM is discerned to be more
stable when compared to 2 other models; thus,
proving that controlling weight and bias values
using EGO optimization managed to stabilize
the model with optimum performance.

Within transfer learning FD models, testing
accuracy is prioritized as it represents the pur-
pose of transfer learning where performance of

the model in target domain is pursued. Hence,
the testing performance of the proposed meth-
od is compared to other recent cross-machine
bearing FD models; dictionary domain adap-
tation transformer (DDAT) [34] and cross-
domain manifold structure preservation (CD-
MSP) [35] as presented in Figure 15 bar chart.
Both of these methods also deployed CWRU
bearing dataset as source domain. SFG-IELM
accuracy in this study is slightly better than
other 2 cross-machine FD models; therefore,
indicating the performance to be on par with
recent literatures.

Figure 13. Average accuracy comparison

Figure 14. Detailed performance of 30 runs of non-generalized ELM, generalized ELM and SFG-IELM

420

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

CONCLUSIONS

This study proposed an alternative approach
for cross-machine bearing diagnosis based on sta-
tistical feature generalization and IELM. Selected
statistical features were also presented, with six
out of fourteen statistical features from the time-
domain and frequency-domain selected. The gen-
eralized factor (GF) value was also presented for
each selected statistical parameter feature, which
will be used for generalizing source-domain to tar-
get-domain. A comparison result presented in this
paper suggests that the generalization and optimi-
zation improved the cross-machine diagnosis per-
formance from 70.5% to 98.9%, which is very sig-
nificant with 28.4% differences. Moreover, SFG-
IELM also exhibits a similar level of performance
with recent cross-machine bearing FD literatures.
As per future remarks, the proposed cross-machine
diagnosis should also be tested with other machine
components such as gear, shaft, and blade.

Acknowledgment

This work was supported and funded by the
Ministry of Higher Education under Fundamen-
tal Research Grant Scheme (FRGS/1/2023/TK10/
UTM/02/12) and Universiti Teknologi Malaysia
under grant scheme UTM-Encouragement Grant
(UTM-ER), Q.J130000.3824.31J20.

REFERENCES

1. Yu K, Fu Q, Ma H, Lin TR, Li X. Simulation data driv-
en weakly supervised adversarial domain adaptation

approach for intelligent cross-machine fault diagno-
sis. Struct Health Monit, 2021; 20: 2182–2198.

2. Saufi SR, Ahmad ZAB, Leong MS, Lim MH Chal-
lenges and Opportunities of Deep Learning Mod-
els for Machinery Fault Detection and Diagnosis:
A Review. IEEE Access 2019; 7: 122644–122662.

3. Li Z, Jiang Y, Hu C, Peng Z. Recent progress on de-
coupling diagnosis of hybrid failures in gear trans-
mission systems using vibration sensor signal: A
review. Measurement 2016; 90: 4–19.

4. Zheng H, Wang R, Yang Y, Yin J, Li Y, Li Y, Xu
M. Cross-domain fault diagnosis using knowledge
transfer strategy: A review. IEEE Access 2019; 7:
129260–129290.

5. Isham MF, Leong MS, Lim MH, Ahmad ZA. Varia-
tional mode decomposition for rotating machinery
condition monitoring using vibration signals. Trans
Nanjing Univ Aero Astro 2018; 35: 38–50.

6. Isham MF, Leong MS, Lim MH, Bin Ahmad ZA.
Intelligent wind turbine gearbox diagnosis using
VMDEA and ELM. Wind Energy 2019. https://doi.
org/10.1002/we.2323

7. Isham MF, Leong MS, Lim MH, Zakaria MK. A Re-
view on Variational Mode Decomposition for Rotating
Machinery Diagnosis. MATEC Web Conf. 255. 2019.

8. Ren Y, Ye Q, Xu X, Huang Q, Fan Z, Li C, Chang W.
An anomaly pattern detection for bridge structural
response considering time-varying temperature co-
efficients. Structures 2022; 46: 285–298.

9. Liu SX, Lü M. Fault diagnosis of the blocking
diesel particulate filter based on spectral analysis.
Processes. 2019. https://doi.org/10.3390/pr7120943

10. Yao H, Zhang X, Guo Q, Miao Y, Guan S. Fault
diagnosis method for oil-immersed transformers in-
tegrated digital twin model. Sci Rep. 2024. https://
doi.org/10.1038/s41598-024-71107-w

11. Saha DK, Hoque ME, Badihi H. Development of

Figure 15. Testing performance comparison between SFG-IELM, DDAT and CDMSP

421

Advances in Science and Technology Research Journal 2025, 19(5), 407–421

intelligent fault diagnosis technique of rotary ma-
chine element bearing: A machine learning approach.
Sensors. 2022. https://doi.org/10.3390/s22031073

12. Youcef Khodja A, Guersi N, Saadi MN, Boutasseta
N. Rolling element bearing fault diagnosis for ro-
tating machinery using vibration spectrum imaging
and convolutional neural networks. The Internation-
al Journal of Advanced Manufacturing Technology
2020; 106: 1737–1751

13. Shao K, Fu W, Tan J, Wang K. Coordinated approach
fusing time-shift multiscale dispersion entropy and
vibrational Harris hawks optimization-based SVM
for fault diagnosis of rolling bearing. Measurement
2021; 173: 108580.

14. Jia LS, Chow TWS, Wang Y, Ma JH. Dynamic Balanced
Dual Prototypical Domain Generalization for Cross-
Machine Fault Diagnosis. IEEE Trans Instrum Meas.
2024. https://doi.org/10.1109/TIM.2024.3381292

15. He YM, Shen WM. MSiT: A Cross-Machine Fault
Diagnosis Model for Machine-Level CNC Spindle
Motors. IEEE Trans Reliab 2024; 73: 792–802.

16. Li C, Wang GB, Zhao SB, Zhong ZX, Lv Y. Cross-
domain manifold structure preservation for transfer-
able and cross-machine fault diagnosis. Journal of
Vibroengineering. 2024; 26: 1367–1384.

17. Wang XD, Liu F, Zhao DD. Cross-machine fault
diagnosis with semi-supervised discriminative ad-
versarial domain adaptation. Sensors. 2020. https://
doi.org/10.3390/s20133753

18. Lv MZ, Liu SX, Su XM, Chen CZ. Deep transfer
network with multi-kernel dynamic distribution
adaptation for cross-machine fault diagnosis. IEEE
ACCESS, 2021; 9: 16392–16409.

19. Zhang K, Ding K, Zheng Q, Zou YS, Ding GF. A
novel cross-bearing fault diagnosis method based on
pseudo-label transitive domain adaptation networks.
Journal of Vibration and Control. 2023. https://doi.
org/10.1177/10775463231202550

20. Yuan SZ, Liu ZH, Wei HL, Chen L, Lv MY, Li XH.
A Variational Auto-Encoder-Based Multisource
Deep Domain Adaptation Model Using Optimal
Transport for Cross-Machine Fault Diagnosis of
Rotating Machinery. IEEE Trans Instrum Meas.
2024. https://doi.org/10.1109/TIM.2023.3331436

21. Feng Y, Chen J, He S, Pan T, Zhou Z. Globally lo-
calized multisource domain adaptation for cross-do-
main fault diagnosis with category shift. IEEE Trans
Neural Netw Learn Syst 2023; 34: 3082–3096.

22. Huang G Bin, Zhu QY, Siew CK. Extreme learning
machine: Theory and applications. Neurocomputing
2006; 70: 489–501.

23. Huang G-B, Zhou H, Ding X, Zhang R Extreme learn-
ing machine for regression and multiclass classifica-
tion. IEEE transactions on systems, man, and cybernet-
ics Part B, Cybernetics. 2012; 42: 513–29.

24. Huérfano-Maldonado Y, Mora M, Vilches K,

Hernández-García R, Gutiérrez R, Vera M A com-
prehensive review of extreme learning machine on
medical imaging. Neurocomputing. 2023. https://
doi.org/10.1016/j.neucom.2023.126618

25. Isham MF, Saufi MSR, Waziralilah NF, Talib MHAb,
Hasan MDA, Saad WAA Optimized-ELM Based on
Geometric Mean Optimizer for Bearing Fault Diag-
nosis. In: Mohd. Isa WH, Khairuddin IMohd, Mohd.
Razman MohdA, Saruchi S ’Atifah, Teh S-H, Liu P
(eds) Intelligent Manufacturing and Mechatronics.
Springer Nature Singapore, Singapore, 2024; 125–139.

26. Mercaldo F, Brunese L, Martinelli F, Santone A,
Cesarelli M. Experimenting with extreme learn-
ing machine for biomedical image classification.
Applied Sciences (Switzerland). 2023. https://doi.
org/10.3390/app13148558

27. Albadr MAA, Tiun S, Ayob M, Nazri MZA, AL-
Dhief FT. Grey wolf optimization-extreme learning
machine for automatic spoken language identifica-
tion. Multimed Tools Appl 2023; 82: 27165–27191.

28. Liu C, Pan G, Song D, Wei H. Air quality index
forecasting via genetic algorithm-based improved
extreme learning machine. IEEE Access 2023; 11:
67086–67097.

29. Wu K, Xu C, Yan J, Wang F, Lin Z, Zhou T. Error-dis-
tribution-free kernel extreme learning machine for
traffic flow forecasting. Eng Appl Artif Intell. 2023.
https://doi.org/10.1016/j.engappai.2023.106411

30. Isham MF, Saufi MSR, Hasan MDA, Saad WAA,
Leong MS, Lim MH, Ahmad ZAB. Bearing Fault
Diagnosis Using Extreme Learning Machine Based
on Artificial Gorilla Troops Optimizer BT - Advances
in Intelligent Manufacturing and Mechatronics. In:
Abdullah MA, Khairuddin IMohd, Ab. Nasir AF,
Mohd. Isa WH, Mohd. Razman Mohd A, Rasid Mohd
AH, Zainal SMHF, Bentley B, Liu P (eds). Springer
Nature Singapore, Singapore, 2023; 87–103.

31. Isham MF, Leong MS, Lim MH, Ahmad ZAB. Opti-
mized ELM based on Whale Optimization Algorithm
for gearbox diagnosis. MATEC Web Conf. 255: 2019.

32. Mohammadzadeh A, Mirjalili S. Eel and grouper
optimizer: a nature-inspired optimization algorithm.
Cluster Comput 2024; 27: 12745–12786.

33. Mohammadzadeh A, Mirjalili S. Eel and grouper
optimizer: a nature-inspired optimization algorithm.
Cluster Comput. 2024. https://doi.org/10.1007/
s10586-024-04545-w

34. Cui L, Wang G, Liu D, Pan X. Dictionary domain
adaptation transformer for cross-machine fault diag-
nosis of rolling bearings. Eng Appl Artif Intell. 2024.
https://doi.org/10.1016/j.engappai.2024.109261

35. Li C, Wang G, Zhao S, Zhong Z, Lv Y. Cross-domain
manifold structure preservation for transferable and
cross-machine fault diagnosis. Journal of Vibroengi-
neering. 2024. https://doi.org/10.21595/jve.2024.24067

