
321

INTRODUCTION

Engine health monitoring and analysis of the 
aircraft engine condition have become one of the 
main objects of interest among scientists, aircraft 
users, and operators. The first description of auto-
matic gas turbine engine trends diagnostics sys-
tem may be found in [25]. [10] presented Engine 
Condition Monitoring for the McDonnell Douglas 
CF-18 Hornet aircraft and F404 General Electric 
engine. [14] presented a comprehensive review 
of performance-analysis-based methods available 
for gas turbine fault diagnosis in the literature. [2] 

presented diagnostics and prognostics for engine 
health monitoring. Aircraft Gas Turbine Engine 
Health Monitoring analysis based on the real 
flight data was presented by [38]. A very complex 
description of the modern engine health moni-
toring system was also presented by [30] for the 
F-16 turbofan engine. The general idea for the
prognostics and trending was presented by [12]
in review on machinery diagnostics and prognos-
tics. How to deal with engine parameters analysis
was presented by [33, 34].

Over the last years engine trending and prog-
nostic ideas have become very popular, like  [3,4] 
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or [26].  Different methods and models are be-
ing utilized to create reliable means of engine 
health deterioration and engine fault prediction. 
The most common have become statistical meth-
ods: [3, 4, 26]. Proposed a novel method based 
on hierarchical clustering and relevance vector 
machine to determine the remaining useful life of 
a turbofan engine [29]. The [22] proposed the ap-
plication of quality methods in the homogeneity 
assessment based on F-16 aircraft engine noise 
measurements to find cases that significantly dif-
fer from the established reference range, which 
may indicate engine failure and the need to per-
form a maintenance action. In [20] the coherence 
and correlation functions to perform core noise 
diagnostics of turbofan engine noise in the aspect 
of trending were used. The [6] presented a novel 
methodology based on stochastic degradation 
modeling, which proved high efficiency in tur-
bofan engines, remaining useful life prognostics 
with the use of multiple-sensor measurements.

To ensure proper turbofan engine trending 
and diagnostics, appropriate methods of compo-
nent diagnostics must be developed. In the [9] au-
thors, using the distributed collaborative response 
surface method and probabilistic analysis, deter-
mined the turbofan fatigue strength reliability and 
proved that the first three-order resonant frequen-
cies are found to have an important influence on 
the fatigue performance of turbo-fan blades. The 
[16] proposed a novel method based on Leven-
berg-Marquardt to improve performance estima-
tion and fault diagnosis of turbofan engines. In 
[35] authors designed a diagnostic system design 
for combustion and injection processes monitor-
ing and malfunctions using F-16 turbojet’s vibra-
tion parameters. The authors of [21, 23] proposed 
diagnostics methods of turbofan parts and other 
F-16 elements with the use of impulse tests with 
modal analysis assumptions.

One of the current main lines of research is 
about utilizing artificial intelligence methods, es-
pecially neural networks [1, 5, 8, 39]. The [18] 
compared machine learning and deep learning 
methods on the prediction of a component failure 
in the aspect of its degradation scale. The authors 
created models based on collected condition data 
combined with engine sensors and environmental 
data. As a result, they concluded that deep learn-
ing models are more accurate in failure prediction 
than machine learning models. The [7] demon-
strated the effectiveness of convolutional neu-
ral networks in detecting and isolating multiple 

gas path faults. In [28] the diagnostic abilities of 
probabilistic neural networks on turbofan engines 
were checked. Other propositions for neural net-
work use in the aspect of trending and diagnos-
tics were presented in [13, 17, 19, 32, 36, 37, 40] 
which is proof that artificial intelligence methods 
have a high potential in terms of diagnostics and 
turbofan trending.

The authors of this article presented novel 
methods and ideas resulting from their studies 
which could be used at different levels of engine 
maintenance. As it is not a very sophisticated and 
demanding method, it could be used by techni-
cians and engineers in the propulsion sections or 
engine tracking and trending sections at the or-
ganizational or intermediate-level engine mainte-
nance shops.

MOTIVATION AND RESEARCH GAP 

In general, engine trending includes monitor-
ing gas turbine engine performance and identifying 
limit exceedances of operating parameters. Trend-
ing supports scheduled maintenance performed 
on an engine as it identifies performance degrada-
tion. Trending is recording engine parameters and 
observing deviations from established baselines 
[24]. Engine data and its parameters trending pro-
cess allow for early identification of performance 
shifts and degradation due to accelerated compo-
nent deterioration, faulty engine components, and 
maintenance actions. Effective engine trending 
analysis will result in increased safety, improved 
maintenance planning efficiency, timesavings, 
and will provide accurate historical performance 
data. Engine data trending is not an easy task. As 
the proficiency in trending increases, the user may 
recognize new engine trends while reviewing per-
formance. It allows to predict any engine problems 
before they occur. Early engine problem detection 
will give the user a chance to prevent future fail-
ures of the engine and its components [11, 27].

It is evident that throughout the entire life-
cycle of an aircraft engine, its operational param-
eters and data undergo continuous changes. Tra-
ditional engine data monitoring, as described by 
[30], is no longer sufficient in today’s advanced 
aviation landscape. While Engine Monitoring 
Systems (EMS) provide critical information 
about detected faults, they often only report issues 
after they have occurred. This reactive approach 
can be dangerously inadequate, particularly when 
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faults manifest during flight, potentially leading 
to emergency situations or even catastrophic ac-
cidents. To address these challenges, modern avi-
ation must adopt a comprehensive maintenance 
strategy that integrates on-condition mainte-
nance, condition monitoring, trending, and prog-
nostics. These elements form the foundation of a 
proactive approach to engine health management. 
By continuously monitoring the engine and its 
components, it becomes possible to identify early 
signs of degradation or potential failures before 
they escalate into critical issues. This shift from 
reactive to predictive maintenance is not just a 
technological advancement but a necessity for 
ensuring the safety, reliability, and efficiency of 
contemporary and future engines.

Modern aircraft engines are equipped with a 
very advanced engine electronic controller (EEC) 
responsible for collecting the data recorded by the 
sensors mounted on the engine and aircraft air-
frame. Even though EEC usually has the built-in 
software that detects engine parameter threshold 
exceedance, still as it was proven in the described 
case study below, in many cases it is not enough to 
detect engine anomalies and health status degra-
dation. One of the solutions might be engine data 
trending analysis in its health status prediction. 
One of the challenges in engine maintenance and 
health status assessment is how to use engine data 
to analyze and predict engine performance trends. 

The research problem described in the article 
centers on the limitations of current engine moni-
toring systems in aircraft propulsion health man-
agement. While modern engines are equipped 
with advanced sensors and diagnostic tools, these 
systems primarily detect issues after faults occur, 
often too late to prevent damage, emergencies, or 
accidents. The core challenge is how to leverage 
engine data for predictive analysis to identify ear-
ly signs of degradation or anomalies before they 
escalate into failures.

Specifically, the study addresses gaps in en-
gine health trending and prognostics, including:
	• data complexity and variability – engine pa-

rameters vary due to operational conditions, 
environmental factors, and wear, making it 
difficult to establish consistent and accurate 
trends.

	• detection challenges – existing tools focus on 
threshold exceedances and fault codes, which 
are reactive rather than proactive.

	• manual versus automated analysis – while 
automated algorithms exist, scattered and 

inconsistent data often require manual inter-
vention, slowing maintenance processes.

Integration of predictive models – limited 
application of advanced statistical methods, ar-
tificial intelligence, and machine learning to in-
tegrate historical and real-time data for failure 
prediction. The presented research provides a 
complete methodology as well as mathematical 
techniques in engine trending and diagnostics. 

ENGINE PERFORMANCE DATA ANALYSIS

Data source

F-16 engine trending data parameters are 
provided from engine sensors (8 signals) and 2 
aircraft signals [31]. Some engine sensors trans-
mit analog signals to the digital electronic engine 
control (DEEC), where they are used for engine 
control functions. The DEEC digitizes the analog 
signals and sends them to the engine diagnostic 
unit (EDU) for diagnostics and fault isolation. In-
put signals for DEEC are:
	• temperature inputs,
	• engine inlet total temperature (Tt2),
	• compressor exit temperature (Tt3),
	• fan turbine inlet temperature (FTIT),
	• speed inputs,
	• low rotor speed (N1),
	• high rotor speed (N2),
	• pressure inputs,
	• engine inlet static pressure (Ps2),
	• burner pressure (Pb, Pt4, or Ps3),
	• augmentor inlet total pressure mixed (Pt6m),
	• aircraft inputs,
	• mach number (Mn or Mo),
	• power lever angle (PLA).

Engine trending data could be collected on 
the basis of the engine monitoring system (EMS) 
data flow chart presented in Figure 1. 

Engine data could be divided into categories, 
which are:
	• actuarial/time temperature cycle (TTC). TTC 

data includes historical data such as the num-
ber of engine cycles and engine operating time 
(EOT);

	• event (EVT) – the data is a collection of pa-
rameters recorded at the time of the event. 
This data series is functional in diagnosis, but 
not trending;
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	• performance (PRF) – the PRF data record is 
taken during aircraft takeoff;

	• transient (TRA) – TRA data is recorded 8 seconds 
before the event and 2 seconds after the event;

	• fault (FLT) – FLT data is a collection of engine 
monitoring system (EMS) faults based upon 
limit exceedances within the engine control 
system.

The primary data category for trending is per-
formance (PRF) data. On every aircraft takeoff, 
the EMS records one set of averages for engine-
operating parameters. These parameters could be 
processed into performance trend items, which 
indicate the health of the engine. Each sortie will 
normally have one takeoff performance data set. 

Trend analysis is based on the previous, cur-
rent, and future trend points. Each data point is 
established on take-off and ground performance 
under the specific criteria [15].

TRENDING ALGORITHMS 

Parameters used in trending provide a mea-
sure of engine component health, i.e. fan, com-
pressor, combustor, turbines, or nozzle. Changes 
in turbine temperature, main engine fuel flow, and 
compressor discharge pressure generally indicate 
changes in either engine condition or problems 
with engine instrumentation. Algorithms could be 
used to detect this change in engine performance. 

As the engine experiences wear, changes are 
expected in trend parameters. These expected 
changes are considered normal deterioration. 
During endurance qualification testing, the rate 
of change in performance parameters is quanti-
fied as cycles are accumulated. This also provides 
information on component efficiency reduction as 
cycles are accumulated. This is the starting point 
of developing the analysis process. The analysis 
process makes use of expected related changes to 
isolate the source of an anomaly.

Trending tracks change in engine perfor-
mance levels over a relatively short period. While 
trending we usually concentrate on trend charac-
teristics over no more than 30 sorties. Normal de-
terioration is expected in small amounts over 30 
sorties. However, the rate of deterioration may in-
crease or decrease, depending on how the engine 
is used. for this reason, engine total accumulated 
cycles (TACs) are more representative of how the 
engine was utilized. What is more, if we want to 
determine engine wear for the whole life cycle we 
would like to trend the whole engine data like it is 
presented in Figure 2. However, in the case when 
we want to determine the step change of the en-
gine parameters we cannot take too much data to 
trend as we will not be able to notice any anom-
alies and shifts in the data like we presented in 
Figure 3. The question could be raised what kind 
of methods could be used to analyze engine data 
trending? It often depends on what kind of results 
we get. Let us discuss some case study scenarios. 

Figure 1. Engine monitoring system data flow
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1st case scenario: Engine data scattered

Sometimes our engine data may be scat-
tered, and it is really hard to determine the 
trend. The example of the engine scattered data 
could be like the data presented in Figure 4. 
The reason why engine data is scattered may be 
caused by many factors. The most common are: 
weather conditions, engine temperature, air-
craft altitude, mechanical linkage, and engine 
degradation. The wear of mechanical linkage 
items can produce shifts in measured param-
eters such as rear compressor variable vanes 
(RCVV) positions. 

To perform trend analysis, engine data must 
be corrected to standard day operating condi-
tions. Maintenance reactions should not be taken 
based on single data point events. These single 

data points could represent transient conditions 
in the engine performance history, indication er-
rors, or precision problems. Usually digital en-
gine electronic computer (DEEC) software in 
this case scenario discards high and low read-
ings during sampling procedures. Since engine 
data scatter occurs constantly during the data 
collection process, it is difficult to establish au-
tomated data trending and analysis algorithms. 
In this case scenario manual trending discussed 
in the following chapter should be used. For 
the scattered data we should establish based on 
the engine performance limits provided by the 
manufacturer the engine data bands (red lines 
presented in Fig. 5). With the data bands limits 
showing max and min allowed engine parame-
ters we can draw the trend line (green line – Fig. 
5). The most significant trending observation of 

Figure 2. Engine life cycle trending N1 speed vs. Tt2 

Figure 3. Engine life cycle trending Aj vs. Tt2
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data within the scatter band is the rate of change 
(slope) of the data points. Trending should be 
based on the rate of change of data points. Dur-
ing engine life cycle wear, the performance trend 
will drift toward the outer limits of the band. In 
other cases, data will appear to shift to a different 
level, either gradually over several data points or 
more suddenly, over only one or two data points. 

For such a case scenario we could use long 
term slope algorithm. This algorithm trips fault 
when the slope of a line of the most recent 30 take-
off points must surpass the specified LTS maxi-
mum limit. This must also be accompanied by a 
three point average (TPA) exceedance described 
below. Such a slope could be calculated in Excel 
Spreadsheet. The Microsoft Excel SLOPE func-
tion returns the slope of the linear regression line 
through data points in known y-axis and x-axis 
data. The slope is the vertical distance divided by 
the horizontal distance between any two points 

on the line, which is the rate of change along the 
regression line. It can also be calculated based on 
the Equation 1. 

	 𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 = 𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃)
𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅) (1) 

 
 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀−1+𝑀𝑀𝑀𝑀𝑀𝑀−2

3  (2) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 > 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚     and 
𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀    and 

𝑃𝑃𝑃𝑃 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀 
  
(3) 
 
 ∆> ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4) 
 
where: ∆= |𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 − 𝑃𝑃𝑃𝑃|  
 
 𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≈ 1 (5)    
 
                    
 
 

	 (1)

where:	LTSC – calculated long term slope; 
d(ENGPAR) – derivative of the y-axis 
engine parameter (ENGPAR) values; 
d(ENGREC) – derivative of the x-axis en-
gine parameter (ENGREC) values (usually 
NREC or Time or MAJCNT).

An example of the long term slope is present-
ed in Figure 9.

2nd case scenario: Step changes

Step change occurs when the engine param-
eter is operating at a certain value and suddenly 
shifts to a new value. A step change can occur for 

Figure 4. Engine life cycle data FTIT vs. CNTS

Figure 5. Engine scattered data bands and trend line
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one or two points (Fig. 6), or it can occur gradu-
ally over several points (Fig. 7). Parameter step 
changes are not normal unless they are a result of 
the maintenance action. For example, the removal 
and replacement of a core engine module could 
result in a step change decrease of fan turbine in-
let temperatures (FTIT) and N2 and the possible 
increase in Burner Pressure Pb.

3rd case scenario: three-point average

Engine data trending based on the three-point 
average (TPA) is based on the average of the three 
most current take-off performance points (Eq. 2). 
It must be greater than the specified TPA maxi-
mum limit.  This must also be accompanied by 
long term slope (LTS) or predicted value (PV) ex-
ceedance (Eq. 3). Figure 8 presents a three-point 
value (TPA) engine parameters trending algo-
rithm example. 

	

 𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 = 𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃)
𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅) (1) 

 
 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀−1+𝑀𝑀𝑀𝑀𝑀𝑀−2

3  (2) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 > 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚     and 
𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀    and 

𝑃𝑃𝑃𝑃 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀 
  
(3) 
 
 ∆> ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4) 
 
where: ∆= |𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 − 𝑃𝑃𝑃𝑃|  
 
 𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≈ 1 (5)    
 
                    
 
 

	 (2)

	

 𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 = 𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃)
𝑑𝑑(𝐸𝐸𝐸𝐸𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅) (1) 

 
 𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀−1+𝑀𝑀𝑀𝑀𝑀𝑀−2

3  (2) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 > 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚     and 
𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀    and 

𝑃𝑃𝑃𝑃 ≠ 𝑀𝑀𝑀𝑀𝑀𝑀 
  
(3) 
 
 ∆> ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (4) 
 
where: ∆= |𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 − 𝑃𝑃𝑃𝑃|  
 
 𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐴𝐴𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≈ 1 (5)    
 
                    
 
 

	 (3)

where:	TPAC – calculated engine parameter three-
point value; LTSC  – calculated long term 
slope; MCV – most current engine param-
eter value.

4th case scenario: predicted value

Engine data trending based on the predicted 
value (PV) algorithm trips fault when the TPA ex-
ceeds the specified difference, the predicted value 
based on thirty prior take-off performance points. 
This must also be accompanied by TPA exceedance 
(Eq. 4). Figure 10 presents a predicted value (PV) 
engine parameters trending algorithm example.

Figure 6. Engine parameter sudden step change

Figure 7. Engine parameter gradual step change
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Figure 8. Engine data parameters trending (TPA) 

Figure 9. Engine data parameters trending (LTS)

Figure 10. Engine data parameters trending predicted value (PV)
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Figure 11. Engine data parameters trending absolute limit (AL)
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5th case scenario: absolute limit

Absolute limit (AL) fault could be generated 
when the current take-off performance point must 
be greater than the maximum limit or the current 
value must be less than the minimum limit. An 
example of the AL is presented in Figure 11.

6th case scenario: 25th Quartiles (25Q) and 75th 
Quartile (75Q)

One of the crucial engine parameters is fan 
turbine inlet temperature (FTIT). Its exceedance 
may result in engine damage. The engine user 

Figure 12. Example of the 25th and 75th Quartiles of the engine data parameters trending PBC

needs to know what engines are running on the 
FTIT limit. Statistical algorithms may be used to 
determine the list of engines running on the FTIT 
limit. These are: minimum (MIN), maximum 
(MAX), average (AVG), 25th Quartile (25Q), and 
75th Quartile (75Q). MIN, MAX, and AVG were 
discussed in previous chapters. The 25th and 75th 
quartiles are simply the percentiles that corre-
spond to one-quarter and three-quarters of the en-
gine data. Examples of the 25th and 75th Quartiles 
of the engine trending parameter being corrected 
burner pressure (PBC) with its trending line were 
presented in Figure 12.

Looking at the difference between FTITMAX 
and FTITMIN and the FTITAVG and comparing 
to FTITQ25 and FTITQ75 we may determine that 
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engine is running on the FTIT limit. If the differ-
ence between FTITMAX and FTITMIN is small and 
close to FTITAVG, FTITQ25, and FTITQ75 we may 
confirm that the engine is running on the FTIT 
limit. Figure 13 presented an example of the en-
gine running on the FTIT limit, without exceeding 
this (marked with a red box) in comparison to the 
regular operating data marked with a green box.

Let us take into consideration one of the en-
gines (747XXX) and take a look at the FTIT pa-
rameter for the last 20 records. The results of the 
analysis are presented in Table 1.

In this case scenario, the difference between 
FTITMAX and FTITMIN equals just 9 degrees which 
indicates that FTIT parameter readings are lo-
cated close to each other. If we take a look at the 
FTITAVG and 25th and 75th quartiles of the FTIT 
parameters (in our case ΔFTITQ equals just 2 de-
grees), we may easily recognize that all the data 
is located very close to each other and there is 
very little data scatter, which means that engine 
has been running on the FTIT limit for the latest 
20 records. For engines 747XX1 and 747XX2, 
ΔFTIT equals 18 and 43 degrees. ΔFTITQ equals 
accordingly 11 and 10 degrees, which means that 
both engines are not working on the FTIT limit.

To identify when the shift of the parameter 
began we should analyze the diagram of the FTIT 

parameter vs. Date. This might give us more in-
formation about the reason for the data shift. One 
of the reasons could have been the maintenance 
performed on the engine or the seventh-stage 
compressor bleed air valve problems. An exam-
ple of the engine not working on the FTIT limit is 
presented in Figure 14.

ENGINE TRENDING AND DIAGNOSTIC 
CASE STUDY

Engine exhaust nozzle Aj Ratio example

Turbofan engine performance and thrust de-
pend on several engine parameters. The rate of 
thrust is controlled by DEEC changing the noz-
zle position. Due to some engine problems, the 
engine nozzle position might not be in fact in 
the position requested by DEEC. This might be 
caused by nozzle crunch, nozzle system misrig-
ging, augmentor/nozzle distress, augmentor per-
formance deterioration/fuel delivery problem, 
and compressor inlet variable vanes (CIVV) mis-
rigging. Trending on the engine parameters might 
help predict augmentor-related malfunctions in 
the engine. This parameter is called Aj Ratio, 
which is a ratio between the actual nozzle area 

Figure 13. Engine data parameters trending FTIT limit

Table 1. Engine data trending parameters
ESN FTITMIN FTITMAX ΔFTIT FTITAVG FTITQ25 FTITQ75 ΔFTITQ

747XXX 1057 1066 9 1063.5 1063 1065 2

747XX1 1048 1066 18 1057.3 1052 1063 11

747XX2 1016 1059 43 1044.7 1040 1050 10
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Figure 14. Example engine trending parameter FTIT not working on the FTIT limit

and a calculated area. Aj Ratio could be calcu-
lated based on Equation 5.
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In Figure 15 Aj Ratio parameter vs date was 
presented. In this case scenario, we may notice 
the step shift of the engine parameter. It is still 
within the limits but let us discuss its trending pa-
rameters. The average of Aj Ratio for the 3 most 
recent trend points equals 1,045 and it exceeds 

the PV based on the  30-point LTS by 3,4E-02. 
This is more than the specified limit being 1,5E-
02. The short-term average (STA) equals 1,0425 
and it is greater than the specified limit being the 
STA threshold. The short-term average threshold 
set for this trending parameter equals 1,03 and is 
marked with an orange line in Figure 15. The most 
recent value (MRV) of Aj Ratio equals 1,037 and 
is greater than the set short-term average thresh-
old by 1,07E-02. Engine data trending parameters 
and their values are presented in Table 2.

Table 2. Engine data trending parameters
Trending parameter Value Trending parameter Value

MRV 1,037 LTS 7,2E-04

TPA 1,045 Δ 3,4E-02

PV 1,011 STA 1,0425

Figure 15. Engine data parameters trending Aj Ratio vs date
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In this case scenario based on the engine data 
trending analysis engine fault alarm could be gen-
erated as the above conditions and criteria were 
met. Even though most of the engine data param-
eters were within limits trending analysis shows 
that there might be a problem with the engine and 
it is necessary to perform maintenance actions to 
stop and prevent further damage. If failed to react 
it might cause the nozzle to crunch. The nozzle 
may suffer extensive damage and if it occurred 
during flight may result in an aircraft incident or 
even catastrophe. The pilot being unable to con-
trol the nozzle is also beyond thrust control. An 
example of the nozzle crunch results is presented 
in Figure 16. 

CONCLUSIONS

Engine data trending seems to become the 
most promising method in planning engine main-
tenance strategies and tasks. However, it requires 
the engine to be quipped in a very complex mea-
suring system and advanced engine control firm-
ware. Even though engine data trending could 
be based on the automated method mentioned 
in previous chapters, sometimes it is required to 
perform manual trending. Engine users during 
the analysis procedures should not focus only 
on checking a few parameters. Deterioration of 
the engine performance and flight safety might 
not be reflected only in one parameter. For every 

engine, its actual condition is usually noticeable 
in several parameters. However, how much each 
parameter is affected might be different for every 
engine. A parameter that has a large change on 
one engine may have a small change on another 
engine for the same fault. It is also important to 
analyze alarms using a series of data points, or 
trended data, instead of single data points. De-
termining the starting time of the current trend is 
necessary. When analyzing the performance of an 
engine, it is best to compare the latest engine data 
with the most recent trend.

The study on Aircraft Propulsion Health Sta-
tus Prognostics and Prediction  underscores the 
critical importance of transitioning from reactive 
to proactive maintenance strategies in modern 
aviation. By leveraging advanced methodologies 
such as trending algorithms, statistical models, 
and predictive analytics, this research demon-
strates the potential to significantly enhance the 
safety, reliability, and cost-effectiveness of air-
craft propulsion systems. The proposed frame-
work, which integrates tools like long term slope, 
three point average, and predicted value, provides 
a robust foundation for identifying early signs of 
engine degradation and predicting failures before 
they occur. This proactive approach is essential 
for mitigating in-flight emergencies, reducing 
maintenance costs, and extending the operational 
lifecycle of engines.

One of the key contributions of this research 
is the emphasis on data-driven decision-making. 

Figure 16. Engine nozzle crunch resulted in broken nozzle linkages
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By analyzing engine performance data – such as 
turbine temperatures, rotor speeds, and pressure 
operators can detect subtle shifts in engine be-
havior that may indicate impending failures. The 
case study on the F-16 engine nozzle crunch fail-
ure highlights the practical application of these 
methodologies, demonstrating how early detec-
tion and intervention can prevent catastrophic 
outcomes. This example illustrates the limitations 
of traditional engine monitoring systems, which 
often only detect faults after they have occurred, 
and underscores the need for more sophisticated 
predictive tools.

The scientific approach to turbofan engine 
health status prediction was presented in the ar-
ticle. Methods of engine health status prediction 
have been proposed to predict and prevent seri-
ous engine performance problems. Based on the 
engine exhaust nozzle example it was possible 
to verify and confirm the effectiveness of the 
proposed methods in engine trending and diag-
nostics. Thanks to engine health prediction and 
trending methods, maintainers could take some 
maintenance actions on the affected engine be-
fore any engine fault codes are triggered and be-
fore any engine damage occurs. Implementation 
of these methods into the engine maintenance 
strategies might be used to mitigate possible 
adverse effects of the in-flight engine problems. 
This was only one case-study scenario where it 
was worth tracking and trending engine param-
eters since it allowed for to prevention of very 
serious damage to the engine and in the worst-
case scenario resulted in an aircraft accident. 
Even though all engine data was within the lim-
its and no engine faults were generated, tracking 
and trending were the only methods to prevent 
some serious problems.

Almost every modern turbofan engine is 
equipped with an engine diagnostic system, 
which is responsible for generating fault codes 
in case any of the engine parameters exceeds the 
specified limit. Unfortunately, in some cases (like 
the case-study example) it might be too late, as it 
ends up with the aircraft accident. 

In summary, it is worth emphasizing the fact 
that similar approaches and presented methods 
could be implemented for any type of aircraft 
propulsion, which might strongly and positively 
affect aircraft flight safety. In addition, engine 
life cycle and overhaul prediction could be de-
termined or adjusted following the results of the 
engine health status prognostics. 
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