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INTRODUCTION 

Springback is a critical phenomenon in metal 
forming processes where materials, after under-
going plastic deformation, experience an elastic 
recovery, leading to dimensional inaccuracies in 
the final product. This issue is of particular con-
cern in industries such as automotive, aerospace, 
and manufacturing, where metals like aluminum 
(Al), copper (Cu), and iron (Fe) are commonly 
employed. Each of these materials exhibits dis-
tinct mechanical properties, which influence their 
springback behavior. Aluminum, with its relative-
ly low yield strength and high ductility, tends to 
show significant springback, particularly in pro-
cesses like bending and deep drawing. Copper, 

known for its higher yield strength and pro-
nounced work hardening, demonstrates different 
springback characteristics than aluminum. Iron, 
with higher strength and lower ductility, gener-
ally experiences less springback, though accurate 
predictions remain challenging. Therefore, un-
derstanding and predicting springback is essential 
for ensuring dimensional accuracy, minimizing 
material waste, and improving process efficiency 
in metal forming operations.

Traditional methods for predicting spring-
back primarily involve analytical and empirical 
models, which rely on simplified approxima-
tions of material behavior and process condi-
tions. While these models are beneficial for ba-
sic applications, they often fail to account for 
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the complexities inherent in real-world forming 
processes. Aluminum, copper, and iron exhibit 
nonlinear, time-dependent deformation behav-
ior, making it difficult for traditional models to 
predict springback accurately across varying 
process conditions. Furthermore, these models 
often lack the capacity to incorporate material 
anisotropy, strain rate sensitivity, and thermal ef-
fects, all of which significantly influence spring-
back in practical applications. These limitations 
highlight the need for more sophisticated ap-
proaches capable of capturing the intricate rela-
tionships between material properties, forming 
conditions, and springback behavior.

Finite element analysis (FEA) has emerged 
as a widely adopted technique for simulating 
metal forming processes, including springback 
prediction. FEA allows for the detailed model-
ing of material deformation, incorporating fac-
tors such as plasticity, strain rate sensitivity, 
and material anisotropy. Numerous studies have 
demonstrated that FEA can provide accurate 
springback predictions when suitable material 
models, boundary conditions, and mesh refine-
ments are employed. For example, Zhang et al. 
(2017) applied FEA to model springback in alu-
minum deep drawing processes and emphasized 
the importance of selecting appropriate plasticity 
models, such as the Hill48 or Barlat48 yield cri-
teria, to accurately represent material behavior. 
Similarly, Li et al. (2018) utilized FEA to predict 
springback in copper forming processes, incor-
porating temperature-dependent material mod-
els to account for high strain rates and thermal 
effects typical in manufacturing environments. 
Despite its accuracy, FEA is computationally ex-
pensive, particularly when dealing with complex 
geometries, large datasets, or parametric studies. 
This computational burden limits the practical-
ity of FEA for industries requiring rapid and fre-
quent design iterations or optimization involving 
multiple process parameters.

To overcome the limitations of FEA, ma-
chine learning (ML) systems have gained sig-
nificant attention in recent years as a promising 
solution for more efficient springback prediction 
[1]. Supervised learning algorithms in machine 
learning can model the complex, nonlinear rela-
tionships between process parameters, material 
properties, and springback behavior without re-
quiring explicit physical modeling [2]. Several 
studies have explored the application of ML for 
springback prediction. Bolar et al. [3] developed 

an artificial neural network (ANN) model to pre-
dict springback in V-bending processes for alu-
minum. Their results showed that ANNs could 
accurately predict springback by learning from 
process parameters such as punch speed, sheet 
thickness, and material hardness. Similarly, 
Wang et al. [4] applied support vector machines 
(SVM) to predict springback in copper sheet 
metal forming, demonstrating that SVM models 
could generalize well across different forming 
conditions and material properties, offering ac-
curate predictions with lower computational ef-
fort compared to traditional FEA.

While machine learning models are effective 
in many cases, they require substantial training 
data, which can be obtained either from physical 
experiments or simulations [5]. This challenge 
has led to the development of hybrid models that 
combine FEA with machine learning to leverage 
the strengths of both approaches. By using FEA 
to generate large datasets of simulation results 
under various process conditions and material 
properties, machine learning algorithms can be 
trained to make rapid predictions without the 
need for complete FEA simulations for every de-
sign iteration [6]. He et al. [7] proposed a hybrid 
model that integrates FEA with support vector 
regression (SVR) to predict springback in alumi-
num sheet metal forming. The model, trained on 
a dataset generated by FEA simulations, demon-
strated improved prediction accuracy compared 
to traditional FEA, while also significantly re-
ducing computational time. Zeinolabedin-Beygi 
et al. [8] implemented a similar hybrid approach 
by combining FEA with Random Forest mod-
eling to predict springback in copper and iron 
forming processes. Their results indicated that 
this hybrid model reduced the time required 
for springback predictions by up to 60%, while 
maintaining high accuracy.

The hybrid approach has proven especially 
valuable for process optimization in metal form-
ing. By integrating machine learning with FEA 
simulations, it becomes possible to predict the ef-
fects of different process factors, for example die 
geometry, material thickness, punch speed, and 
temperature, on springback behavior more effi-
ciently [9, 10]. Additionally, this approach allows 
for faster and more effective design optimization, 
as machine learning models can quickly provide 
predictions across a range of conditions, reduc-
ing the need for exhaustive simulations or physi-
cal trials [11]. Moreover, hybrid models can be 
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adapted for different metals, including aluminum, 
copper, and iron, each of which requires distinct 
material models to accurately capture its unique 
springback behavior [12].

In conclusion, springback prediction remains 
a significant challenge in metal forming processes, 
which exhibit distinct mechanical properties and 
deformation behaviors. While FEA is a powerful 
tool for simulating springback, its computational 
expense limits its application in real-time design 
optimization and iterative testing. Machine learn-
ing offers a promising alternative by efficiently 
learning complex relationships from data, allow-
ing for faster predictions without full physical 
modeling. When combined with FEA, machine 
learning can greatly enhance the accuracy, effi-
ciency, and scalability of springback predictions, 
providing a hybrid approach that offers signifi-
cant benefits for industries where speed, accu-
racy, and cost-efficiency are critical. As such, in-
tegrating FEA with machine learning techniques 
holds considerable potential for improving metal 
forming processes and addressing the challenges 
associated with springback in materials such as 
aluminum, copper, and iron.

This research proposes a hybrid analysis ap-
proach that combines the predictive power of 
machine learning with the detailed simulations 
provided by FEA. The main goal is to develop a 
robust machine learning model capable of accu-
rately predicting springback in metals, particularly 
for materials such as aluminum, copper, and iron, 
using FEA-generated data as input. By coupling su-
pervised learning algorithms with FEA simulations, 
this approach aims to enhance the prediction of 
springback angles, reduce the reliance on time-in-
tensive experiments, and optimize the metal form-
ing process. The proposed hybrid model is expected 
to offer a promising solution for industries that re-
quire precise control over material behavior during 
forming processes, ultimately leading to improved 
product quality and manufacturing efficiency. 

MATERIALS AND METHODS

In this research, three common metals, alumi-
num (Al), copper (Cu), and iron (Fe), are consid-
ered for springback prediction in metal forming 
processes. These materials were selected due to 
their distinct mechanical properties, which influ-
ence their springback behavior and are commonly 

utilized in industries such as manufacturing, aero-
space, and automotive. 

Aluminum is a light, ductile metal with rela-
tively low yield strength and high workability, 
which makes it prone to springback, particularly 
in processes like bending and deep drawing. The 
material is frequently used in aerospace and auto-
motive applications where weight reduction is a 
priority [13, 14]. Copper is a highly ductile mate-
rial with excellent thermal and electrical conduc-
tivity. It has a higher yield strength compared to 
aluminum, which results in different springback 
characteristics. Copper is commonly used in elec-
trical components and plumbing systems [15]. 
Iron, specifically in its commercial form as mild 
steel, is stronger but less ductile compared to alu-
minum and copper. It is commonly used in struc-
tural and automotive components. Its springback 
behavior is influenced by its relatively higher 
yield strength and lower ductility [16]. 

The mechanical properties of these metals, in-
cluding yield strength, Young’s modulus, strain-
hardening behavior, and Poisson’s ratio, were con-
sidered when developing the material models for the 
simulations. These properties were extracted from 
standard material databases and experimental data. 

Finite element analysis simulations 

The springback predictions and metal form-
ing processes for the three materials were simu-
lated using finite element analysis (FEA) in AN-
SYS, a widely used simulation software. FEA is 
employed to model the forming processes, predict 
deformation, and evaluate the resulting spring-
back behavior under varying conditions [17]. 

The metal forming process was modeled as a 
simple V-bending operation to study the spring-
back phenomenon. A V-die was used with a 
punch, where the material was subjected to bend-
ing at various punch speeds and sheet thicknesses 
to study the effect of these factors on springback. 

The material models used in FEA were cho-
sen to reflect the mechanical properties of alumi-
num, copper, and iron. For each material, an ap-
propriate plasticity model, such as the isotropic 
or kinematic hardening models, was employed 
to simulate the nonlinear behavior under forming 
conditions [18]. The Johnson-Cook material mod-
el was utilized for copper and iron to account for 
temperature and strain rate effects, while for alu-
minum, a Hill48 yield surface was used to capture 
its anisotropic plastic behavior. Table 1 shows the 
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critical properties of these metals. Most of these 
variables and their corresponding values will be 
utilized for identifying the boundary conditions 
associated with the three metals examined.

The boundary conditions in the simulation in-
cluded fixing the die at the bottom and applying a 
displacement-controlled load to the punch to sim-
ulate the bending process. The contact between 
the punch, sheet metal, and die was modeled us-
ing frictional contact, with a coefficient of fric-
tion set based on typical values for metal forming 
processes. A fine mesh was applied to the region 
of interest (the sheet metal and contact surfaces) 
to ensure accurate results in terms of stress, strain, 
and springback predictions [19, 20]. 

The meshing process is a crucial phase that 
is meticulously executed to ensure accurate 
numerical results and high-quality outcomes 
are achieved. The meshing task can begin with 
an analysis of the type of structure. In some 
mechanical problems, such as circular cross-
section beams, rectangular parallelepiped me-
chanical issues, and materials with square-like 
top and side faces, it can be relatively straight-
forward [21]. At the same time, mechanical 
structures can, in certain cases, be quite com-
plex, as they represent larger mechanical sys-
tems encountered in real-world manufactur-
ing fields, such as vehicles, ships, or aircraft. 

For these intricate objects, using mathematical 
simulations may not yield precise results due 
to numerous faults and errors when applying a 
simple design that represents the entire vehicle 
body of an automobile, ship, or aircraft. Re-
garding the meshing procedure and the overall 
shape division related to the three specimens 
(Al, Cu, and Fe) created and modeled in the 
SolidWorks® platform, Table 2 presents key 
meshing variables and their corresponding val-
ues utilized in this simulation work.

The mesh was refined in areas with high gra-
dients in stress and strain, and an appropriate 
mesh size was chosen to balance accuracy and 
computational efficiency [22]. The simulations 
were run for various process parameters, includ-
ing different punch speeds (to assess strain rate 
sensitivity) and material thicknesses [23]. Tem-
perature effects were considered in simulations 
for copper and iron due to their high sensitivity to 
temperature during metal forming processes.

Machine learning model 

To develop a predictive model for springback, a 
hybrid machine learning approach was employed, 
combining FEA simulation data with supervised 
learning algorithms. The primary steps in develop-
ing the machine learning model are as follows: 

Table 1. Critical common physical and mechanical properties of the three inspected material 

No. Properties
The name of metal

Pure steel Pure aluminum Pure copper

1 Vickers hardness 126HV (150–160)HV (40–110)HV

2 Thermal conductivity 44 to 52W/m.K 237W/m·K 260W/m·K

3 The strength of tensile 420MPa 90MPa (200-360)MPa

4 Shear modulus 80GPa 25GPa 44Gpa

5 Poisson’s ratio 0.25 0.36 0.35

6 Modulus of elasticity/ young’s modulus 200GPa 68GPa 120GPa

7 Melting temperature point (1,205–1,370) °C 660 °C 1,083 °C

8 Density 7,850 kg/m3 2,700 kg/m3 8,920 kg/m3

9 Color Gray Silvery-White Red-Orange

Table 2. Major meshing characteristics of the selected three metals
No. Category Aluminum Copper Iron

1 Chosen cell type Hexahedral 
(for structured meshing)

Tetrahedral 
(for flexibility in geometry)

Tetrahedral 
(for flexibility in geometry)

2 Dimensions of the 
geometric shape

200 mm ×100 mm × 2 mm 
(for sheet metal)

200 mm × 100 mm × 2 mm 
(for sheet metal)

200 mm × 100 mm × 2 mm 
(for sheet metal)

3 The overall number 
of meshing elements

150,000–250,000 elements 
(depending on mesh 
refinement)

150,000–250,000 elements 
(depending on mesh 
refinement)

150,000–250,000 elements 
(depending on mesh 
refinement)
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	• Data generation – FEA simulations were per-
formed for a range of process factors, for ex-
ample, punch speed, material thickness, and 
die geometry. The simulation data, including 
the springback angles, were collected for each 
material (aluminum, copper, and iron) under 
different forming conditions [24]. 

	• Feature selection – The input features for 
the machine learning model included pro-
cess parameters such as punch speed, sheet 
thickness, material properties (such as yield 
strength, Young’s modulus), and the temper-
ature during forming. These features were 
chosen based on their known influence on 
springback behavior. The target output vari-
able was the springback angle, representing 
the amount of elastic recovery in the metal 
after forming [25].

Hybrid model integration

The integration of finite element analysis 
with machine learning (ML) techniques forms 
the backbone of a hybrid model for predicting 
springback behavior in metal forming processes 
[26]. This hybrid approach aims to leverage the 
strengths of both FEA and ML to overcome their 
respective limitations while enhancing the ac-
curacy and efficiency of springback predictions. 
Below, we explore the rationale, methodology, 
and potential benefits of this hybrid approach.

While FEA is highly effective in modeling 
the complex physical phenomena in metal form-
ing, including plastic deformation, strain-rate 
sensitivity, and material anisotropy, it suffers 
from significant computational cost, especially 
when simulating large-scale or parametric stud-
ies [4]. These computational challenges limit its 
real-time application and practicality in indus-
trial settings where rapid iterations and optimi-
zation are necessary.

On the other hand, machine learning (ML), 
particularly supervised learning algorithms, can 
offer quick and efficient predictions by learning 
complex, nonlinear relationships between input 
parameters (such as material properties and pro-
cess conditions) and the output (springback) [27]. 
However, ML models require large datasets for 
training, which are often not readily available and 
must be generated via time-consuming physical 
experiments or FEA simulations.

Thus, combining FEA with ML can gen-
erate high-fidelity data under various forming 

conditions, which is then used to train machine 
learning models [28]. This hybridization capital-
izes on the predictive capabilities of ML while 
maintaining the physical accuracy provided by 
FEA simulations. The proposed hybrid advanced 
model steps are outlined as shown in Figure 1.

Models and mold mechanical design

In the proposed simulation process, critical 
graphical data were obtained, reflecting the me-
chanical properties of various specimens.

For the aluminum specimens, each has a 
thickness of 2 ± 0.13 mm, with punch radii of 2.0 
mm, 3.5 mm, and 4.0 mm for the first, second, 
and third models, respectively. The bend angles 
are 92.42° ± 0.50°, 92.62° ± 0.50°, and 93.26° ± 
0.50° for the first, second, and third models, re-
spectively. These models were created to conduct 
a numerical mechanical analysis.

Similarly, the copper specimens also have a 
thickness of 2 ± 0.13 mm, featuring punch radii of 
2.0 mm, 3.5 mm, and 4.0 mm for the first, second, 
and third models, respectively. The bend angles 
are 93.75° ± 0.50°, 94.68° ± 0.50°, and 95.05° 
± 0.50° for the first, second, and third models, 
respectively. These copper specimens were ana-
lyzed with different dimensions in comparison to 
the aluminum specimens.

The steel specimens, which were analyzed 
in the same manner, are presented below. Fig-
ures 2, 3, and 4 visually represent the 3D mod-
els of the aluminum, copper, and steel speci-
mens, respectively, each designed for specific 
mechanical analysis.

It can be deduced from Figure 4 that the pure 
steel specimen models designed for the numerical 
mechanical analysis exhibit varying dimensions. 
The pure steel specimens have thicknesses of 2.0 
± 0.13 mm, 3.5 ± 0.13 mm, and 3.5 ± 0.13 mm for 
the first, second, and third models, respectively. 
The punch radii are 2.0 mm, 3.5 mm, and 4.0 mm 
for the first, second, and third models, respective-
ly, with bend angles of 96.00° ± 0.50°, 94.57° ± 
0.50°, and 94.94° ± 0.50° for the first, second, and 
third models, respectively.

The molds designed to apply the required 
loading in the SMF process are depicted in Fig-
ure 5. From Figures 5a to 5c, it can be seen that 
the 3D mold utilized in this study has a V-shape. 
The deformations that occurred in this copper 
specimen following load application are dis-
played in Figure 5c.
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Figure 1. The proposed hybrid FEA-ML model steps

Figure 2. The aluminum specimen models (3D) with varying thicknesses, bend angles, and punch radii

FEM results analysis

The study presents numerical results obtained 
from ANSYS simulations for six specimens, com-
prising two samples each of aluminum (Al), cop-
per (Cu), and pure iron (Fe). These findings, de-
tailed in Table 3. Additionally, Figure 6 provides 

a visual representation of the strain variation over 
time for each material, underscoring the com-
parative analysis of their mechanical properties. 
The results aim to enhance understanding of the 
material behavior under specific conditions. The 
analysis of strain rates among various material 
specimens during a numerical simulation reveals 
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Figure 3. The copper specimen models (3D) with varying thicknesses, bend angles, and punch radii

Figure 4. The pure steel specimen models (3 dimensional) with varying thicknesses, bend angles, and punch radii

Figure 5. Configurations of (a) the numerical mold (3D), (b) a copper specimen to be bended by the mold, and 
(c) bended Cu specimen 

that the second copper specimen has the highest 
strain rate at approximately 0.073, followed by 
the first copper specimen at 0.062 and the second 
aluminum specimen at 0.0585. In contrast, the 
first and second pure steel specimens recorded the 
lowest strain rates of 0.040 and 0.041, respective-
ly. Notably, the first aluminum specimen, which 

is lighter than pure steel, has a strain rate of 0.045, 
indicating its potential suitability for lightweight 
vehicle manufacturing as shown in Figure 7.

Additionally, referring to the numerical simu-
lation results of strain variation in aluminum, 
copper, and pure steel under load application, as 
presented in Table 3 and illustrated in Figure 8. 
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Table 3. The strain analysis across the specimens

Time (Seconds) Strain rate
Cu (1)

Strain rate
Cu (2)

Strain rate
Al (1)

Strain Rate
Al (2)

Strain rate
Fe (1)

Strain rate
Fe (2)

1.2 0.06125 0.0725 0.04375 0.05875 0.04 0.04125

1.12 0.06125 0.0725 0.045 0.05875 0.04 0.04125

1.04 0.06125 0.0725 0.04375 0.05875 0.04 0.04125

0.96 0.06125 0.07375 0.045 0.05875 0.04 0.04125

0.88 0.06125 0.0725 0.04375 0.05875 0.04 0.04125

0.8 0.06125 0.0725 0.045 0.05875 0.04 0.04125

0.72 0.06125 0.0725 0.04375 0.05875 0.04 0.04125

0.64 0.06125 0.0725 0.045 0.05875 0.04 0.04125

0.56 0.06125 0.07375 0.04375 0.05875 0.04 0.04125

0.48 0.06125 0.0725 0.045 0.05875 0.04 0.04125

0.4 0.06125 0.0725 0.04375 0.06 0.04 0.04125

0.32 0.06125 0.0725 0.045 0.05875 0.04 0.04125

0.24 0.06125 0.07375 0.04375 0.05875 0.04 0.04125

0.16 0.06125 0.0725 0.045 0.05875 0.04 0.04125

Figure 6. Simulation outcomes of deformation rates varying with time of copper, aluminum, and steel specimens

Figure 7. Simulation outcomes of strain rates varying with time of copper, aluminum, and steel specimens, 
considering short-time load application

The findings show a significant initial increase in 
strain rates for all three metals, which stabilizes 
around a steady value after approximately 13 sec-
onds. The similarity in strain response patterns 

among the metals suggests that they exhibit 
comparable behavior under load, making them 
suitable for specific manufacturing applications 
where load dynamics are critical. 
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The results also investigate the deformation 
behavior of aluminum, copper, and pure steel 
when subjected to a sustained load. The findings 
indicate that the deformation of all three metals 
increases linearly with the duration of load appli-
cation. This consistent behavior across the metals 
suggests that they respond similarly to prolonged 
stress, highlighting their mechanical properties in 
terms of time-dependent deformation.

The simulation results provided data on the fi-
nal surface pressure (SBP) for aluminum samples 
(Fig. 9). It can be inferred from the results that the 
behavior related to final surface pressure will in-
crease concerning the dimensions of the metal (ra-
dius of indentation). Aluminum samples with low-
er thicknesses will be affected more significantly 
and will have noticeable effects on the final sur-
face pressure compared to aluminum samples with 
greater thicknesses. It was observed that deforma-
tion increases with an increase in metal thickness.

Figure 10 illustrates the behavior of the 
SBP based on the numerical simulation results 

of three copper specimens with varying thick-
nesses. The numerical results indicate that the 
behavior related to the SBP exhibits a slight 
reduction concerning the metal dimension (the 
punch radius) [29]. Copper specimens with 
greater thicknesses demonstrated higher SBP 
and elastic recovery after deformation com-
pared to those with lesser thicknesses. Con-
sequently, copper deformation showed higher 
rates with increased thicknesses but lower 
values with larger punch radius rates [30]. 
Similarly, as with aluminum and copper, Figure 
11 presents the behavior of SBP under different 
punch radius rates for three pure Fe specimens 
with varying thicknesses. From the numerical 
results depicted in Figure 13, it is evident that the 
pattern concerning the SBP in the three pure steel 
specimens tends to increase with larger punch ra-
dius values. Furthermore, it is observed that pure 
steel specimens with lower thicknesses exhibit 
more pronounced effects and observations of 
SBP compared to those with higher thicknesses.   

Figure 8. Simulation outcomes of strain rates varying with time of copper, aluminum, and steel specimens, 
considering long load application interval

Figure 9. The SBP behavior of the three aluminum specimens with varying punch radius
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In conclusion, it can be stated that pure steel 
specimens with lesser thicknesses are signifi-
cantly influenced by SBP in comparison to those 
with greater thicknesses. Additionally, larger 
punch radius rates lead to a more pronounced 
occurrence of the SBP.

Hybrid model integration results analysis

In the investigation of the metal forming pro-
cess using hybrid model integration, the three 
current study metals, were selected for numeri-
cal analysis. These metals were evaluated based 
on their mechanical and thermal properties, as 
well as their behavior during the forming process. 
The main aim of this research was to compare the 
materials in terms of force, deformation, tempera-
ture, stress distribution, springback, and material-
specific behaviors, in order to identify the most 
suitable material for various industrial applica-
tions. The results were obtained through detailed 

simulations that accounted for the intrinsic prop-
erties of the materials, and they provide insights 
into the overall performance of each material in 
terms of forming efficiency, quality, and compu-
tational demands.

Force and deformation

The force and deformation analysis re-
vealed distinct differences in the materials’ be-
haviors under forming conditions, as presented 
in Figure 12. Aluminum exhibited the lowest 
peak forming force of 50 kN, which is consis-
tent with its lower yield strength compared to 
Copper and Iron. As expected, Aluminum also 
displayed the highest maximum deformation of 
4.5 mm, indicating that it is more easily shaped 
during the forming process. Copper required a 
higher forming force (75 kN) but demonstrated 
slightly less deformation (3.8 mm), suggest-
ing that it is more resistant to deformation 

Figure 10. The SBP behavior of the three copper specimens with varying punch radius

Figure 11. The SBP behavior of the three pure steel specimens with varying punch radius
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than Aluminum but still retains a good level 
of malleability. Iron, being the strongest mate-
rial, needed the highest forming force (100 kN) 
and showed the lowest deformation (2.9 mm), 
highlighting its stiffness and reduced ease of 
shaping. Springback was also analyzed, with 
Aluminum exhibiting the highest springback 
of 6.2%, which can be attributed to its higher 
ductility. Copper followed with a springback 
of 4.0%, and Iron had the least springback at 
2.5%, which aligns with its lower ductility.

Temperature and stress distribution

The temperature and stress distribution analy-
sis provided further insights into the thermal and 
mechanical responses of each material during 
forming, as presented in Figure 13. Copper, with 
its superior thermal conductivity (398 W/m·K), 
experienced the highest temperature rise (350°C) 
during the process. Aluminum, with a lower ther-
mal conductivity of 237 W/m·K, reached a maxi-
mum temperature of 300 °C. Iron, which has the 
lowest thermal conductivity (80 W/m·K), experi-
enced the least temperature rise of 250 °C, making 

it more resistant to heat during the forming pro-
cess. The stress distribution data indicated that Iron 
had the highest maximum Von Mises stress (420 
MPa), as expected due to its higher strength, while 
Aluminum experienced lower stress (280 MPa). 
Copper’s stress was intermediate, with a maximum 
of 350 MPa. The stress concentration was highest 
in Iron (450 MPa), which suggests that while it is a 
strong material, it is more prone to localized stress 
accumulation during the forming process.

Springback and post-processing

The springback and post-processing behav-
ior table emphasized how each material behaves 
once the forming force is removed, as present-
ed in Figure 14. Aluminum showed the largest 
springback angle of 4.5°, which is indicative of 
its high elasticity and tendency to return to its 
original shape after deformation. Copper, with 
a springback angle of 3.2°, exhibited moderate 
recovery, and Iron showed the least springback 
at 1.8°, reflecting its reduced ability to return 
to its original shape. The final shape deviation 
was also evaluated, with Aluminum showing the 

Figure 12. Force and deformation analysis

Figure 13. Temperature and stress distribution
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largest deviation (2.2 mm), followed by copper 
(1.7 mm) and Iron (0.9 mm). This suggests that 
aluminum, despite its higher formability, may 
result in less precise final shapes compared to 
copper and iron.

Material-specific

The material-specific behavior analysis, as 
shown in Table 4, showed that copper is the most 
ductile material, with a high elongation at break 
of 35% and superior overall ductility. Aluminum, 
while still relatively ductile, had a lower elonga-
tion at break (25%), and iron had the lowest duc-
tility with only 15% elongation at break. Yield 
strength was highest in iron (350 MPa), followed 
by aluminum (250 MPa), and copper (210 MPa). 
These results are consistent with the general un-
derstanding that Iron is stronger but less ductile 
than aluminum and copper.

Computational performance

Finally, the computational performance 
analysis indicated the time and mesh size 

required for each material during the simula-
tion process, as shown in Table 5. As expected, 
the simulation time increased with the com-
plexity of the material, with Iron requiring the 
longest time (5 hours) due to its larger mesh 
size (250,000 elements) and more complex be-
havior. Copper and Aluminum, with smaller 
mesh sizes (200,000 and 150,000 elements re-
spectively), required less time, but Copper still 
took more time than Aluminum due to its more 
complicated stress and temperature distribu-
tion. Solver efficiency decreased slightly with 
the increasing number of elements, but the hy-
brid model remained efficient for industrial ap-
plications despite the increased computational 
demand for more complex materials.

In summary, each material, aluminum, cop-
per, and iron, demonstrated unique advantages 
and limitations in terms of forming force, defor-
mation, stress distribution, and post-processing 
behavior. These findings provide critical insights 
for selecting the appropriate material based on 
specific forming requirements, whether it be ease 
of shaping (aluminum), superior ductility (cop-
per), or higher strength (iron).

Figure 14. Springback and post-processing behavior

Table 4. Material-specific behavior
No. Material Yield strength (MPa) Elongation at break (%) Ductility

1 Aluminum 250 25 High

2 Copper 210 35 Very High

3 Iron 350 15 Low

Table 5. Computational performance
No. Material Simulation time (hrs) Mesh size (Elements) Solver efficiency

1 Aluminum 3.5 150,000 85%

2 Copper 4 200,000 80%

3 Iron 5 250,000 75%
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Comparative analysis of the SBP between the 
three metals

To provide a better understanding of how 
each metal responds to mold loading and the 
resulting springback (SBP), the elastic recov-
ery ratios for the three metals at different thick-
nesses (2.0 mm, 3.5 mm, and 4.0 mm) are now 
expressed in percentage terms. This allows for a 
more quantifiable comparison of how each mate-
rial behaves under the applied loads. The results 
of the SBP behavior for each metal at different 
thicknesses are shown in Figure 15.

The elastic recovery ratios for the three met-
als at different thicknesses demonstrate varying 
levels of springback behavior. 

At a thickness of 2.0 mm, aluminum exhibits 
the highest elastic recovery ratio of 85%, showing 
that it responds well to mold loading and recov-
ers most of its shape after deformation. Copper 
follows with a moderate recovery of 60%, while 
Iron shows the lowest recovery at 35%, indicat-
ing significant deformation that does not fully re-
cover after the mold loading. 

For a thickness of 3.5 mm, aluminum still 
maintains the highest springback at 75%, but this 
is a decrease from its performance at 2.0 mm. 
Copper’s recovery ratio decreases to 55%, and 
Iron continues to show the lowest recovery at 
30%, further emphasizing its poor performance 
in terms of elastic recovery. 

At 4.0 mm thickness, the springback behav-
ior of aluminum is again reduced to 65%, while 
Copper experiences a slight decrease to 50%. Iron 
still has the lowest elastic recovery at 25%, con-
firming that it exhibits the least ability to recover 
from mold loading among the three metals. This 
analysis indicates that Aluminum consistently 
performs the best in terms of springback across 
all thicknesses, while Iron exhibits the poorest 

elastic recovery, especially as the thickness in-
creases. Copper lies between the two, with mod-
erate springback across the different thicknesses.

The numerical simulation results and ML clas-
sification procedures obtained from this study are 
consistent with the experimental outcomes at-
tained by Cinar et al. (2021) [13], who found that 
the scale of SBP occurring to A6061 aluminum 
samples formed by V-shaped die relies on specific 
critical variables, including the bending angle, die 
shoulder force, amount of the applied die load, an-
nealing temperature, strain hardening, material’s 
properties (like Poisson’s ratio, yield strength, 
modulus of elasticity), die and punch radius, fric-
tion coefficient, and aluminum sheet thickness. Ad-
ditionally, Cinar et al. (2021) [13] confirmed that 
throughout the load implementation process, small 
sheet metal’s changes and deviations in its thick-
ness could result in considerable variations in the 
behavior of the SBP. Furthermore, the authors elu-
cidated that undesired elastic recovery during SMF 
from the target shape, which can result in assembly 
problems, SBP, and inaccuracy issues, might take 
place because of lower metal thicknesses. 

The numerical simulations of this work are 
consistent as well with the findings of Pandit et al. 
(2020) [16], whose experimental work affirmed 
that galvanized iron sheet metal SBP properties, 
such as die corner radius, punch radius, and di-
mensions could affect the behavior of SBP. Strictly 
speaking, their experimental study revealed that 
the sheet thickness would have a significant impact 
on the pattern of SBP. Also, it was realized that the 
effect of some variables, like the punch radius and 
the die corner radius, is relatively lower if it is indi-
vidually considered. Nonetheless, when consider-
ing all SBP properties and indices, the combined 
effect of all of them would be more remarkable.

Also, the numerical simulation outcomes 
and ML prediction activities of this research are 

Figure 15. SBP behavior for different thicknesses (2.0 mm, 3.5 mm, 4.0 mm)
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compatible with the results of Cinar et al. (2021) 
[13], who reported that with a rise in the metal 
thickness, corresponding bending angle would in-
crease. Certainly, for aluminum, it was found that 
greater thickness would be correlated to raised 
values of bending angle. Nonetheless, these re-
sults are not compatible for the simulation out-
comes related to steel and copper. 

In addition, it was found that the temperature 
effect had a significant impact on the deforma-
tion, Von Mises stress, and elastic strain. Par-
ticularly, when the metal has larger thermal con-
ductivity, like copper compared with aluminum 
and steel, its response to deformations would 
be more significant. When the metal’s tempera-
ture is at the ambient degree, its corresponding 
deformations and elastic strain would be low. 
These results are identical to the experimental 
outcomes realized by Cinar et al. (2021) [13], 
who found that a temperature increase in alumi-
num specimen A6061 would cause a rise in the 
elongation of the aluminum specimen.

CONCLUSIONS

This study explored a hybrid advanced analy-
sis approach combining finite element analysis 
(FEA) and machine learning to predict spring-
back phenomena (SBP) in metals. The research 
revealed several critical findings regarding the 
mechanical behavior of aluminum, copper, and 
pure iron under forming conditions. The conclu-
sions are summarized as follows:
1.	Springback behavior varied significantly among 

the three metals, with aluminum exhibiting the 
highest springback (6.2%) due to its high ductil-
ity, followed by copper (4.0%) and iron (2.5%).

2.	Pure iron demonstrated the least springback, 
indicating its suitability for applications requir-
ing precise dimensional control post-forming. 
Aluminum required the lowest peak forming 
force (50 kN) and showed the highest defor-
mation (4.5 mm), making it the most easily 
formable material. Copper required a higher 
forming force (75 kN) with moderate deforma-
tion (3.8 mm), while iron, being the strongest 
material, exhibited the highest forming force 
(100 kN) and the least deformation (2.9 mm).

3.	Copper experienced the highest temperature 
rise (350 °C) during the forming process due to 
its superior thermal conductivity, followed by 
aluminum (300 °C) and iron (250 °C).

4.	Thinner specimens exhibited more pro-
nounced springback effects across all three 
metals, while increased punch radii enhanced 
the springback behavior.

5.	Copper demonstrated the highest ductility (35% 
elongation at break), making it ideal for applica-
tions requiring significant deformation without 
failure. Aluminum exhibited good ductility (25% 
elongation) and high formability but showed 
larger shape deviations post-forming. Iron, with 
the highest yield strength (350 MPa) and lowest 
elongation (15%), provided excellent strength and 
dimensional stability but reduced malleability.

6.	The integration of FEA and machine learn-
ing proved effective in accurately predicting 
springback angles, reducing reliance on time-
intensive experiments, and optimizing the met-
al forming process.

The findings of this study provide actionable 
insights for industries requiring precise material 
behavior control during forming processes. Alu-
minum is suitable for lightweight applications 
such as automotive manufacturing, while iron 
is preferred in scenarios requiring high strength 
and dimensional stability. Copper, with its bal-
ance of ductility and strength, is well-suited for 
intricate forming processes.

This hybrid analysis approach offers a prom-
ising tool for optimizing manufacturing process-
es, improving product quality, and enhancing ef-
ficiency across various industrial sectors. Future 
research could expand the applicability of this 
model to more complex geometries and multi-
metal systems, further advancing the field of met-
al forming technology.
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