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INTRODUCTION 

The manufacturing industry has experienced 
a major transformation in recent years. The in-
creasing need for automation has driven the man-
ufacturing industry. Implementing automation in 

manufacturing enhances the efficiency and preci-
sion of the process as well as improves quality 
control [1]. As industries maintain product con-
sistent quality, the inconsistent shape issue dur-
ing the manufacturing process needs to be solved. 
Psarommatis et al. [2] present a literature review 
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learning in the microprocessor and robot manipulator, auto-mated grinding and chamfering process in metal edge 
component can be efficiently rectified. This machine vision technology tailored solution promises to improve pro-
ductivity and consistency in metal component manufacturing.
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study on the methods to minimize product defects 
in industrial production lines based on 280 articles 
published from 1987 to 2018. The study identi-
fied four strategies: detection, repair, prediction, 
and prevention. The essence revolves around the 
depreciation of deficiencies within the end prod-
uct and across its components and the energy con-
sumption in the production process, among many 
other indicators [3]. Detection was the most com-
monly used strategy, followed by quality assess-
ment after the product was fully fabricated.

In decades, manufacturing has transformed 
from digital to intelligent manufacturing [4]. The 
paper categorized the manufacturing transfor-
mation into i.e. digital manufacturing, digital-
networked manufacturing, and new-generation 
intelligent manufacturing. It emphasizes integrat-
ing new-generation AI technology with advanced 
manufacturing technology as the core driving 
force of the new industrial revolution. The paper 
also introduces the concept of Human-Cyber-
Physical Systems (HCPS) as the leading technol-
ogy in intelligent manufacturing.

Artificial intelligence (AI) improves con-
ventional methods by enabling consistent, ef-
fective, efficient, and reliable processes and 
the end product. This is because a human de-
pendent manufacturing process typically faces 
problems such as inconsistency, inaccuracy 
due to human error, human fatigue, and the ab-
sence of an expert. Such issues can be solved 
by incorporating AI, especially machine learn-
ing (ML) and deep learning (DL) methods 
[5]. One of the particular important process in 
the manufacturing process is the grinding and 
chamfering. These method are included in the 
surface finishing process to enhance the prod-
uct quality. The automation process for grind-
ing and chamfering tasks is becoming more sig-
nificant due to requirements for exactness and 
efficiency. Systems for grinding and polishing 
driven by robots with have visual recognition 
abilities will increase an accuracy while signif-
icantly reduce the time taken for manual work. 
Adding machine learning into these kinds of 
processes makes possible adjustments in re-al-
time. This optimizes how things are done be-
cause it keeps track of when the wheel used 
for grinding needs dressing, so performance is 
improved, and waste is lessened. For an auto-
mated grinding and chamfering processes with 
a machine vision based AI has a main task to 
detect the edge to be processed by grinding and 

chamfering. An examples of the edge detection 
using non-AI and AI methods are presented in 
the following para-graphs:

An example application of image process-
ing method based on wavelet transform for edge 
detection is presented in [6]. The paper presents 
an image edge detection algorithm that utilizes 
multi-sensor data fusion to enhance defect detec-
tion in metal components. The edge detection ac-
curacy of the method is improved by integrating 
data from ultrasonic, eddy current, and magnetic 
flux leakage sensors using wavelet transform. It is 
also demonstrated that the result of the proposed 
method with fused-sensor data outperforms sin-
gle-sensor data [6].

An example application of AI (machine learn-
ing) for edge detection is presented in. Yang et al 
[5] used support vector machine (SVM) to identify 
defects in logistics pack-aging boxes. The authors 
developed an image acquisition protocol and a 
strategy to ad-dress the defects commonly found 
in packaging boxes used in logistics settings. The 
first phases required constructing a denoising 
template and utilizing Laplace sharpening meth-
ods to improve the picture quality of packaging 
boxes. Next, they used an enhanced morphologi-
cal approach and an algorithm based on grey mor-
phological edge detection to eliminate noise from 
box pictures. The study finished with extracting 
and transforming packing box characteristics for 
quality classification utilizing the scale-invariant 
feature transform technique and SVM classifiers. 
The results indicated a 91.2% likelihood of suc-
cessfully detecting two major defect categories in 
logistics packing boxes: surface and edge faults. 
Although the SVM method performed satisfac-
torily in the edge detection and classification, it 
required a denoising, a sharpening, and a feature 
extraction method which are not applicable and 
unreliable for the software to hardware imple-
mentation and deployment.

An example application of AI (deep learn-
ing) for edge detection is presented in [7] and 
[8, 9]. The Canny-Net neural network adaption 
of the classic Canny edge detector is presented 
in [7]. It is intended to solve frequent artifacts 
in CT scans, including scatter, complete absorp-
tion, and beam hardening, especially when metal 
components are pre-sent. Comparing Canny-Net 
to the traditional Canny edge detector, test im-
ages show an 11% rise in F1 score, indicating 
a considerable performance improvement. Nota-
bly, the network is computationally efficient and 
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versatile for a range of applications due to its 
lightweight design and minimal set of trainable 
parameters. A study presented in [8] contributes 
a new approach that would help identify the me-
chanical defects in high voltage circuit break-
ers through integrating advanced edge detection 
with DL. Circuit breakers with higher resolution 
images undergo through contour detection, bi-
narization and morphological processing. These 
images are then processed for feature extraction 
and for the identification of defects in the prod-
uct through a DL platform on Tensor Flow and 
convolutional neural network (CNN). It is shown 
that this method is more accurate and has better 
feature extraction than classical CNN models 
for defect detection including plastic deforma-
tion, metal loss, and corrosion. This method 
ensures a safe method of identifying mechani-
cal faults without destroying the High voltage 
circuit breaker and improve maintenance, and 
thus minimize failure. The convolution method 
in deep learning is par-ticularly effective and 
prevalent in edge detection; its integration with 
various techniques, such as lighting adjustments 
or horizontal and vertical augmentation, yields 
substantial results [9]. The implementation of 
machine vision in the experiments by González 
et al. for edge detection and deburring signifi-
cantly enhanced chamfer quality with precision 
and efficiency [10]. 

Robot manipulators has been useful in manu-
facturing processes as they are excellent at per-
forming multiple tasks and completing them. 
Recent advancements in combining DL with 
robot manipulators have opened a new research 
direction and potential application in practice. 
Studies in this area have gained much attention 
to elaborate on robot manipulator performance in 
the application of intelligent manufacturing. The 
use of deep reinforcement learning algorithms 
has been integrated into robot manufacturing and 
has shown a good result in helping robot manipu-
lators for grasping and object manipulation [11]. 
It shows how manipulators grasp, handle, and 
manipulate better with relatively less time [11]. 
Using advanced algorithms from deep reinforce-
ment learning, experts have made the work of 
robot manipulators better in terms of their speed 
to adapt, accuracy, and overall performance. This 
progress opens possibilities for creating smart-
er and more effective robots in future research 
[12,13,14]. Furthermore, algorithms have been 
made to control robot manipulators with vision 

through deep reinforcement learning. They help 
robots pick up the objects by themselves based 
on the visuals and demonstrate how incorporating 
DL can improve the work of handling things dur-
ing the robot’s movement and performance [15]. 

YOLOv5 is a powerful tool for image recog-
nition and object detection [16]. Aein et al. [17] 
devised a technique to assess the integrity of metal 
surfaces. The authors employed the YOLO object 
detection network to detect faults on metal sur-
faces, resulting in an integrated inspection system 
that can distinguish between different types of de-
fects and identify them immediately. The solution 
was implemented and evaluated on a Jetson Nano 
platform with a dataset from Northeastern Uni-
versity. The investigation yielded a mean Average 
Precision (mAP) of 71% across six different fault 
types, with a processing rate of 29 FPS.

Li et al. [18] employed the YOLO algorithm 
to create a method for real-time identification 
of surface flaws in steel strips. The authors im-
proved the YOLO network, making it completely 
convolutional. Their unique approach offers an 
end-to-end solution for detecting steel-strip sur-
face flaws. The network obtained a 99% detection 
rate at 83 frames per second (FPS). The invention 
also involves anticipating the size and location of 
faulty zones. The YOLO network was upgraded 
by creating a convolutional structure with 27 lay-
ers. The first 25 levels gather useful information 
about surface defect features on steel strips, while 
the final two layers forecast defect types and 
bounding boxes.

Xu et al. [19] developed a novel modification 
of the YOLO network to enhance metal surface 
flaw identification. Their strategy centered on 
creating a new scale feature layer to extract sub-
tle features associated with tiny flaws on metal 
surfaces. This invention combined Darknet-53 
architecture’s 11th layer with deep neural net-
work characteristics. The k-means++ technique 
significantly lowered the sensitivity of the first 
cluster. The study yielded an average detection 
performance of 75.1% and a processing speed of 
83 frames per second.

A number of study has reported a benefit of 
YOLO on the hardware implementation using 
NVIDIA Jetson Nano [20, 21]. The NVIDIA 
Jetson Nano, notable for its computational capa-
bilities, facilities the infusion of AI models into 
devices [22]. The NVIDIA Jetson Nano is a de-
vice which have a low power consumption and 
can performs real-time inferences that can be 
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considered in terms of frame rates. For instance, 
the implementations of YOLOv3-tiny show that 
the system-level approaches can achieve frame 
rates of approximately 30 FPS, which is cru-
cial for surveillance and monitoring purposes 
[23, 24]. The YOLO algorithm and architecture 
has a benefit in the application of object detec-
tion in machine vision i.e. the determination of 
objects on images can be done in a single pass, 
which helps to reduce the amount of computa-
tional work several times compared with multi-
step methods [25]. This results in high efficiency, 
particularly when it is deployed on the NVIDIA 
Jetson Nano, which, due to its insufficient pow-
er compared to other graphics processing units 
(GPUs), can handle satisfactory performance 
with optimized models [26].

Integrating robot manipulators with machine 
vision technologies has revolutionized various 
industrial applications [27]. In certain industries, 
automatic manufacturing with machine vision 
technologies can reduce workers’ risks while 
performing repetitive and potentially hazardous 
tasks [28]. A method presented using the YOLO 
Convolutional Neural Network for analyzing vid-
eo streams from a camera on the robotic arm, rec-
ognizing objects, and allowing the user to interact 
with them through Human Machine Interaction 
(HMI), which helps the movement of individu-
als with disabilities [29]. The method involves 
using the NiryoOne robotic arm equipped with 
a USB HD camera and modifying the YOLO al-
gorithm to enhance its functionality for robotic 

applications, showing that the robotic arm can 
detect and deliver objects with high accuracy and 
in a timely manner [30]. The study suggests an 
industrial simulation, a practical robotic applica-
tion using robot manipulators and DL to perform 
both grinding and chamfering simultaneously. 
The approach of incorporating robotic manipula-
tors and computer vision systems based on DL to 
carry out grinding and chamfering tasks automat-
ically is an essential aspect of this research. This 
study utilizes the capabilities of a robot manipu-
lator, specifically, the Mitsubishi Electric Melfa 
RV-2F-1D1-S15 to execute precise grinding and 
chamfering tasks in the lab experimental study. 
This study aims to proof that the machine vision 
technology can be integrate with the robot ma-
nipulator because it is expected that by integrat-
ing manipulator and computer vision technology 
it can increase the precision and efficiency of the 
grinding and chamfering process.

MACHINE VISION BASED DEEP LEARNING 
ALGORITHM

Deep learning algorithm (VGG16, ResNet, 
YOLOv5)

VGG16 

The VGG16 network architecture has 16 
layers comprising 13 convolutional layers and 3 
fully connected layers. This network includes a 
3 × 3 small filter with a stride of 1 convolutional 
operation while it includes a max pooling layer of 

Figure 1. VGG-16 architecture
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2 × 2 windows and a stride after every two convo-
lutional layers [31]. VGG-16 is applied to classify 
six surface defects on steel strips [32]. The image 
data was from the NEU image dataset. VGG’s ar-
chitecture is presented in Figure 1.

Residual network (ResNet)

ResNet, or Residual Network, is a deep learn-
ing architecture that was introduced by He et.al., 
in 2016 [33]. ResNet’s has impressive ability to 
efficiently solve the degradation problem in deep 
neural networks. The ResNet mechanism skips 
connections in residual blocks to address the van-
ishing gradient problem. These connections allow 
ResNet to learn the residual function based on the 
input layer and enable the network to train much 

deeper than previously [34]. The ResNet architec-
ture is presented in Figure 2.

Yolov5

YOLO detection object family is a com-
mon approach for object detection [35], expand-
ing on the improvements achieved in its family, 
YOLOv1 through YOLOv8. Its performance has 
been constantly improved by comparing its skills 
against two well-known object identification da-
tasets: Pascal VOC (visual object classes) and 
Microsoft COCO (common objects in context). 
The model is built on a convolutional neural net-
work system with four components, as presented 
in Figure 3. The framework includes four major 
components that are (1) a backbone module for 

Figure 2. ResNet architecture

Figure 3. YOLOv5 architecture
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extracting features, (2) a neck module that inte-
grates multiple-level features, such as feature pyr-
amid networks (FPN), (3) a Region Proposal Net-
work (RPN) to create region proposals which is 
only applicable to two-stage detectors, and (4) the 
head module provides the final classification and 
localization results [36]. The YOLOv5 model is 
based on the CSPDarknet53 architecture and has 
a spatial pyramid pooling (SPP) layer. Further-
more, PANet is used as the neck component, while 
YOLO detection is used as the head component.

The YOLOv5 model employs the CSPDark-
net architecture, which includes the cross-stage 
partial network (CSPNet) within the Darknet 
framework. This backbone net-work enhances the 
model’s capacity to extract features while also in-
creasing its depth. The CSPNet design decreases 
the amount of parameters and floating-point oper-
ations per second (FLOPS), allowing for quicker 
and more accurate inference and a smaller model 
size. The neck network incorporates a route aggre-
gation network (PANet) to alleviate the issue of 
restricted propagation of low-level features in the 
original feature pyramid net-works. PANet uses 
accurate localization signals in lower layers to 
increase the precision of object localization [37]. 
The Head network in both YOLOv3 and YOLOv5 
architectures comprises three major components: 
bounding box loss, categorization loss, and con-
fidence loss. The loss function for the classifica-
tion and confidence losses is binary cross-entropy, 
while the loss function for the bounding box loss 
is intersection over union (IoU) loss [38]. The 
YOLOv5 framework consists of five models: YO-
LOv5s, YOLOv5m, YOLOv5l, YOLOv5n, and 
YOLOv5x. YOLOv5s was chosen for this project 
because of its small size and fast processing speed, 
making it the most suitable model. The Ultralytics 
team has made the model public on GitHub. The 
model is built up with pre-trained weights from 
the COCO dataset [39].

Performance evaluation

In machine vision technology, an accurate pre-
diction is essential for assessing an object identifi-
cation system’s efficacy. Object detection models 
have a dual objective, which involves localising 
and classifying objects. As a consequence, the to-
tal performance of the model is evaluated by tak-
ing into account the outcomes of both tasks. The 
representation of object detection includes three 
primary attributes: the item’s categorization or 

labelling, the defining of its bounding box, and 
the quantification of the confidence score. A con-
fidence score is a numerical number ranging from 
0 to 1 that indicates the degree of certainty the 
model has in its prediction.

The accuracy of the prediction is determined 
by comparing the detected bounding box and the 
label assigned during annotation with the actual 
bounding box. This section describes how the 
model is assessed using several performance 
measures based on the ground-truth bounding 
box and label data and the predicted bounding 
box and label data.

Intersection over union (IoU)

The IoU metric measures the closeness of ex-
pected and ground-truth bounding boxes. It cal-
culates the overlapping area between the expect-
ed bounding box, and the ground-truth bounding 
box, and divides it by the union area, which is the 
total size of the ground-truth and predicted boxes. 
The percentage represents the model’s accuracy 
in forecasting the ground truth box. A score of 
one implies a perfect match between the expected 
and ground truth boxes as presented in Figure 4.

Precision and recall

The use of an IoU threshold enables the as-
sessment of localization accuracy. Typically, the 
threshold is set at 50%, 75%, or within 50% to 
95% of the IoU. A detection is considered accu-
rate when the projected bounding box exceeds 
the threshold and is accurately categorized. The 
evaluation of detection accuracy depends on these 
measures, where the IoU exceeds the specified 
threshold along with an accurate classification. In-
stances with incorrect categorization labels should 
be taken into consideration. The study’s findings 
were divided into three categories based on the 
IoU measure. For example, when the IoU thresh-
old is set to 0.5, the three groups are as follows:
 • If IoU > 0.5, classify the item detection as true 

positive (TP).
 • If the IoU is less than 0.5, the detection is con-

sidered a false positive (FP). 
 • A false negative (FN) occurs when an image 

contains a ground truth item that the mod-el 
fails to detect.

The calculation of precision and recall were 
performed based on the three categories using 
Equations 1 and 2. Precision refers to a model’s 
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capacity to recognize important things and offer 
the correct responses precisely. It quantifies the 
frequency at which the model makes accurate es-
timates when uncertain. The accuracy rate is cal-
culated by dividing the number of true positive 
instances by the sum of true positive and false 
positive cases, yielding the percentage of proper 
positive detections.
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇

Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇+ Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 (1) 
 

 
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇
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 (2)

The confusion matrix typically displays TP, 
FN, and FP prediction scores. A confusion ma-
trix is a straightforward way to visualize predic-
tions’ accuracy, differentiating between correct 
and incorrect classifications and subcategorizing 
by different classes. In the context of a binary 
classifier, the confusion matrix has four cells that 
measure the occurrence of each possible combi-
nation between the expected and actual classes. 
These scores can be further analyzed to calculate 
essential metrics such as accuracy, precision, re-
call, and F1-score. By examining these metrics, 
researchers and practitioners can gain deeper in-
sights into the model’s performance across dif-
ferent classes and identify specific areas for im-
provement. This detailed analysis is crucial for 
fine-tuning the classifier and ensuring its reliabil-
ity across various scenarios.

F1-score

The F1 score is a metric that combines pre-
cision and recall, providing a balanced measure 
of a classifier’s performance. It is beneficial in 

scenarios with imbalanced datasets, where ac-
curacy alone might be misleading. For instance, 
when a classifier achieves perfect precision (1.0) 
but very low recall (0.0001), the F1 score offers 
a more nuanced evaluation. The F1 score is cal-
culated as the harmonic mean of precision and re-
call, giving equal weight to both metrics. This ap-
proach is valuable when a comprehensive metric 
is needed instead of analyzing the full confusion 
matrix [41]. The F1 score is defined in Equation 3.
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Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) + Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) (5) 
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 (3)

The F1 score is a numerical measure expressed 
as a normal between 0 and 1, with greater values 
demonstrating better performance. It is calculated 
as the harmonic mean of accuracy and recall, prac-
tically serving as a sufficient metric for assessing 
the trade-off of these two performance rates. Simi-
lar to the receiver operating characteristic curve, 
the F1 score is a curve that may be plotted by 
changing thresholds. This curve enables one to 
compare the balance of accuracy and recall with 
different levels of confidence requirements [42].

Mean average precision

The output of an object detection model is a 
bounding box that shows where the selected ob-
ject is located, the category to which it belongs, 
and its confidence score. The IoU metric is crucial 
in evaluating these detections. The IoU threshold 
determines whether a detection is a TP or a FP. 
Detections with IoU values more significant than 
the given threshold are categorized as positive de-
tections, while those below the threshold are con-
sidered negative detections [43]. The equations 
for accuracy and recall include the IoU threshold, 
represented as “τ” as shown in Equations 4 and 5.
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Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇+ Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 (1) 
 

 
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇

Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇+ Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 (2) 
 
 

𝐹𝐹1 = 2 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 × 𝑇𝑇𝑇𝑇𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹
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Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) + Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) (4) 
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The performance of the object detection mod-
el is evaluated using precision and re-call metrics, 
which are influenced by a confidence threshold 

Figure 4. Illustration of IoU equation. Adapted from 
[40]

Table 1. Confusion matrix

Parameter
Actual

Positive Negative

Predicted
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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τ. As τ increases, the number of TP detections 
decreases because the criteria for proper detec-
tion become more stringent. Consequently, the 
functions TP(τ) and FP(τ) tend to decrease as τ 
increases. Conversely, FN(τ) (false negatives) in-
creases with τ, indicating that fewer positive cas-
es are detected. This results in a decreasing recall 
function as τ increases. It’s important to note that 
both TP(τ) and FP(τ) are non-increasing functions 
of τ, which affects the behaviour of the precision 
function. The trade-off between precision and re-
call can be visualized using the receiver operating 
characteristic (ROC) curve or the Precision-Re-
call curve, providing a comprehensive view of the 
model’s performance across different confidence 
thresholds. The ROC curve exhibits a distinctive 
zigzag pattern, as illustrated in Figure 5.

A detector is effective in terms of precision 
and recall metrics when it successfully identifies 
all ground-truth objects, resulting in a false nega-
tive count of zero and achieving a high recall rate. 
FP=0 represents high precision achieved only 
by detected items that are relevant. Therefore, to 
achieve the highest accuracy level and at the same 
time increase the retrieval rate, regardless of cut 
through the IoU threshold. If the detector possess-
es this kind of behaviour, it leads to a large do-
main under the drug ROC curve. This ROC curve 
in turn provides another measure of performance 
denoted by the area under the curve (AUC). The 
idea of average precision (AP) means to present 
the notion of accuracy-recall space by applying 
different IoUs to different sides, so the system 
can output such things as recognition rates and 
margins. This process allows us to generate the 

desired receiver operating characteristic (ROC) 
curve for various threshold values k. The points 
on this curve are represented as pairs of precision 
and recall values (P(k), R(k)), where P(k) is the 
precision and R(k) is the recall at threshold k. It 
is proper to interpolate the input precision and re-
call pairs first before computing the mean as this 
will make the final precision recall curve follow a 
monotonic behavior. The expression function that 
represents the interpolated curve is represented as 
PTTc (R) with R being the real number inside the 
band between [0,1]. This function is defined ac-
cording to Equation 6.
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The truncated precision value being the high-
est precision value at the point at which the re-
call value reaches or exceeds R is called the in-
terpolated precision value for a given recall R. 
The AP can be computed by summing the areas 
under the ROC curve by using Riemann integral 
Printerp(R) Rlate(K) is a derivative value and is 
computed on K recall values that are taken from a 
series of recall sampling points Rr(k). The calcu-
lation of AP is shown in Equation 7.
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The mAP is the average value of the AP for all 

classes, C, as shown in Eq. (8).
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𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇

Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇+ Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 (2) 
 
 

𝐹𝐹1 = 2 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 × 𝑇𝑇𝑇𝑇𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹
𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 + 𝑇𝑇𝑇𝑇𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 (3) 

 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏) = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏)
Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) + Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) (4) 

 
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅(𝜏𝜏) = Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏)

Σ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) + Σ 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇(𝜏𝜏) (5) 
 
 

𝑃𝑃𝑃𝑃𝑝𝑝𝑛𝑛𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝(𝑅𝑅) = max
𝑘𝑘|𝑅𝑅𝑝𝑝(𝜏𝜏(𝑘𝑘))≥𝑅𝑅

{Pr(𝜏𝜏(𝑘𝑘))} (6) 

 
𝐴𝐴𝑃𝑃 = ∑ 𝑅𝑅𝑇𝑇(𝑘𝑘) − 𝑅𝑅𝑇𝑇(𝑘𝑘 + 1)𝑃𝑃𝑃𝑃𝑝𝑝𝑛𝑛𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝(𝑅𝑅𝑇𝑇(𝑘𝑘))𝐾𝐾

𝑘𝑘=0  (7) 
 

𝑚𝑚𝐴𝐴𝑃𝑃 = 1
𝐶𝐶 ∑ 𝐴𝐴𝑃𝑃𝑝𝑝

𝐶𝐶
𝑝𝑝=1  (8) 

 
 (8)

A varying indication will be drawn in the 
mAP graph. A commonly used measure in the 
field is mAP[0.5]: IoU ranges from 0.5 to 0.95 
was used to compute the AP - [0.95], with the 
threshold value of IoU.

METHODOLOGY

A comprehensive methodology for integrat-
ing machine vision based deep learning algorithm 
and robotic manipulator is depicted in Figure 6. 
The overall methodology consist of three stages: 
(1) Data processing (2) Model development, and 
(3) Software to hard-ware integration. The select-
ed algorithm model i.e. YOLOv5 is used for edge 
detection the machine vision integration system 
with the Jetson Nano microprocessor and Mit-
subishi Melfa robot manipulator. Results and dis-
cussion of the image prediction and classification 
are presented in Section 4. According to Figure 6, 
the method starts with the data collection using a Figure 5. ROC curve
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lab experiment dataset. The lab dataset is the edge 
images of the metal workpiece from three differ-
ent condition (sharp edge, burrs edge, and cham-
fer edge) and from different angle of image cap-
ture. An example of image capture during the lab 
experiment for deep learning model is presented 
in Figure 7. The collected images was annotated 
using computer vision annotation tools (CVAT). 
The next step after annotation of the images is to 
split the dataset (images) into train, validation, 
and testing. Once the dataset is splitted, the next 
stage is to train the models using the splitted da-
taset. The training model is evaluated and if the 
performance is not satisfied, it undergoes optimi-
sation and retraining the dataset to obtain a bet-
ter model. If the model is improved, the model is 
then saved by the yolov5 model after reached the 
best performance.

Data preprocessing

Data annotation

The images data underwent manual annotation 
using CVAT around the positions of metal work-
pieces exhibiting sharp edges, chamfer edges, and 
burrs edges. Labels were assigned based on three 
distinct classes: sharp edge, chamfer edge, and 
burrs edge. The placement of the bounding boxes 
was optimized to align closely with the boundar-
ies of the metal workpiece while still allowing a 
portion of the background to remain visible. The 
action aimed to indicate the appropriate placement 
of the various situations accurately. The utilized 
photos for object detection were not subjected to 
cropping, which resulted in a variable number of 
backgrounds and, consequently, a variable number 
of metal workpieces in the images. The annotation 

of the borders of the metal workpiece was limited 
to instances where the entire position was shown. A 
total of 300 annotations were generated for the da-
taset, including 300 images. The annotations were 
distributed evenly across three categories: sharp 
edge, chamfer edge, and burrs edge. Each category 
included 100 annotations. The label distribution of 
the various annotations is presented in Table 2.

Dataset splitting

In the context of image analysis, a dataset is 
conventionally partitioned into three categories: 
framing, grooming, and actual test results for good 
prediction. Meanwhile, the network requires the 
training data during the training process where 
the network is thought the pixel information of 
the photos to obtain the skill understanding of the 
pat-terns. This practical knowledge plays a role 
in constructing such a model for correcting and 
localizing metallic fasteners. The validation play-
ers are used to confirm the network’s weight pro-
gression at each batch while the system is being 
trained through training data. After that, the spec-
ified outcome will be utilized for further training 
of the network; as such, information about how 
to improve its functioning in a better way is go-
ing to be obtained during this process. Finally, 
the weights found during training are applied to 
the test data at the inference stages as the test sets 
were not observed. Therefore, only at the end of 
the process can you see how well the developed 
model works. In the case of separating the as-
sessment and training of models, such a model’s 
performance on the study data will most likely 
approximate an actual real-world production test.

The split is performed at random: 70% of the 
data is set aside for training, validation data gets 

Figure 6. Flowchart of overall methodology
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15%, and the remaining 15% is kept for testing. 
The ratios across multiple sets created from the 
small quantity of data are essential [23]. The clas-
sification of classes within the various datasets 
is subject to manual scrutiny to ensure the rep-
resentation of all classes in each dataset. Table 3 
presents the distribution and quantity of images 
across various datasets.

Augmentation 

Uses various image augmentation methods 
to enhance its training data and improve model 
performance. In the training, data from any batch 
is processed through augmentation using the data 
loading class. The data loader implements several 
distinct augmentation techniques, including ran-
dom affine transformations, and color space ad-
justments. This method effectively improves the 
model’s ability to detect small objects. However, 
the study found that while these augmentation 
methods enhance the detector’s performance on 
small objects, the improvement for larger objects 
is comparatively lower within the COCO dataset. 
The aim is to examine and improve the model’s 
performance under various input conditions. This 
process typically includes horizontal flipping of 
the images and processing at multiple scales, en-
hancing the model’s robustness and accuracy in 
real world scenarios. The augmentation of the im-
age dataset is presented in Figure 7.

Hyperparameter setting for model development

In developing our models using YOLOv5, 
VGG16, and ResNet, the hyperparameters were 
selected by carefully to optimize performance 
within the constraints of our limited dataset of 240 
images. To ensure a fair comparison, we main-
tained consistent hyperparameters across all three 
models. We set the batch size to 8, which allows 
for more frequent model updates and helps prevent 

overfitting with small datasets. The number of ep-
ochs was fixed at 24, striking a balance between 
sufficient learning time and avoiding over-training. 
Input images were standardized to 224 × 224 pix-
els, a size that balances de-tail preservation and 
computational efficiency while reducing the num-
ber of model parameters. The following table sum-
marizes the key hyperparameters used across all 
three models, presented in Table 4. These hyper-
parameters were chosen to maximize the models’ 
learning capacity from our limited dataset while 
minimizing overfitting risks. The use of transfer 
learning for VGG16 and ResNet, combined with 
careful learning rate selection, helped leverage 
pre-existing knowledge and adapt it to our specific 
metal defect detection task, enabling us to train the 
models despite the data constraints.

Table 2. Label distribution
Total number of annotations Sharp edge Chamfer edge Burrs edge

300 100 100 100

100% 33.33% 33.33% 33.33%

Table 3. Distributed images
Number of images Training Validation Testing

300 210 45 45

100% 70% 15% 15%

Table 4. Hyperparameter settings
Hyperparameter Value/Description

Batch size 8

Epochs 24

Image size 224 × 224

Learning rate (YOLOv5) 0.01

Learning rate (VGG16) 0.001

Learning rate (ResNet) 0.001

Optimizer Adam

RESULTS AND DISCUSSION

In automated manufacturing, a reliable ma-
chine vision-based DL method is important. 
This chapter provides the results and discussion 
of the deep learning methods in the machine vi-
sion system to predict and classify sharp edges, 
chamfer edges, and burrs edges of the metal 
workpiece.
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Model performance

Summarizes the models performance pre-
sented in Table 5. As evident from Table 5, YO-
LOv5 demonstrates superior performance across 
all metrics, followed by VGG16 and then ResNet.

Mean average precision (mAP)

Figures 8, 9 and 10 illustrated the mAP scores 
for each model across different IoU thresholds. 
The mAP Figure 8, shows that the validation 
mAP consistently outperforms the training mAP, 
indicating good generalization to unseen data. 
The validation mAP stabilizes around 0.9581, 
suggesting a robust model performance.

The mAP Figure 9 shows that the validation 
mAP (orange line) is consistently higher than the 
training mAP (blue line) throughout the epochs, 
indicating that the model performs better on the 
validation set. However, the insignificant fluctua-
tions in the validation mAP suggest variability in 
model performance.

Figure 10 shows that the validation mAP con-
sistently outperforms the training mAP, indicat-
ing good generalization of the model. As the ep-
ochs progress, both training and validation mAP 
values improve, with validation mAP reaching 

approximately 0.9807, suggesting a strong per-
formance on the validation dataset. 

In general, the mAP curves in Figures 8–10 
show that YOLOv5 consistently outperforms the 
other models across various IoU thresholds, in-
dicating its robust object detection capabilities. 
VGG-16 shows competitive performance, espe-
cially at lower IoU thresholds, while ResNet lags 
behind but still provides respectable results. 

Loss model

Figures 11–13 present the loss curves for each 
model in training and validation. The loss figure 
indicates that both training and validation losses 
decrease over time, suggesting effective learn-
ing. However, the validation loss experiences sig-
nificant fluctuations, which may point to potential 
overfitting. The loss figure indicates that the valida-
tion loss (orange line) generally trends lower than 
the training loss (blue line), suggesting that the 
model may be overfitting on the training data. The 
loss graph indicates that both training and valida-
tion losses decrease significantly during the initial 
epochs, suggesting effective learning. Over time, 
the validation loss stabilizes at a lower level, ap-
proximately 0.0488, while the training loss shows 
more fluctuation. The loss curves in Figures 11–13 

Figure 7. Augmentation on the dataset

Table 5. Models performance
Model Accuracy mAP Avg.  Precision Avg. Recall Avg. F1-Score

VGG16 0.92 0.95 0.91 0.93 0.92

ResNet 0.92 0.85 0.92 0.91 0.92

Yolov5 0.97 0.98 0.98 0.97 0.97
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Figure 8. mAP of VGG-16

Figure 9. mAP of ResNet

demonstrate that all three models converge well, 
with YOLOv5 showing the fastest convergence 
and lowest final loss. YOLOv5 achieving the best 
loss, followed closely by VGG16 and then ResNet.

Precision-recall curve

Figures 14–16 displays the precision-recall 
curves for each model across the three defect class-
es. The precision-recall curve Figure 14 shows 
high performance across all classes, with Chamfer 
achieving an average precision of 1.00, indicating 

perfect precision at every recall level. Burrs and 
Sharp also demonstrate strong precision, with 
average precisions of 0.97 and 0.98 respectively, 
highlighting the model’s robust ability to distin-
guish between these classes. The Precision-Recall 
curve of ResNet as shown in Figure 15 illustrates 
that the model achieves excellent performance 
across all classes, with the “Burrs” class achiev-
ing perfect precision and recall (AP = 1.00). The 
“Chamfer” and “Sharp” classes also demonstrate 
high average precision scores of 0.95 and 0.94, 
respectively, indicating strong model reliability 
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Figure 11. Loss model of VGG-16

Figure 10. mAP of YOLOv5

and consistency in distinguishing these classes. 
The precision-recall curve Figure 16 demonstrates 
perfect performance across all classes, with each 
achieving an average precision (AP) of 1.00. This 
indicates that the model consistently maintains 
high precision and recall, effectively distinguish-
ing be-tween the classes. The precision-recall 
curves in Figure 3 provide insights into the trade-
off between precision and recall for each model. 
YOLOv5 maintains high precision even at higher 
recall values across all defect classes, indicating 
its strong performance in both correctly identify-
ing defects and minimizing false positives.

Class-wise performance

To provide a more detailed analysis, we 
present the precision, recall, and F1-score for 
each metal edge detection class across the three 
models as presented in Table 6. According to 
Table 6, it is shows that YOLOv5 consistently 
outperforms the other models across all defect 
classes. Notably, all models show slightly bet-
ter performance in detecting “Sharp” defects 
compared to “Burrs” and “Chamfer”, suggest-
ing that sharp edges may have more distinctive 
features for the models to learn.
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Figure 13. Loss model of YOLOv5

Figure 12. Loss model of ResNet

Confusion matrices

A confusion matrix (CM) is a tool used vi-
sualize the performance of classification of DL 
model that shows a visual representation of how 
accurate the developed model pre-dicts the class 
or label of the given data by displaying a matrix 
of actual and predicted data. The CM analysis 
of the three DL models for edge detection and 
classification reveals its performance across dif-
ferent categories as presented in Figures 17–19. 
The confusion matrix Figure 17 shows that the 

model performs well, with good classification 
of the “Burrs” class and only minor misclassi-
fications in the “Chamfer” and “Sharp” classes. 
Specifically, there are two instances of “Cham-
fer” misclassified as “Sharp,” and one “Sharp” 
misclassified as “Burrs,” indicating areas for 
potential improvement. The confu-sion matrix 
Figure 18 indicates that the model performs 
well, the “Chamfer” class shows the highest ac-
curacy with 15 correct predictions, while minor 
misclassifications occur in the “Sharp” class, 
suggesting slight areas for improvement. The 
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Figure 14. VGG16 precision-recall

confusion matrix Figure 19 shows that the mod-
el accurately predicts most classes, with “Burrs” 
and “Sharp” achieving perfect classification. 
However, there’s a slight misclassification for 
“Chamfer”, where one instance is incorrectly 
predicted as “Burrs”. 

The confusion matrices in Figures 17–19 re-
veal that YOLOv5 has the least misclassi-fications 
among the three models. VGG16 shows a higher 
tendency to confuse Burrs with Chamfer, while 
ResNet and YOLOv5 demonstrate more balanced 

performance across all classes. The comparative 
analysis of YOLOv5, VGG16, and ResNet for 
metal defect detec-tion reveals interesting insights, 
especially considering the constraints of limited 
dataset availability. YOLOv5 demonstrates supe-
rior performance across all metrics, as evidenced 
by its higher mAP scores, faster convergence, and 
better precision-recall trade-off. This exceptional 
performance can be attributed to YOLOv5’s archi-
tecture, which is specifically designed for efficient 
object detection. Its ability to process images in 

Figure 15. ResNet precision-recall
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Figure 16. YOLOv5 precision-recall

Table 6. Class-wise performance
Model Class Precision Recall F1-Score

VGG16

Burrs 0.90 0.89 0.89

Sharp 0.92 0.91 0.91

Chamfer 0.91 0.90 0.90

ResNet

Burrs 0.87 0.85 0.86

Sharp 0.89 0.88 0.88

Chamfer 0.88 0.88 0.88

Yolov5

Burrs 0.94 0.93 0.93

Sharp 0.95 0.94 0.94

Chamfer 0.93 0.92 0.92

a single forward pass allows for effective feature 
extraction and localization, resulting in higher ac-
curacy and mAP scores even with limited training 
data. This makes YOLOv5 particularly well-suit-
ed for real-time defect detection in a robotic arm 
setup, where both speed and accuracy are crucial. 
Surprisingly, VGG-16, despite being the oldest ar-
chitecture among the three, outper-forms ResNet 
in our specific use case. This unexpected result 
might be due to VGG-16’s simpler architecture, 
which could be more effective at learning from 
a limited dataset. The shallower network may 
be less prone to overfitting when training data is 
scarce, allowing it to generalize better to unseen 
examples. ResNet, with its deep architecture and 
residual connections, shows the lowest perfor-
mance among the three models in this specific sce-
nario. This outcome is contrary to expectations, as 
ResNet typically excels in various computer vision 

tasks. The underperformance might be attributed 
to the limited dataset, which may not provide suf-
ficient examples for ResNet to fully leverage its 
deep architec-ture and learn the complex features 
it’s capable of extracting. The consistently high 
performance across all defect classes for all mod-
els indicates that our dataset, although limited, is 
well-balanced. This suggests that the chosen mod-
els are capable of learning distinctive features for 
each defect type, even with constrained da-ta. The 
slightly higher performance in detecting “Sharp” 
defects across all models implies that these defects 
may have more pronounced visual characteristics, 
making them easier to identify even with limited 
training examples. It’s worth noting that the image 
augmen-tation techniques employed have likely 
played a crucial role in maximizing the utility of 
the limited dataset, helping to artificially expand 
it and improve the models’ ability to generalize.
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For future work, the plan to expand the defect 
types from three to five categories is a promising di-
rection. This expansion will increase the complexi-
ty of the classification task and provide a more com-
prehensive defect detection system. Continuing to 

refine and ex-pand augmentation techniques will 
be crucial in managing the increased complexity, 
es-pecially if dataset limitations persist. In conclu-
sion, this study demonstrates the effective-ness of 
modern object detection architectures, particularly 

Figure 17. Confusion matrix of VGG-16

Figure 18. Confusion matrix of ResNet
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YOLOv5, in handling metal de-fect detection tasks 
even with limited data. It also highlights the im-
portance of choosing the right model architecture 
based on dataset characteristics and the potential 
benefits of simpler models like VGG-16 in data-
constrained scenarios.

TESTING AND INTEGRATION YOLOV5, 
JETSON NANO, AND MITSUBISHI RV-2F-
1D1-S15 ROBOT MANIPULATOR

The verification studies were conducted with 
the developed AI system in real-life environ-
ments. For this purpose, the device implementing 
the operation of the DL algorithm was connect-
ed with a high-precision robot manipulator, the 
Mitsubishi Electric Melfa RV-2F-1D1-S15, with 
a repeatability of +/-0.02 mm and 6 DOF. Such 
connections between different hardware plat-
forms are common in practice and allow for the 
optimization of activities satisfactorily [1]. This 
robot manipulator was available in the Faculty of 
Electrical Engineering, Opole University of Tech-
nology, Poland. Prior to the integration, the ma-
nipulator was programmed with the default CAD 
software. The CAD software is a compatible and 
specific software for Mitsubishi Electric Melfa 
RV-2F-1D1-S15. This CAD software consisted 
of the CAD visualization and the syntax based 

programming to pro-gram the movement of the 
robot manipulator. Once the syntax programming 
was completed for a certain robot manipulator 
movement, it can be seen in the CAD visualiza-
tion to check whether the movement is as expect-
ed. This CAD software can create a sequential 
robot manipulator movement for automate grind-
ing and chamfering when it is connected to the 
machine vision system. The CAD robot manipu-
lator program consisted of three different actions 
to accommodate the three possible input from the 
NVIDIA Jetson Nano. A detail explanation of the 
three different action is provided in the last para-
graph of this section.

A schematic diagram for the real-time ma-
chine vision system is presented in Figure 20. 
The machine vision system consists of a PC for 
monitoring the image detection result, a NVIDIA 
Jetson Nano microprocessor, an electric board to 
connect the NVIDIA Jetson Nano to the PLC in-
put of the manipulator, and the robot manipulator. 
Due to the differing voltage levels of the devices, 
a special translation board has been prepared. The 
aforementioned electrical plate allows the robot 
to easily and effectively manage the work of the 
robot based on the signals from the DL system. 
The described experimental setup is based on the 
complex integration of the Mitsubishi Melfa RV-
2F-1D1-S15 manipulator and the YOLOv5 pro-
gram that is running on a NVIDIA Jetson Nano. 
The overarching objective is to enable automated 

Figure 19. Confusion matrix of ResNet
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chamfering of the metal workpiece based on the 
detection of sharp edges, chamfer edges, or burrs 
on their surface. The process commences with the 
Jetson Nano, with the YOLOv5 program inside. 
The program is designed to undertake real-time 
object detection utilizing the input from the con-
nected camera. This camera serves as the sensory 
input, capturing images of the metal workpiece’s 
surface. Upon image acquisition, the YOLOv5 
program processes the visuals to classify and de-
tect three different images i.e., sharp edge, cham-
fer edge, and burrs edge of the metal workpiece.

Upon successful detection, the YOLOv5 pro-
gram initiates the subsequent action. In this in-
stance, it generates a set of distinct class classifi-
cation commands (sharp edge, chamfer edge, burr 
edge) in a signal format. Mitsubishi Melfa RV-
2F-1D1-S15 robot manipulator receives the poly-
nomial command signal set as the input medium. 
The manipulator is prepared to receive signals 
from the machine vision as commands. A detail 
ex-planation of the communication from NVIDIA 

Jetson Nano and Mitsubishi Melfa RV-2F-1D1-
S15 robot manipulator is presented in Figure 
20’s description No. 5. Depending on the type of 
signal received, which indicates the presence of 
an edge image detection, the robot manipulator 
interprets the signal and initiates the appropriate 
corrective action. The robot manipulator action 
is based on the predetermined CAD software 
which was explain in the first paragraph of this 
section. The robot have three different actions 
to accommodate three possible edge detection 
output from real-time machine vision method. 
For example, if the sharp image was detected, 
the robot manipulator was programmed to have 
5 passes of grinding and chamfering process. 
A detail of the three actions based on the ma-
chine vision output is presented in Table 7. A 
simulation of the successful real time machine 
vision lab experiment is presented in the follow-
ing YouTube link: https://www.youtube.com/
watch?v=Qe6DPEanpjg&t=3s. The discription 
of Figure 20 is as follows:

Figure 20. An example of a cycle process of the machine vision lab experiment for automated chamfering 
process integrating YOLOv5, Jetson Nano microprocessor, and Mitsubishi manipulator

Table 7. Action of robot manipulator based on Jetson Nano prediction output
Edge image detection

(input from Jetson Nano)
Number of Passes for Grinding and Chamfering

(robot manipulator action according to the Jetson Nano input)
Sharp 5

Chamfer 3

Burrs 10
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1. The Mitsubishi Electric Melfa RV-2F-1D1-S15 
manipulator was connected to the customized 
grinding equipment. The end effector was con-
nected to the portable grinder.

2. A selected metal workpiece with a sharp type 
was attached to the clamp close to the manip-
ulator for testing of real-time machine vision 
method. A Logitech camera with 720p and 30 
fps was set up to capture the tested metal work-
piece with a sharp-end feature.

3. NVIDIA Jetson Nano with embedded YOLOv5 
model was connected to a PC and camera. The 
following is a detail of the embedded system:

4. To begin engagement with it. It is necessary 
to get the most recent operating system (OS) 
image known as Jetpack SDK. This software 
package encompasses the Linux Driver Pack-
age (L4T), which consists of the Linux oper-
ating system, as well as CUDA-X accelerated 
libraries and APIs. These components are spe-
cifically designed to facilitate Deep Learning, 
Computer Vision, Accelerated Computing, and 

Multimedia tasks. The website [44] provides 
comprehensive documentation, including all 
necessary materials and step-by-step instruc-
tions for utilizing the product. In this project, 
Ubuntu 20.04 has been utilized, encompassing 
the most recent iterations of CUDA, cuDNN, 
and TensorRT, which will be discussed in sub-
sequent sections [45].

5. A customized electrical board was designed 
as communication hardware between Jetson 
Nano and the robot manipulator. The com-
munication was done through GPIO (Gener-
al Purpose Input/Output) pins on the Jetson 
Nano device. This circuit board translates the 
output from GPIO inputs to the PLC control-
ler of the manipulator. A detail of electrical 
circuit board in presented in Figure 21. The 
board has three inputs and three outputs. The 
inputs were from the Jetson Nano machine 
vision image detection result represented in 
GPIO input and the outputs for the Mitsubi-
shi Electric Melfa RV-2F-1D1-S15 robot 

Figure 21. A customized electronic circuit board
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manipulator actuator. For example, if the 
NVIDIA Jetson Nano detect a sharp email, it 
will goes to GPIO input 1 and go through to 
output 1 in Mitsubishi Electric Melfa RV-2F-
1D1-S15 robot manipulator.

6. An image detection of the metal workpiece is 
shown. It was successfully detected as a sharp 
edge with a probability of 88%.

7. The manipulator has been programmed initial-
ly as an action of the image detection from the 
Jetson Nano.

8. The manipulator does the grinding process ac-
cording to the result of the Jetson Nano that 
has been interpreted by the customized elec-
trical circuit and the predetermined manipula-
tor program.

CONCLUSIONS

The tree DL methods (VGG-16, ResNet, and 
YOLOv5) with has potential application for ma-
chine vision technologies has been studied and 
examined. These vision algorithms were used to 
classify and detect three different edge conditions 
of metal workpieces i.e., sharp edge, chamfer 
edge, and burrs edge with a satisfactory result. 
Integration of embedded selected DL method i.e. 
YOLOv5 model in NVIDIA Jetson Nano micro-
processor with Mitsubishi Electric Melfa RV-2F-
1D1-S15 manipulator has also been presented. 
The embedded system and the integrated system 
were demonstrated in the lab experiment as a po-
tential machine vision approach for automated 
manufacturing process. For real application in 
practice or industry, the machine vision system-
based YOLOv5 algorithm is integrated with the 
robot manipulator as the actuator of the predicted 
outcome as demonstrated in this study.

The integration shows that the YOLOv5 
model in real-time image detection provides ef-
ficient results in identifying the suggested condi-
tions and classifying them correctly. The stability 
of this system also improved the efficiency and 
reliability of the automated system making them 
suitable for industrial applications, especially in 
manufacturing applications.

This study contribute in the development of 
the real-time machine vision system based on 
YOLOv5 and NVIDIA Jetson Nano in the lab ex-
perimental study. The machine vision system was 
successfully integrated with a Mitsubishi Elec-
tric Melfa RV-2F-1D1-S15 robot manipulator to 

perform automate grinding and chamfering. The 
future work of the study:
 • The present study used YOLOv5 for the em-

bedded machine vision algorithm, and will try 
YOLOv8 in the further study.

 • Three different edge condition were used in 
present study. As there are a number of edge 
condition in practice such as crack and chip, 
future study will use more than 3 different 
edge condition.

 • A similar size of the metal workpiece is main-
tain in the present study. In the future differ-
ent size (length, height, and weight) will be 
considered for the real-time machine vision 
system.

 • The Mitsubishi Electric Melfa RV-2F-1D1-
S15 robot manipulator, which is equipped 
with a chamfering tool attached to the tooltip, 
serves as the medium for automatic interven-
tion. The present study has successfully deliv-
er an experimental study. In the future, in the 
event of the presence of sharp edges or burrs, 
the manipulator employs a chamfering tool to 
modify the surface of the metal workpiece. 
This process is repeated until the edge of the 
metal workpiece becomes appropriately blunt-
ed, thereby effectively correcting the defect.

 • The most crucial challenges in incorporating 
AI and industrial robotics are safety and regu-
latory compliance. Safety concerns and adher-
ence to stringent regulatory standards are a 
necessity due to the designed system having 
to ensure protecting the workers; therefore, ro-
bust technology is a must.

 • Technological integration and compatibility are 
also essential challenges due to ensuring the 
seamless integration and compatibility between 
AI and robotics in existing industrial infrastruc-
ture, facing some challenges such as compatibil-
ity, feasibility, and upgrading feature availability.

 • From an economic perspective, there are po-
tential challenges that could be overcome; 
incorporating AI and robotics into industrial 
environments necessitates the amount of cost. 
Using this perspective in research opens the 
possibility through financial analysis like cost-
efficiency, cost-adjustment or cost-benefit.
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