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INTRODUCTION

Background overview

The growth of the Unmanned Aerial Vehicles 
(UAVs) market of various sectors, including agri-
culture [1-4], logistics [5], surveillance & moni-
toring [6], have changed these areas by enhancing 

efficiency and reducing the UAV operational costs 
[7]. As UAVs become more popular, the need for 
reliable and efficient energy management sys-
tems, is observed [8]. The energy consumption 
of UAVs directly impacts their flight duration and 
operational range, which makes the battery per-
formance a crucial factor for autonomous flights 
of these robots [9-10]. Lithium polymer (LiPo) 
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batteries are widely used, especially in commer-
cially available small drones due to the high en-
ergy density and low weight [11-12]. LiPo bat-
teries degrade with each charge-discharge cycle 
and hence lead to reduced flight times. This deg-
radation affects the performance and reliability 
of UAVs, and one needs to replace the batteries 
more often, which increase maintenance costs.

Given the critical importance of energy effi-
ciency in UAV operations, there is a strong need 
to develop predictive models that can accurately 
predict battery performance and degradation. 
Such models would enable drone operators to op-
timize flight planning, enable better battery man-
agement, as well as extend the operational usabil-
ity of UAVs. This study aims to address this need 
through machine learning techniques, specifically 
deep neural networks (DNNs), to analyze and 
predict the energy consumption and efficiency 
degradation of UAV batteries.

Literature review

The use of machine learning techniques to 
predict the remaining useful life (RUL) of Li-Ion 
batteries in UAVs is being explored intensively. 
Andrioaia et al. (2024) compared support vector 
machine for regression (SVMR), multiple linear 
regression (MLR), and random forest (RF) to pre-
dict the RUL [13]. The published research results 
showed that such models can be integrated into 
UAVs’ predictive maintenance systems to prevent 
autonomy loss and accidents.

Mansouri et al. (2017) worked on the RUL 
estimation problem using a linear sparse model, 
support vector regression, a multilayer percep-
tron, and an advanced tree-based algorithm [14]. 
The approach was tested under various flight con-
ditions and proved the effectiveness of machine 
learning in battery life cycle prognostics.

Manjarrez et al. (2023) proposed to use a 
fuzzy Takagi–Sugeno system optimized with 
particle swarm optimization to estimate energy 
consumption and flight time limits for UAV mis-
sions [15]. The methodology included an equiva-
lent circuit model of the battery and an extended 
Kalman filter to determine the battery charge and 
achieved a maximum prediction error of only 2%.

Tang et al. (2020) developed a power trans-
fer model-based method using a discrete-time 
state-space model to estimate the state of en-
ergy and predict the end of discharge time for 
Li-Ion batteries in rotary-wing UAVs [16]. The 

method integrated online measurements and a 
Particle Filter with Adam optimizer to enhance 
prediction accuracy. Ai et al. (2022) introduced 
a sequence-to-sequence model using a multilevel 
fusion transformer network to predict the RUL of 
agile UAVs [17]. The model achieved a predic-
tion precision of 83% within 60 milliseconds and 
outperformed similar methods by the incorporat-
ing of an external factor attention and multi-scale 
feature mining.

Current gap and contributed novelties

Despite the significant advancements in the 
field of UAV battery management and predictive 
analytics discussed in the literature, several gaps 
that impede the full optimization of UAV opera-
tions, can be noticed. Research to date has pri-
marily focused on the RUL prediction using vari-
ous machine learning techniques, such as SVMR, 
MLR, and RF. While these methods have dem-
onstrated effectiveness, they often lack the ability 
to accurately predict battery performance under 
dynamic and variable flight conditions, which is 
critical for daily UAV usage. Additionally, meth-
odologies that employed fuzzy systems and state-
space models have provided insights into energy 
consumption and flight time margins, however 
these approaches typically require complex pa-
rameter tuning and optimization, which may not 
be feasible in real-time applications. Although 
advanced models like sequence-to-sequence and 
transformer networks have shown promising re-
sults in RUL prediction, they are often computa-
tionally demanding and may not be suitable for 
all UAV platforms.

The current research gap lies in the need to 
propose a predictive model that combines accu-
racy, computational efficiency, and adaptability 
to various flight conditions. This study addresses 
these gaps by introducing a DNN model specifi-
cally designed to predict the energy consumption 
and efficiency degradation of UAV batteries. Un-
like traditional models, the DNN approach uses 
extensive, historical flight data to learn complex 
patterns and interactions within the battery’s dis-
charge cycles. Thus, offering precise and real-
time predictions. The novel contributions of this 
study include:

In-flight experiments with a hovering DJI 
Mini Combo 2 drone in the context of energy 
consumption. With the adaptation of a DNN, we 
achieved higher accuracy in predicting power 
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consumption and battery degradation which out-
performed traditional models. We proposed a 
comprehensive assessment on the performance 
degradation criteria of battery life cycle.

EXPERIMENTAL WORK

Selected drone and battery specifications

For this study, the DJI Mini 2 was selected 
[18-19], a widely recognized UAV that combines 
compact design with advanced technological fea-
tures. The DJI Mini 2 is known for its lightweight 
structure which is less than 249 grams that cor-
responds. Its mass, dimension and high portabil-
ity predefine it for various applications. Despite 
its small size, the drone is equipped with a 12 
MP camera capable of recording 4K video at 30 
frames per second, which ensures high-quality 
imaging. Regarding a flight performance, the 
drone offers a maximum flight time of 31 minutes 
under ideal conditions, which is achieved through 
its highly efficient power management system. It 
can reach a maximum speed of 16 meters per sec-
ond in sport mode and can resist wind speeds of 
up to 10.5 meters per second. The drone utilizes 
the OcuSync 2.0 transmission technology with a 
transmission range of up to 10 kilometers with 
strong anti-interference capabilities. Additional-
ly, it features dual-frequency (2.4/5.8 GHz) GPS 
+ GLONASS for precise positioning and stable 

hovering, with hover accuracy of ±0.1 meters 
vertically and ±0.3 meters horizontally. 

The power source for the DJI Mini 2 is a high-
capacity LiPo 2S battery (82.5 g weight), which 
is integral to its performance. The DJI Mini 2’s 
battery has a capacity of 2250 mAh and works at 
a voltage of 7.7 volts, providing 17.32 watt-hours. 
This battery supports up to 29 watts of charging 
power and is designed to operate within a tem-
perature range of 5 °C to 40 °C, ensuring reliable 
performance across various environmental condi-
tions. The battery also features built-in DJI Intel-
ligent Battery Management System, which con-
tinuously monitors the battery status and provides 
real-time data to optimize performance and safety.

In-flight experiments and data recording

In the experimental phase of this study, a se-
ries of 20 hover flights using the DJI Mini 2 drone 
to analyze its energy consumption and battery 
performance, was carried out. Each flight was ini-
tiated with the battery fully charged to 100% and 
continued until the battery level dropped to 27%. 
The UAV platform and battery location are shown 
in Figure 1. Hover mode (so-called altitude hold 
mode) was chosen to ensure consistent power us-
age and to minimize external influences that could 
affect the drone’s performance. During all flights 
in hover mode the altitude was set as 1.2 m above 
the ground. Moreover, in-flight experiments were 
conducted indoor in a noise-free room, where 
typical, observed in outdoor environmental 

Figure 1. UAV platform used for in-flight experiments: DJI Mini Combo 2 and its battery location
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effects, are very limited. It is worth mentioning 
that 27% was the percentage chosen to reach due 
to the memory capacity of the flight recordings 
excel file, which was necessary and scientifically 
enough for the current research.

During the flights, several critical parameters 
were recorded to provide a comprehensive dataset 
for analysis. These parameters included ambient 
and battery temperature, which were monitored 
to assess the impact of thermal conditions on bat-
tery performance. The current drawn by the drone 
was measured continuously to evaluate the power 
consumption during flight. Additionally, the re-
maining battery percentage was tracked in real-
time to understand the rate of battery discharge. 
The data collection was designed to capture the 
nuances of the battery’s behavior under con-
trolled conditions which provided how various 
factors such as temperature and current draw af-
fect battery efficiency and life. It is also important 
to point out that the UAV camera was operating to 
record the path for other purposes and research to 
be continuous with the current work, this means 
that the draining time of the battery was lessened 
due to the operating camera video.

Data collection and analysis

Data for this study was gathered using both 
the embedded flight logs of the DJI Mini 2 and 
the AIRDATA UAV platform [20–21]. The DJI 
Mini 2’s flight logs automatically record com-
prehensive telemetry data, as depicted in Figure 
2. This included battery status, flight duration, 
and power consumption metrics. This built-in 

capability ensures that all relevant data is cap-
tured accurately during each flight session.

To enhance the analysis, the flight logs were 
uploaded to the AIRDATA platform. AIRDATA 
provides advanced analytics and visualizations, 
allowing for detailed examination of the flight 
data. The platform offers tools to analyze tem-
perature variations, current draw, voltage fluctua-
tions, GPS coordinates, and battery health indica-
tors. Using AIRDATA’s capabilities, an in-depth 
analysis of the drone’s power consumption and 
battery degradation over the 20 flights was per-
formed. The integration of embedded flight logs 
and AIRDATA analytics ensured a comprehen-
sive data collection process. This data was cru-
cial for following training the DNN model. The 
details on the utilized DNN and methodology of 
predicting RUL is to be discussed next.

MATERIALS AND METHODS

Artificial intelligence (AI), particularly using 
DNNs, has revolutionized the field of predictive 
modeling and data analysis. In the context of UAV 
battery management, AI enables the development 
of sophisticated models that can predict power 
consumption and efficiency degradation with high 
accuracy. The ability to analyze complex patterns 
in large datasets allows DNNs to provide practi-
cal insights to optimize battery usage and extend 
the operational lifespan of UAVs. This predictive 
capability is crucial for maintaining the efficiency 
and reliability of UAV operations, especially in 
agriculture, logistics and industry, where precise 
energy management is prime important.

Figure 2. AIRDATA data access criteria
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The designed DNN for presented research re-
sults in this paper has two hidden layers to balance 
complexity and computational efficiency. The net-
work structure includes an input layer with five 
neurons that correspond to the input features: time 
(milliseconds), battery percentage, voltage of cell 
1, voltage of cell 2, and battery temperature. The 
first hidden layer consists of eight neurons with a 
Rectified Linear Unit (ReLU) activation function, 
followed by a second hidden layer with four neu-
rons, also using ReLU activation. The output layer 
has two neurons with which they represented the 
predicted total voltage and current, illustrated in 
Figure 3. This architecture was chosen to effec-
tively capture the nonlinear relationships between 
the input features and the target variables, while 
maintaining a manageable model size for real-
time applications. The following Table 1 summa-
rizes the architecture of the DNN.

The DNN was trained on data from 80% of 
the experimental 20 flights and validated on the 
remaining 20%. To account for the time-depen-
dent nature of the data, the sequential order of the 
flights was maintained in the training and valida-
tion datasets. This setup ensured that trends over 
time were learned by the model, enabling ac-
curate prediction of unseen data, including the 
100th flight.

To evaluate the performance of the DNN, 
several assessment metrics are used. These met-
rics provide a comprehensive understanding of 
the model’s accuracy and predictive capabilities 
[22]. The mean squared error (MSE) measures 
the average of the squares of the errors, giving a 
sense of the magnitude of prediction errors. The 
root mean squared error (RMSE) is the square 
root of MSE as it offers a more interpretable mea-
sure of error magnitude in the same units as the 
target variables. The mean absolute error (MAE) 
reflects the accuracy of predictions and the Mean 
Absolute Percentage Error (MAPE) is useful for 
understanding prediction accuracy in relative 
terms. The coefficient of variation of the root 
mean squared error (CVRMSE) standardizes the 

error measure by dividing the RMSE by the mean 
of the actual values [23]. Finally, the determina-
tion coefficient (R²) indicates the proportion of 
variance in the dependent variable that is predict-
able from the independent variables. All metrics 
used for complex assessment of model’s perfor-
mance are listed in Table 2.

The UAV power consumption is calculated 
using predicted values of voltage and current us-
ing Equation 1: 

Figure 3. DNN architecture

Table 1. DNN specifications
Layer Number of neurons Activation function

Input Layer 5 –

Hidden Layer 1 8 ReLU

Hidden Layer 2 4 ReLU

Output Layer 2 Linear

Table 2. Assessment metrics used in the research 
presented in paper
Assessment 

metric Mathematical expression 

MSE 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚 ∑𝑖𝑖=1

𝑚𝑚  (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 

RMSE 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √ 1
𝑚𝑚 ∑𝑖𝑖=1

𝑚𝑚  (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 × 100 

MAE 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚 ∑𝑖𝑖=1

𝑚𝑚  |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖| 

MAPE 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = RMSE
𝑥𝑥‾ × 100 

CVRMSE 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = RMSE
𝑥𝑥‾ × 100 

R² 𝑅𝑅2 = (∑𝑖𝑖=1
𝑚𝑚  (𝑥𝑥𝑖𝑖 − 𝑥𝑥‾)(𝑦𝑦𝑖𝑖 − 𝑦𝑦‾))2

∑𝑖𝑖=1
𝑚𝑚  (𝑥𝑥𝑖𝑖 − 𝑥𝑥‾)2 × ∑𝑖𝑖=1

𝑚𝑚  (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)2 
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	 Power (W) = Voltage (V) × Current (A)	 (1)
and the efficiency degradation can be then 

calculated using Equation 2: 

	

 

 

  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (W) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (V) × Current (A) (1) 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (%) = 

=  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (1𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡) −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑁𝑁𝑁𝑁ℎ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (1st Flight)‾ × 100 (2) 

 
 

	(2)

where:	n corresponds to the number of the flight.

In considered research to determine the RUL 
of the battery, the study simulates the conditions 
of the 100th flight and predict the time at which 
the battery will reach 27% capacity. Using the 
trained DNN, the model inputs the features of 
interest (time, battery percentage, voltage of cell 
1, voltage of cell 2, and battery temperature) and 
obtain the predicted output voltage and current. 
By integrating these predictions over time, the 
flight duration until the battery achieved 27% is 
estimated. The degradation of battery capacity 
is analyzed by the decreasing flight times within 
multiple cycles and UAV flights. By comparing 
the predicted time for the 100th flight to reach 
27% capacity with previous flights, the extent of 
capacity degradation can be quantified and pre-
dicted. This provides knowledge into the battery’s 
life and performance trends over time.

RESULTS AND DISCUSSION

Experimental results

The data in Figure 4 recorded from the 1st, 
10th, and 20th flights of the drone provide clear 
evidence of battery performance degradation over 
time. In the 1st flight, the drone took 1024.2 sec-
onds (17.07 minutes) to reach 27% battery capac-
ity. By the 10th flight, this time reduced to 999.8 
seconds (16.663 minutes), and further decreased to 

990.8 seconds (16.513 minutes) by the 20th flight. 
This progressive decline in flight time illustrates 
the typical behavior of LiPo batteries, which lose 
their capacity to hold a charge effectively with each 
charge-discharge cycle. The power consumption 
data shows a similar trend. During the 1st flight, 
the average power consumption was 41.195 watts. 
This value slightly decreased to 40.891 watts in the 
10th flight and further to 40.717 watts by the 20th 
flight. This minor reduction in power consumption 
can be attributed to the increasing internal resis-
tance within the battery cells, which leads to less 
efficient energy delivery over time.

The reduction in flight time, from 17.07 min-
utes in the 1st flight to 16.513 minutes in the 20th 
flight, highlights the need for accurate predictive 
models to forecast battery performance and en-
sure effective mission planning. By monitoring 
these parameters, UAV operators can provide op-
timal decisions about when to replace batteries or 
modify flight plans on the base of reduced battery 
capacity. To better show the progressing features, 
Figure 5 presents the experimental results for the 
1st, 10th, and 20th flights of the DJI Mini 2 combo. 
Figure 5a shows the total voltage by illustrating a 
gradual decrease over following flights. Figure 5b 
presents the remaining battery percentages as it 
indicates the reduced time to reach 27% capacity 
from 17.07 minutes in the 1st flight to 16.513 min-
utes in the 20th flight. The total current in amps is 
shown in Figure 5c, while in the Figure 5d the bat-
tery temperature during flight, respectively.

Prediction of battery performance

The results of the DNN prediction/forecasting 
for the battery performance metrics are summa-
rized in Table 3, which highlights key accuracy 
measures across following flights. Accordingly, 

Figure 4. Selected flights times to reach 27% of the total battery capacity
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the table outlines MSE, RMSE, MAE, MAPE, 
CVRMSE, and R² for voltage and current across 
the 1st, 10th, and 20th flights. For the voltage fore-
cast during the 1st flight, the model achieved accu-
racy with an MSE of 0.352%, RMSE of 0.593%, 
MAE of 0.324%, and a MAPE of 0.857%. The 
CVRMSE reached value 0.743%, and the R² value 
was 0.981. This indicates a very strong fit between 
the predicted and actual values. Conversely, the 
current forecast for the same flight demonstrated 
a higher level of error, with the MSE of 0.401%, 
RMSE of 3.632%, MAE of 1.353%, and a MAPE 
of 1.905%. The CVRMSE was significantly high-
er at 1.801%, and R² value was 0.952.

In the 10th flight, the voltage forecast results 
showed a slight increase in error metrics com-
pared to the 1st flight, with an MSE of 0.374%, 
RMSE of 0.612%, MAE of 0.341%, and a MAPE 
of 0.881%. The CVRMSE increased to 0.771%, 

and the R² slightly decreased to 0.973. The current 
forecast for the 10th flight showed improved ac-
curacy compared to the 1st flight, with an MSE of 
0.423%, RMSE of 1.654%, MAE of 0.366%, and 
a MAPE of 1.924%. The CVRMSE was 0.923%, 
and R² value equal to 0.951, indicating consis-
tent forecasting performance for the current. For 
the 20th flight, the voltage forecast maintained a 
similar trend with an MSE of 0.387%, RMSE of 
0.621%, MAE of 0.354%, and a MAPE of 0.889%. 
The CVRMSE was 0.781%, and the R² value was 
0.965, showing a slight decline in the model’s pre-
dictive accuracy over time. The current forecast 
for the 20th flight showed an MSE of 0.447%, 
RMSE of 3.668%, MAE of 1.379%, and a MAPE 
of 0.951%. The CVRMSE was 1.841%, and the 
R² value was 0.954, reflecting a high degree of ac-
curacy in the model’s current predictions. Above 
results are graphically presented in Figure 6, which 

Figure 5. Experimental results of the three selected flights recorded, namely 1st, 10th, and 20th, respectively: (a) 
total voltage in volts; (b) remaining battery in percentages; (c) induced total current in Amps; (d) temperature of 

the battery during the operation until the percentage drops to 27%

Table 3. Comparison table of DNN forecasting results
Forecasted 

feature Flight No. MSE (%) RMSE (%) MAE (%) MAPE (%) CVRMSE (%) R²

Voltage
1st

0.352 0.593 0.324 0.857 0.743 0.981

Current 0.401 3.632 1.353 1.905 1.801 0.952

Voltage
10th

0.374 0.612 0.341 0.881 0.771 0.973

Current 0.423 1.654 0.366 1.924 0.923 0.951

Voltage
20th

0.387 0.621 0.354 0.889 0.781 0.965

Current 0.447 3.668 1.379 0.951 1.841 0.954
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illustrates the total battery voltage regression lines 
for the 1st flight in Figure 6a, the 10th flight in Fig-
ure 6b, and the 20th flight in Figure 6c. The regres-
sion lines visually demonstrate the accuracy and 
predictive performance of the same DNN model 
across the different flight intervals.

Figure 7 illustrates the power consumption 
of the battery over a series of flights, specifically 
when the battery is drained until it reaches 27% 
capacity. The data points for the 1st, 10th, 20th, 
and 100th flights show a clear trend of decreasing 

power output over time. Initially, the power output 
starts at 41.195 watts for the 1st flight and gradu-
ally declines to 40.891 watts by the 10th flight 
and 40.717 watts by the 20th flight. By the 100th 
flight, the predicted power output further reduces 
to 40.313 watts. This descending trend shows a 
gradual degradation in battery performance, likely 
due to the wear and tear of the battery over mul-
tiple charging and discharging cycles.

Figure 8 demonstrates the efficiency degrada-
tion of the battery power over successive flights, 

Figure 6. Total battery voltage regression lines: (a) 1st flight; (b) 10th flight; (c) 20th flight

Figure 7. Power as a function of flight number
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starting from the 1st flight. The power output for 
the 1st flight is the baseline at 41.195 watts, with 
no degradation. By the 10th flight, the power has 
decreased to 40.891 watts, representing a 0.74% 
efficiency loss. This trend continues, with the 20th 
flight showing a 1.16% decrease in efficiency at 
40.717 watts, and by the 100th flight, the predict-
ed power output drops to 40.313 watts, marking 
a 2.14% efficiency degradation. These data high-
light the gradual decline in battery efficiency due 
to repeated usage.

CONCLUSIONS

In this study we investigated the energy con-
sumption and efficiency degradation of DJI Mini 2 
drone LiPo batteries using DNN to predict power 
and performance over multiple flights. The re-
search began with the collection of empirical data, 
recording voltage and current readings across 
different flight sessions to form a dataset. In the 
presented research we used statistics and machine 
learning models, including DNN, to forecast 
voltage and current values for the 1st, 10th, and 
20th flights with high accuracy. The DNN model 
demonstrated exceptional performance, as evi-
denced by low MSE, RMSE, MAE, MAPE, and 
CVRMSE values, alongside high R² values for 
both voltage and current predictions. For instance, 
the voltage prediction for the 1st flight had an 
MSE of 0.352%, RMSE of 0.593%, and an R² of 
0.981. Furthermore, the study assessed the power 
consumption trend across following flights, re-
vealing a steady descent in battery efficiency. The 
power output recorded was 41.195 watts for the 
1st flight, 40.891 watts for the 10th flight, 40.717 
watts for the 20th flight, and a predicted 40.313 

watts for the 100th flight. This gradual decline 
corresponds to an efficiency degradation of ap-
proximately 2.14% by the 100th flight.
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