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INTRODUCTION

Modern machine designs often aim for 
compact, slender structures and the use of ad-
vanced materials to increase working speed, 
save energy, and reduce inertia. However, this 
leads to significant deformation of compo-
nents, especially long, slender components or 
those moving at high speeds. Such deforma-
tion causes vibrations during operation, signif-
icantly increasing the reaction forces at joints. 
These vibrations also reduce precision in 
mechanisms requiring high accuracy and delay 
sequential operations due to the persistence of 
vibrations over a certain period. This necessi-
tates more accurate dynamic research methods 
that reflect the material properties and account 

for the effects of the deformation components 
of the mechanism.

Studies on flexible multibody dynamics have 
been conducted early [1-5]. To study this issue, 
scientists often start by constructing mathemati-
cal models from mechanical models. To construct 
mathematical models, studies mainly use three 
methods [1]: the floating frame of reference for-
mulation, linear theory of elastodynamics and fi-
nite segment method. The first method is the most 
commonly used. In this method, the large dis-
placements of the system and the deformations of 
elastic materials are determined using two sets of 
coordinates. The first set includes coordinates that 
define the position and orientation of the relative 
coordinate system attached to each elastic mate-
rial. The second set consists of elastic coordinates 

Dynamics modeling and analysis of six-bar planar linkage 
mechanism with flexible coupler-links

Sy Nam Nguyen1 , Duc Hieu Tran*1

1	 Hanoi University of Civil Engineering, Hanoi, Vietnam
* Corresponding author’s e-mail: hieutd@huce.edu.vn

ABSTRACT
Advanced materials are widely used in machine mechanisms, along with the requirement that the 

mechanical structure of the mechanism must be compact and slim to reduce inertia, save energy and 
increase working speed. However, this leads to elastic deformation affecting movement, accuracy and 
causing delays in sequential operations. In this paper, a six-bar linkage planar mechanism is combined 
from two four-bar linkage mechanisms. In which the connecting rods are considered as general elastic 
elements that are both compressive and bending. By representing the elastic rods by the modal synthe-
sis technology, combined with the use of multi-body dynamics methods, which are the multiplier La-
grange equations, the paper has established a nonlinear differential-algebraic system of motion. From 
this system of equations, the study has numerically investigated some cases of forward dynamics to 
make assessments and comments on the influence of elastic deformation on the motion, the accuracy 
of the working position of the mechanism, and the significance of numerical investigation in the design 
of mechanical structures. This dynamic model can be used for other problems such as periodic oscil-
lation of elastic mechanisms, linearization and investigation of motion stability, or control of motion 
and elastic oscillation. 

Keywords: constrained multibody systems, differential–algebraic equations, flexible mechanism, six-bar mecha-
nism, Watt II.

Received: 2025.01.06
Accepted: 2025.03.14
Published: 2025.04.01

Advances in Science and Technology Research Journal, 2025, 19(5), 31–45
https://doi.org/10.12913/22998624/201250
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal

https://orcid.org/0000-0002-7271-7030


32

Advances in Science and Technology Research Journal 2025, 19(5), 31–45

that determine the relative deformation of the 
elastic material within the coordinate system at-
tached to the material. The elastic coordinates can 
be represented using methods such as the compo-
nent mode method, the finite element method, or 
experimental identification techniques.

In systems with multiple elastic components, 
flexible robot manipulators have been studied the 
most extensively and comprehensively [1, 6, 7]. 
Research on elastic mechanisms, however, has 
primarily focused on simple mechanisms such 
as four-bar linkages [8-12], cam mechanisms 
[13-14], slider-crank mechanisms [15-16], cu-
lit mechanisms, or three-link mechanisms with 
internal driving links [17]. Sung and Chen [18] 
proposed an optimal control method to suppress 
vibrations in a four-bar hinged mechanism where 
the driven link (the actuated link) is an elastic 
member. They utilized piezoceramic sensors and 
an actuator mounted on the elastic link for control. 
However, the influence of elastic deformation and 
the control of the mechanism’s motion were not 
considered, as the authors used a model with only 
a single joint. Beale and Lee [15] studied the fea-
sibility of applying fuzzy control to a slider crank 
mechanism, a piezoelectric induction motor was 
placed on the elastic link to realize the control re-
quirements. Liao et al. [16] also proposed the use 
of piezoelectric membranes and designed a robust 
controller based on the linear state space model 
of the mechanism. The effects of parametric os-
cillations and instabilities caused by the control 
operation were studied. In the study of Karkoub 
and Yigit [9], the authors performed vibration 
control of a four-link mechanism with an elastic 
connecting rod subjected to bending only (ignor-
ing axial deformation) by applying a moment to 
the connecting link to limit the influence of elas-
tic deformation. The authors used a PD controller, 
to verify the effectiveness of the controller, the 
authors simulated the control of the mechanism 
at the equilibrium position when giving the con-
necting rod an initial bending deformation, re-
sulting in the deformation being eliminated, the 
mechanism remained in equilibrium. With the 
control of vibration through the guide, the control 
becomes much simpler. Khang et al. [10] studied 
the dynamics of a four-bar mechanism in which 
the connecting rod is subjected to both transverse 
bending and axial tension-compression. They 
controlled the vibrations of the mechanism via 
the driving link using a PD controller. In studies 
[20-23], the authors sought simpler solutions to 

such problems by linearizing the nonlinear equa-
tions of motion.

Studies on complex elastic mechanisms that 
are coupled from the above simple mechanisms 
have not received much attention due to the com-
plexity of elastic elements and the large amount 
of calculations, so they mainly focus on study-
ing the dynamics and control problems of rigid 
mechanisms. The article [24] studies and ana-
lyzes the kinematics of a six-bar linkage mech-
anism, the kinematic relationship between the 
input-output link and the actuator-output link is 
studied, in this study the links are solid objects. 
In the study [25], the machine mechanism is a 
combination of a four-link mechanism and a cam 
mechanism, in which the joint clearances and the 
elasticity of the connecting rod are considered. 
The authors use the Kean equation to establish a 
mathematical model, in which the finite element 
method is used in combination with the method 
of analysis in a specific form. Next, numerical 
surveys are carried out to make comments and 
evaluate the influence of clearances, elasticity 
and materials on the working accuracy when 
the mechanism moves quickly. The study [26] 
considers the influence of lubrication clearances 
and deformable components on the operation of 
a multi-link mechanism with the dynamic equa-
tion established by Lagrange multiplier method. 
In the study [27], the jumping ability of organ-
isms was modeled as a one-degree-of-freedom 
Watt-type six-bar mechanism. Each jumping leg 
consisted of multiple flexible links and a flex-
ible joint, leading to the establishment of a rigid-
flexible dynamic model. Based on this model, 
the impact of structural and installation param-
eters on jumping performance was analyzed. In 
[28], the authors utilized a complex mechanism 
consisting of a basic four-bar linkage combined 
with an additional structural group (resembling a 
slider-crank mechanism) to create dwell linkage 
mechanisms. However, this study did not inves-
tigate the deformation of the links.

The six-bar linkages mechanism are typical 
mechanisms in machinery, formed by two four-
bar mechanisms. It performs the function of con-
verting the rotary motion of the input shaft into 
the oscillating motion of the output shaft, with 
variable speed. Depending on the speed and the 
oscillation stroke of the output link, the geo-
metric dimensions and the arrangement of the 
mechanism’s links are designed. Such mecha-
nisms, when combined with cam mechanisms, 
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planetary gear systems, belt drives, and pulley 
systems, form various systems [24] for purposes 
such as: connecting air conditioning compressors 
to the main engine of automobiles, controlling 
valve motion in engines, powering lawn mowers 
or tractors, and improving the wheel drive sys-
tems of gardening equipment. In document [33], 
a six-bar mechanism is designed with a primary 
application that includes gripping empty bottles 
lying flat on an input conveyor, rotating, aligning, 
and placing them upright on another conveyor. In 
[34], six-bar linkages are the next basic single de-
gree-of-freedom closed kinematic chains after the 
four-bar linkage that are examined. They are clas-
sified into two main configurations: Watt chains 
and Stephenson chains. These two configurations 
give rise to five distinct types of six-bar link-
ages, referred to as Watt I, Watt II, Stephenson 
I, Stephenson II, and Stephenson III. This study 
focuses on the kinematic synthesis of rigid six-
bar linkages for function, motion, and path gen-
eration. These six-bar linkages were chosen due 
to their enhanced design flexibility compared to 
four-bar linkages. 

 Based on the study of reference documents, it 
is shown that the study of complex elastic mech-
anisms is very necessary to be studied, so this 
study builds a dynamic model for a six-bar link-
age mechanism with Watt II type that is coupled 
from two four-bar linkage mechanisms, in which 

the elastic components are connecting rods. The 
study uses the floating frame of reference formu-
lation method, the elastic components are repre-
sented by the method (modal synthesis technolo-
gy/component modes), from which the Lagrange 
multiplier method/ Lagrange’s equation with 
multiplier is used to establish the dynamic model. 
From this dynamic model, the study will conduct 
some numerical surveys to evaluate the influence 
of the elastic factor on the motion and working 
accuracy of the six-bar linkage mechanism.

MECHANICAL AND DYNAMICS MODEL

Mechanical model

The planar six-bar linkage mechanism with 
Watt II type is composed of two four-bar linkage 
mechanisms, one form of which has the diagram 
shown in Figure 1, where O1ABO2 is the first 
four-linkage mechanism, O2CDO3 is the second 
four-linkage mechanism. In this mechanism, O1A 
is the input crank (or input link), O3D is the output 
link, link AB and link CD are connecting rods.

In this mechanism, the long-links and slen-
der-links have a significant influence on the mo-
tion due to their deformation, so they are consi-
dered as flexible-bodies, such as the connecting 
rods (AB and CD). For links that are thick, short 

Fig. 1. Diagram of six-bar linkage planar mechanism

Fig. 2. Diagram floating frame of reference co-ordinates
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and rigid, their deformation affects the move-
ment of the mechanism insignificantly, so those 
links will be considered as rigid-links, such as 
the input-link O1A, the swing link O2BC and the 
output-link O3D. Thus, O1A-link is rigid-body 
with mass m1, center of mass C1, O1C1 = s1, angle 
AO1C1 = α1, subjected to driving torque τ. AB-link 
is flexible link with mass m2. O2BC-link is rigid link 
with mass m3, center of mass C3, O2C3 = s3, angle 
BO2C3 = α3, angle BO2C = β. CD-link is flexible 

link with mass m4. O3D-link rigid link with mass m5, 
center of mass C5, O3C5 = s5, angle DO3C5 = α5. The 
length of the links is O1A = l1, AB = l2, BO2 = l3, O2C 
= *

3l , CD = l4, O3D = l5, O1O2 = l0, O2O3 = *
0l .

Assume that: AB and CD are straight, ho-
mogeneous bars with constant cross-section, the 
axis of the bar coincides with the neutral axis 
when not deformed, the mechanism moves in the 
horizontal plane.

 

Dynamic model 
 To establish the dynamic model we use the floating frame reference method [1]. For elastic 

multibody systems with small elastic deformations, this method has many advantages such as: high 
accuracy, can use methods of multibody dynamics to establish dynamic equations of mechanicsm, 
dynamic equations written for rigid mechanicsm can be derived from equations written for elastic 
mechanicsm when the deformations are zero, etc. According to this method, the generalized coordinates 
that determine the movement of the links are the residual generalized coordinates because of the 
constrained multibody system. With the fix-coordinate system O1x0y0, the angles φ1, φ2, φ3, φ4, φ5 are 
the angles that determine the positions of the links as shown in Figure 1. 

Elastic links are continuous systems characterized by an infinite number of degrees of freedom. 
Therefore, these links are often discretized into a system of finite degrees of freedom. There are many 
discretization methods, in this study we will discretize the elastic term using the commonly used method, 
the Ritz – Galerkin method (one of the assumed modes method). In this method the deformation of the 
elastic link is usually represented by a finite sum of the products of the spatial-eigenfunctions and the 
amplitude-time components. 
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where: ( )iX x  and ( )iY x  are eigenfunctions (eigmodes) that satisfy the boundary conditions of the elastic 
connecting rods, and they are functions that can be determined based on these boundary conditions; 

( )iq t , ( )ip t  are modal coordinates-time dependent; i–order is the order of the expansions. 
To establish the dynamic equations of the constrained multibody system, we use the Lagrange’s 

equation with multiplier combined with the constraint equations to form a system of differential-
algebraic equations of motion. The equations of holonomic constrained multibody system with n 
generalized coordinates s1, s2, …, sn (residual generalized coordinates system) has the form [29]: 
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where: T is the kinematic energy of the system, *

kQ  is the generalized force corresponding to the 
generalized coordinates sk 

  *
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k
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= − +

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with Π being the potential energy of the system, kQ  is the generalized force of non-conservative forces, 
fi is the ith constraint equation, r is the total number of constraint equations, λi is the ith Lagrange 
multiplier. Thus, we have (n+r) differential-algebraic equations to determine n generalized coordinates 
and r Lagrange multipliers λi. 

Reference coordinate system Ax1y1 is attached to link AB with Ax1 ≡ AB (Fig.2a), Reference 
coordinate system Cx2y2 is attached to link CD with Cx2 ≡ CD (Fig.2b). Consider point M on link AB 
and point N on link CD with coordinates in the fixed coordinate system O1x0y0 as (xM, yM) and (xN, yN), 
respectively. In the reference coordinate systems, the point M has coordinates (x1 + u1, w1) and point N 
has coordinates (x2 + u2,w2). Points A and C have coordinates (xA, yA) and (xC, yC) respectively in the fixed 
coordinate system. We have the formula to determine the coordinates of points M and N: 
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The boundary conditions of the flex-links AB and CD:  

 + The transverse deformations at the two ends of the flex-links (in relative coordinate system) are: 
          ( ) ( )1 1 2 2 2 4 0, , 0, 0, , 0( ) ( )w t w l t w t w l t= = = =           (4) 
 + The longitudinal deformations at the two ends of the flex-links are: 
         ( ) ( )1 1 2 1 2 2 4 2 0, 0, , ; ,(  ) )0 0, ,(B Du t u l t u u t u l t u= = = =                (5) 
The constraint equations: 
        ( )1 1 1 2 1 2 3 3 0 1  – – 0     Bf l cos l u cos l cos l cos   = + + =       (6) 
      ( )2 1 1 2 1 2 3 3 0 1  – – 0Bf l sin l u sin l sin l sin   = + + =       (7) 

( )3 3 4 2 4 5 5 2  – – – 0( ) Df cos l u cos l cos cos    = + + =     (8) 
( )4 3 4 2 4 5 5 2  – – – 0( ) Df sin l u sin l sin sin    = + + =     (9) 

with *
3 = φ3 – β 

The kinematic energy of the system: 
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where: 
1OI , 

2OI , 
3OI  are the inertia moments of links O1A, BO2C, DO3 respectively; 1  and 2  (kg/m) 

are mass density of link AB and link CD respectively.  
 
Strain potential energy of flex-links: 

Using the Euler – Bernoulli beam theory for elastic links we have the strain potential energy: 
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     (11) 
where E1, A1, I1 and E1, A1, I1 are respectively the elastic modulus, cross-sectional area, cross-sectional 
moment of inertia of rod AB and rod CD. 

Assuming the deformation is small, transverse displacements do not affect longitudinal 
displacements and vice versa. Using the AMM, the transverse displacement and longitudinal 
displacement of the bars: 
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Using boundary conditions (4) and (5) we can derive the eigenfunctions: 
(1)
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Substituting from Eq. (13) to Eq. (16) and their derivatives into the expression (11) and potential 
energy expression (12) we have: 
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Expressions iX   and iY  are the derivatives of the corresponding functions with respect to variables xi, 
respectively. 
Generalized forces: The actuator torque τ of the motor is applied to the input link OA; the friction 
torques 

1 2 3
, andf f f   are located at the bearings O1, O2, O3 respectively. Ignoring friction at joints B 

and C. We have: 
1 3 51 53 ;  ;  f f fQ Q Q   = − =− =−  

Let sj be the generalized coordinates consists of the coordinates of the rigid-links φ1, φ2, φ3, φ4, 
φ5 and the modal coordinates of the elastic links qi, pk: 

1 3 2 4

(1) (1) (1) (2) (2) (2) (1) (1) (1) (2) (2) (2)
1 2 3 4 5 1 2 1 2 1 2 1 2... ... ... ...

T

N N N Nq q q q q q p p p p p p     =  s  
Calculate the derivatives for each generalized coordinate sj in turn, substitute it into (2) to obtain 

the system of differential equations from (36) to (46), combined with the algebraic equations (6) to (9) 
to form a system of differential-algebraic equations, represented concisely in the form: 

    1( ) ( ) ( , , )T
s t+ =M s s Φ s λ p s s   (18) 

    ( ) 0=f s    (19) 

where: ( )M s  is the mass matrix,  1 2 3 4( ) Tf f f f=f s  is vector of constraint equations, 

 1 2 3 4
T   =λ  is vector  of Lagrange multipliers, /s =  Φ f s  is the Jacobi matrix of vector f, 

1( , , )tp s s is vector the right-hand side of the equations.  
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The system of equations (18), (19) are general for mechanisms with transverse and longitudinal 
deformation of flex-links, simpler cases can be derived from the above system of equations. As in the 
case of the rigid mechanism (all links are rigid), we replace the deformation variables with 0, then we 
obtain the system of equations written for the rigid mechanism from (47) to (51) (Appendix B) and the 
connecting equations from (52)  to (55) written in the form:  

   1( ) ( ) ( , , )
R R

T
R R R s R R R t+ =M s s Φ s λ p s s      (20) 

   ( ) 0R R =f s     (21) 

where:  1 2 3 4 5
T

R     =s ,  1 2 3 4
Tλ λ λ λ=λ ,  1 2 3 4

T
R R R R Rf f f f=f  and 

R

R
s

R


=


fΦ
s

 

are the vectors of the rigid mechanicsm, respectively. 
 
Dynamics analysis 

The dynamic model is converted into a general form (18), (19) written for  constrained multibody 
systems, this is a familiar system of equations for a multibody dynamics [1-3]. The system of Eqs. (18) 
and (19) is very complicated, the analysis of dynamic response can only be solved by numerical 
methods. There are many ways to solve the above system of equations such as direct solution method, 
Lagrange multiplier separation method, Lagrange multiplier partition method [29, 30]. These are 
commonly used methods. The complexity of the calculation and the calculation time depend on the 
complexity of the model. The model in this study is quite complex, so the numerical calculation is also 
relatively complex and time-consuming. In this paper, the Lagrange factor partition method is used. 

Differentiating Eq. (20) with respect to the time t, we get the equations 

                        ( ) ( )s


= = =

ff s s Φ s s 0
s

      (22) 

                  ( ) ( ) ( )s s= + =f s Φ s s Φ s s 0    (23) 
where rxn

s Φ . From  (23) we deduce: 
                             2( ) ( , )s s= − =Φ s Φ s s p s s     (24) 

Equations (18) and (24) are rewritten in matrix form as follows: 

                          1

2

T
s

s

=    
        

psM Φ
pλΦ 0

                                            (25)  

When using numerical methods to solve differential-algebraic equations, due to calculation errors 
after each integration step, the values ( ) ( ),k kt ts s  at time tk no longer satisfy the position and velocity 
constraint equations: 

                            ( )i f s 0 , ( )i f s 0 (i = 1, 2,...)     (26) 

According to Baumgarte method [29, 31], instead of solving Eq. (23), we will solve the equation: 

                                    
22 , 0, 0   + + =  f f f 0                                    (27)  

The terms 22 f and f act as control terms. By solving Eq. (27) instead of Eq. (24), we can minimize 
the accumulated error during the integration process. When we choose α and β as positive constants, we 
can deduce from the system of Eq. (27):                          

                                    f → 0  when t → ∞.  

Then the constraint equation f = 0 will be better guaranteed at each calculation step. For constrained 
multibody systems, this is a key issue when solving the number.  

Substituting Eq. (24) into Eq. (27) we get: 
2( ) 2 ( ) ( )s s s = − − −Φ s Φ s s Φ s s f s                               (28) 

Put 
2 1

2 2( , ) ( ) 2 ( ) ( ), ( , ) rx
s s = − − − p s s Φ s s Φ s s f s p s s  

Thus, the system of equations (25) has the form: 

                               1

2

( ) ( ) ( , , )
( ) ( , )

T
s

s

t+ =
=

M s s Φ s λ p s s
Φ s s p s s

         (29) 
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Case 1. Numerical calculation results when t0 = 
3.5Nm, T = 1s

Discussion 1:
+ The figures from Fig. 3a to Fig. 3g are the 

dynamic response of the mechanism over time 
when the acting force has the form as in expres-
sion , in which the amplitude of the starting torque 
is chosen . Nmt =0 3 5 , the period sT = 1 , besides 
that the bearing friction is ignored. The analysis 
time is 3 second . The results show that:

     To partition the Lagrange multipliers, we use the orthogonality theorem [29, 30] as 
           s =Φ R 0  or T T

s =R Φ 0                                              (30) 
Multiplying both sides of the first equation of (29) by TR and using the formula (30) we get: 
                     1( ) ( , , )T T t=R M s s R p s s         (31) 
                                2( ) ( , , )s t=Φ s s p s s                             (32) 

Equations (31) and (32) are ordinary differential equations of generalized coordinates s. Numerical 
solutions to these equations can be done by Newmark, Runge-kutta 4th-order, Runge-Kutta-Nÿstron, 
etc. methods. However, this is also very time-consuming due to the difficulty of the differential 
equations. 

The analysis of the forward dynamic response and elastic vibration is performed as follows: 
 + Using the first three modes in the formulas (12) and (13), i.e. N1 = N2 = N3 = N4 = 3, the 

coefficients are determined as the formulas from (56) to (69) (Appendix C). We know that the 
deformations are only concentrated in the first mode, the following modes are very small compared to 
the first mode, decrease very quickly when the order of modes increases and are insignificant. Most 
previous studies often use one first mode. 

 + To compare the motion of flexible mechanism and the motion of rigid mechanism, this paper 
performs simultaneous numerical calculations for rigid mechanisms whose dynamic equations have 
been described by the differential-algebraic equations from (47) to (55).  
  + The parameters of mechanism [32]: l0 =0.3m,  *

0l =0.3m, l1 = 0.055m, l2 = 0.259m, l2 = 0.2m, 
l4 = 0.258m, l5 = 0.22m, C1(ξ11,η11) = (0.0235, 0) m, C2(ξ22,η22) = (0.134,0) m, C3(ξ33,η33) = (0.115, 
0.0265) m, C4(ξ44,η44) = (0.132, 0) m, C5(ξ55,η55) = (0.113, 0) m, β = 0.3rad, m1 = 3.02kg, m2 = 0.165kg, 
m3 = 1.84 kg, m4 = 0.163kg, m5 = 1.35kg, IO1 =51x10-4kgm2, IO2 =183x10-4kgm2, IO3 =115 x10-4kgm2, E1 
= E2 = 2.1x1011kgm-1s-2, A1=81x10-6m2 and A2 = 80.5x10-6m2, I1 =5.22x10-10 m4  and I2 =5.15 x10-10m4, 
θ1 = θ2 = 0 rad. 

 + For numerical simulation, the torque acting on the input crank OA is given by: 

 0 sin(2 / )( )
0

t T t Tt
t T

  =  
      (33) 

where τ0 is the amplitude, T is the period of the driving torque. Bearing frictions are neglected. 
 + Initial conditions. Position and velocity at initial time: 

     • At the initial moment, the mechanism is stationary at the angular position φ1(0) and angular 
velocity, we choose: 

 φ1(0) = 0, 1(0) 0 =  (34) 
 • The deformation and deformation velocity at the initial time are chosen to be zeros because 

the mechanism is not moving yet: 

   
(1) (2) (1) (2)

(1) (2) (1) (2)

(0) (0) (0) (0) 0

(0) (0) (0) 0, (0) 0
i i i i

i i i i

q q p p

q q p p

= = = =

= = = =
                                     (35) 

From the Eqs (6) to (9), using the Newton-Raphson method we can solve for the initial values: 
( ) ( ) ( ) ( )2 3 4 50 0.8523( ), 0 1.7952( ), 0 0.0280( ), 0 1.9754( )rad rad rad rad   = = = =  

Case 1. Numerical calculation results when . Nm, sT = =0 3 5 1  
 
 
 
 
 
 
 

 

 + The angle of links of the elastic mechanism 
are solid lines, while the angle of links of the rigid 
mechanism are dotted lines (from Fig. 3a to Fig. 
3c). Thus, the motion of the elastic mechanism has 
deviations and significant delays compared to the 
rigid mechanism. In which the deviation of the 
output links (link 3, link 5) are more obvious than 
the input link (link 1). This can be explained by 
the fact that the deformation of flexible link 2 and 
flexible link 4 directly affects the motion geometry 
of output links and indirectly affects the input link.
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+ In Fig. 3d and Fig. 3e are the transverse 
deformations of flexible connecting rods AB and 
CD at the middle positions of the rods, and in Fig. 
3f and Fig. 3g are their longitudinal deformations 
at the end points of those bars (point B and D). 
We see that: 

During the time of driving torque (0 t T≤ ≤ ) 
these deformation components are significant, 
they have shapes corresponding to three frequen-
cies of three excitations: the period of the driv-
ing torque, the period of movement of the elastic 
connecting rod and the natural frequency of that 
connecting rod.

When the torque is no longer applied (t T> ), 
the mechanism moves according to inertia, the 
connecting rods still oscillate elastically, these 
are free vibrations, the frequency of oscillation 
depends on the specific properties (stiffness and 
mass) of the flexible links. These elastic deforma-
tions are relatively small compared to the time the 
torque remains applied.

The amplitude of bending deformation is 
much larger than the longitudinal deformation, 
for example, the maximum deformation value of 
bar CD is about w2max = 0.68 mm, the maximum 
longitudinal deformation u2max = 0.025 mm. This 
can be explained by the fact that the bending stiff-
ness (EI) is much smaller than the longitudinal 
stiffness (EA).

Case 2. Numerical results when increasing the 
amplitude of the driving torque Nm, sTt = =0 5 1

Discusstion 2. The figures from Figure 4a to 
Figure 4f are the dynamic responses of the me-
chanism when increasing the amplitude of the 
driving torque. The results show that:

 + When the amplitude of the driving torque 
increases, the angle deviation of the links increas-
es (see the excerpt in Figure 4.b), the deformation 
of the connecting rods increases significantly (see 
Fig. 4c to Fig. 4f), for example, connecting rod CD 
has the largest bending deformation w2max = 1.65 
mm, the largest longitudinal deformation u2max = 
0.055mm. The reason is that when the amplitude 
of the driving torque increases increases, in addi-
tion to the direct force increasing, the speed of the 
mechanism’s movement also increases, leading to 
increased deformation.

 + When the applied force is no longer ap-
plied (t T> ), the mechanism moves according to 
inertia, the elastic deformations during this period 
have increased significantly compared to Case 1. 

The inertial movement of the mechanism and the 
vibration of deformations are not damped over 
time, the reason is that we have ignored the exter-
nal resistance of the mechanism (bearing friction) 
and ignored the internal resistance of the connect-
ing rods (internal friction). But even in the case of 
considering the internal resistance of the connect-
ing rods material, these elastic vibrations will still 
exist for quite a long time because this resistance 
is very small. 

Case 3. Numerical results when increase the 
duration of the driving torque Nm, . sTt = =0 5 1 2

Discusstion 3: When the torque duration in-
creases from T = 1 s to T = 1.2 s (the amplitude 
remains unchanged), the deformation componen-
ts increase significantly as shown in Figures 5d to 
5g. For example, compared to case 2 when this 
time period has not been increased, the maximum 
value of bending deformation w2max of link CD in-
creases from 1.65 mm (Fig. 4d) to 3.8 mm (Fig. 
5e), the maximum value of longitudinal deforma-
tion u2max increases from 0.055 mm (Fig. 4d) to 
0.085 mm (Fig. 5g). When the deformation of the 
components increases significantly, the position 
error and delay of the links also increase rapidly 
as shown in Figures 5a to 5c. The reason is that 
when increasing the time of force application, the 
speed of the mechanism also increases. In Figure 
5c, we can see that the movement of link 5 shows 
signs of motion instability.

From the survey of the above cases, it can be 
seen that it is possible to rely on numerical survey 
to find the conditions (elastic link size, working 
speed of the mechanism, etc.) for the deformations 
of the bars within the allowable limit. As in Case 2, 
the ratio between the length of the connecting bar 
CD and its deflection is l4/w2max = 259/1.65 = 158.5 
times, in Case 3 this ratio is l4/w2max = 259/3.8 = 
68.1 times. Thus, in case 2 the deflection is still 
within the allowable limit (usually in design this 
ratio can be selected from 150 to 200), but in case 
3 the deflection has exceeded the allowable value. 
In the design of the mechanism, this dynamic de-
flection cannot be determined without solving this 
general dynamic problem.

The calculation results for this elastic mecha-
nism are compared with the corresponding rigid 
mechanism model, which also shows that this 
elastic model is reliable: when the applied force is 
small (case 1), the movement of the elastic mech-
anism deviates little from the rigid mechanism 
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and increases when the applied force and force 
application time increase (Case 2 and 3).

Case 4. Survey with damping. Driving torque 
parameters Nm, . sTt = =0 5 1 2 . The resistance 
torques acting on the bearings are selected as:

, ,f f ft α ϕ t α ϕ t α ϕ= − = − = −
1 3 51 1 3 3 5 5  

[ ]1 3 5= = =0.01 Nmsα α α .
Note that in this study this friction forces are 

tentatively chosen for numerical investigation. 

Discussion 4: In the Figures 6a to 6d, the dy-
namic responses of the mechanism when there is 
friction resistance at the bearings. In Fig. 6a, we 
see that bearing friction affects the movement of 
the input link the most. Fig. 6c and Fig. 6d of the 
link CD are reduced compared to those without 
friction (in Case 3). The signs of motion insta-
bility as mentioned in Case 3 are also gone, the 
free deformations are still maintained but redu-
ced. Thus, these resistance components contri-
bute to reducing the influence of deformation on 
the movement of the output link. 
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CONCLUSIONS

 With the aim of investigating the influence of 
elastic deformation on motion, working accuracy, 
and motion delay, this study developed a dynamic 
model for a flexible six-bar linkage mechanism 
based on a selected mechanical model formed by 
coupling two four-bar linkage mechanisms. This 
model was then used to analyze the motion of the 
flexible mechanism and compare it with that of 
a rigid mechanism. The results draw some com-
ments as follows:

1.	The dynamic model of the elastic mechanism 
is built as a general model and reliable mod-
el, with elastic connecting rods, the system of 
equations describing the motion is a system 
of nonlinear differential-algebraic equations. 
Simpler cases such as rigid mechanisms, elastic 
mechanisms with connecting rods considering 
only bending deformation, elastic mechanisms 
with connecting rods considering only longitu-
dinal deformation can all be derived from the 
above general system of equations.

2.	From this system of dynamic equations, we can 
use it to: investigate the dynamic response of 
the mechanical system; investigate the periodic 
oscillation of the elastic mechanism; linearize 
and investigate the stability of the motion; or 
control the motion and elastic oscillation of the 
mechanism to move as desired.

3.	Numerical simulation results for several cases 
indicate that the motion of the flexible mecha-
nism exhibits significant deviation and delay 
compared to the rigid mechanism. Among 
these, the deviations of the output links (3, 5) 
are more pronounced than those of the input 
link (1). During the force application period 
( 0 t T≤ ≤ ), the deformation components are 
considerable, corresponding to three frequen-
cies: the excitation frequency of the driving 
torque, the motion frequency of the connecting 
rod, and the natural frequency of the connecting 
rod. After the force application ends ( t T> ), the 
connecting rods continue to exhibit elastic os-
cillations, and the elastic deformations remain 
significant during this period, especially when 
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the driving torque or force application duration 
increases. This is because such increases lead 
to higher mechanism motion speeds. Analyz-
ing the elastic oscillations of the flexible con-
necting rods can provide insights for designing 
mechanisms in terms of strength, deflection, and 
other parameters, or determining the maximum 
allowable operating speed for the mechanism.

4.	This study is limited to numerical investiga-
tions of the forward dynamics of the mecha-
nism. Research on inverse dynamics, motion 
control, and vibration control can also be con-
ducted based on the developed dynamic model. 
These topics are highly interesting but relative-
ly complex due to the challenges posed by the 
extended coordinates of the flexible mecha-
nism, which include elastic deformations that 
are difficult or impossible to control directly. 
As such, controlling flexible mechanisms can 
be classified as underactuated control.
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