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INTRODUCTION

The constant growth of the market for elec-
trotechnical devices in various areas such as elec-
tromobility, medical technology, and renewable 
energies requires powerful and reliable electrical 
energy storage systems. The material from which 
these energy storage devices are made plays a 
major role in their performance [1]. Ceramics are 
used in a wide variety of applications due to their 
chemical, thermal, and mechanical resistance, as 
well as their high electrical resistance. These prop-
erties offer great potential for lithium-ion batteries 
(LIB) as energy storage devices. In LIB, ceramics 
are used as components of the electrodes, which 
significantly influence the battery’s performance.

Battery production is complex and consists of 
many steps. If a defective electrode is not identi-
fied and removed during the production process, 
it can result in high costs, as the defects may only 
become apparent later in the production cycle. If a 
defective battery passes quality tests, it can cause 
substantial material damage in its environment [2, 
3]. Therefore, it is essential to enhance production 
processes to be more efficient and sustainable. The 
coating process is particularly critical, with a high 
scrap rate of 2–5% and accounting for 20–40% of 
the total manufacturing cost. Surface defects oc-
curring during the coating process are especially 
critical for the performance and safety of the bat-
tery cell and must be detected. To address this, it 
is necessary to implement an inspection system, 
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particularly for defect detection, in the electrode 
production line to ensure the quality of elec-
trodes used in batteries. Research in the field of 
defect detection is continuously evolving. Early 
research designed CNN models to detect objects 
in visual data. This detection method was based 
on a two-step process: the first step suggested re-
gion proposals, which were then classified into 
labels in the second step. This method, known as 
Regions with CNN features (R-CNN), was intro-
duced by Girshick et al. [4]. Improved versions of 
this approach include Fast R-CNN [5] and Faster 
R-CNN [6], which offer better optimization and 
real-time object detection capabilities.

The evolution in object detection continued 
with the development of the one-step detector, 
you look only once (YOLO) [7]. YOLO is a deep 
learning algorithm developed for real-time ob-
ject detection. It employs a single convolutional 
neural network (CNN) model for end-to-end 
object detection by regressing bounding boxes 
as Regions of Interest (RoI). Unlike traditional 
CNN-based object detection algorithms such as 
the R-CNN family, YOLO treats object detec-
tion as a regression problem. The input image 
undergoes a single inference to determine the lo-
cations and the classes of all objects within the 
image, along with their respective confidence 
probabilities. YOLO offers several advantages, 
including fast detection speed, low background 
false detection rate, and strong generalization 
ability, making it an appropriate model for in-
dustrial applications. The success of this model 
has led to the creation of an entire family of 
similar and improved models. For example, an 
improved YOLO model applied to detect defects 
on steel strip surfaces achieved a 99% detection 
rate at a speed of 83 fps [8]. Similar solutions 
based on YOLOv3 achieved a precision of 79% 
[9]. The application of an LF-YOLOv4-based 
model demonstrated elaborate surface defect de-
tection in LIB electrode [10]. The comparison 
of YOLO-based models has become a focus in 
defect detection research. One study describes 
a YOLOv5 model deployed to capture defects 
on coated electrode surfaces, identifying the ex-
act areas with defects using Canny Edge Detec-
tion [11]. Another application of the newer YO-
LOv8 model trained to detect eight types of de-
fects on battery separators achieved a precision 
of 92.20% [12]. While YOLO-based models 
are single-stage detectors, two-stage detectors 
are primarily based on R-CNN variations. An 

improved Faster R-CNN model trained to de-
tect defects in LIB electrodes coatings achieved 
a precision of 97.2%, compared to YOLOv3’s 
84.2% and SSD300’s 77.00% [13].

In addition to these models, anomaly detec-
tion is another approach to capturing defects. 
Applications on the MVTech database (carpet), 
acne patches, or PCB fiberglass substrates il-
lustrate this approach [14]. One study proposed 
the inspection of aircraft components using an 
autoencoder, demonstrating good reconstruction 
ability with defect-free samples, though not as 
effective with defected samples [15]. The ad-
versarial autoencoder applied within industrial 
applications identifies defective and defect-free 
samples, overlaying detection results over the 
input to pinpoint defects [16]. Another appli-
cation describes defect detection on metallic 
surface parts using an autoencoder, classifying 
anomalies based on type and severity [17]. The 
main deficiency of anomaly detection is the lack 
of labeled information about the anomalies.

To address these limitations, a new approach 
called U2S-CNN combines the benefits of super-
vised and unsupervised methods for defect detec-
tion [18]. This method uses an autoencoder trained 
on unlabeled data, followed by clustering and 
classification performed by a classifier trained on 
labeled data [19]. A very similar solution, SIGMA 
(Spectral Interpretation Using Gaussian Mixtures 
and Autoencoder), was developed by Dr. Tung et 
al. from the University of Cambridge. This analy-
sis tool comprises three steps: an autoencoder 
(Unsupervised learning), a clustering process 
using Gaussian mixture modeling (GMM) (Un-
supervised learning), and non-negative matrix 
factorization. The tool aims to provide material 
analysis by isolating background-subtracted EDS 
spectra of individual phases [20, 21].

The current state of the art in defect detec-
tion primarily relies on YOLO models. While ef-
fective in detection, defect detection differs from 
standard object detection in its need to capture 
unknown shapes and patterns not included in the 
training dataset. To address this, a second branch 
of research focuses on anomaly detection, which 
does not generate annotated outputs for defects 
but instead identifies anomalies. Our proposed 
method, based on U2S-CNN, aims to combine 
the advantages of both approaches to achieve 
better results and supplement the deficiencies of 
existing methods, ensuring successful industrial 
deployment of inspection systems.
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SOURCE OF DATA – LASER SPECKLE 
PHOTOMETRY 

The production of LIB is a highly specific and 
technologically demanding process. A common 
approach to addressing the challenges in elec-
trode inspection is the implementation of inline 
optical sensor systems, which enable automatic 
and continuous surface inspection within the pro-
duction line. This approach allows for the early 
identification of scrap, thereby preventing mate-
rial- and energy-intensive processing through 
the targeted removal of defective electrodes. De-
tecting surface defects across the entire coating 
width at high web speeds, in real time, and with 
high resolution is a significant challenge. In par-
ticular, the identification of low-contrast defects 
in the micrometer range is often inadequate with 
conventional optical inspection systems using an 
LED lighting unit due to the rough coating sur-
face. An innovative solution to this problem is the 
use of Laser Speckle Photometry (LSP), devel-
oped at Fraunhofer IKTS-MD. In LSP technol-
ogy, a laser source is used to illuminate inspected 
objects instead of the LED illuminations in the 
conventional optical inspection systems. Due to 
the high spatial and temporal coherence of laser 
source, speckle patterns regarding as the “finger-
print” of are generated providing the texture char-
acterizations of surfaces being inspected. LSP 
captures and analyzes the laser speckle pattens as 
the detection signal and is applicable to all classes 
of LIB electrodes [22, 23]. 

SAMPLES AND DATA PREPARATION

LIB consist of two electrodes, each with a 
current collector, a separator that separates the 
electrodes, and an ion-conducting electrolyte 
liquid in the spaces between the electrodes. LIB 
production can be divided into three main stages: 
electrode production, cell assembly, and forma-
tion. The electrode production process is particu-
larly complex. Both the anode and cathode un-
dergo similar steps but use different materials and 
carrier foils. The production process of electrode 
includes four key steps: mixing all components, 
coating the carrier film, drying the coated sub-
strate, and calendaring. Coating is performed in 
a roll-to-roll (R2R) process, either intermittently 
or continuously, depending on the system. After 
coating, the coated carrier film is passed through 

a dryer. According to a roadmap published by the 
German Engineering Federation (VDMA), the 
coating width of carrier films is expected to ex-
tend up to 2000 mm by 2030, with coating speeds 
reaching up to 100 m/min if possible [3].

Each step in the production process has the 
potential to introduce defects that can significant-
ly impact the quality of the electrode surface, and 
consequently, the performance of the final prod-
uct. During the slurry preparation, material clumps 
(agglomerates), air inclusions, or impurities from 
previous slurries can occur. These issues can lead 
to clogging of the coating tool during the coating 
process, resulting in coating-free stripes or holes 
due to burst air bubbles on the carrier film [24]. 
Cracks are a major problem during the drying 
phase, often arising from improperly set machine 
parameters such as film speed and drying oven 
temperature, or from an incorrect slurry recipe.

The samples used in this study are uncalen-
dared lithium titanate oxide cathodes and graphite 
anodes applied to 20 μm thick aluminum foil and 
copper foil respectively, containing agglomerates 
and other defects such as cracks, pinholes, line 
defects, and foreign particles. A 10 cm segment 
was cut lengthwise from each sample, to be used 
later as test material for model evaluation, while 
the remaining part was used for training. The test 
material was strictly not used in training to ensure 
the validity of the evaluation results.

Initially, electrode samples with predeter-
mined defects were measured using LSP. The 
acquired speckle images were then meticulously 
labeled through manual annotation using Label 
Studio software. During the labeling phase, both 
the position and size of defects (bounding box) 
were systematically recorded image by image. 
Following the labeling process, images contain-
ing the associated defect information were inte-
grated into a model for subsequent training. The 
defects data used obtained by LSP are listed in 
Table 1. The annotated data includes 17.545 oc-
currences of defects across 4.684 image samples.

DETECTION IN ELECTRODE SURFACE 
FOR BATTERY INDUSTRY

U2S-CNNv2 method

For defect detection in the battery industry, 
we applied the U2S-CNN method [19], which has 
been improved for this specific application. This 
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method comprises three parts: an autoencoder, 
clustering using Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [25], 
and a classification neural network (classifier).

Autoencoder

The autoencoder was designed with an input 
layer of shape 640 × 640 × 3. The first four layers 
(shown in blue in Figure 1) are convolution 2D 
layers with 8, 32, 64, and 128 filters, respectively. 
The decoding part consists of four conv2DTrans-
pose layers with 128, 64, 32, and 3 filters. The 
output layer is in the shape of 640 × 640 × 3. The 
primary purpose of the autoencoder is to train 
on correct samples of electrodes. During the re-
construction process, defects are replaced by the 
correct patterns of electrodes. The main improve-
ments include higher resolution, a shallower ar-
chitecture, and the use of transpose convolution 
neural networks. The training process involved 
821 samples, separated into 80% training and 
20% validation samples. The accuracy reached 

only 32%. The output from the autoencoder is 
used in the Loss function (Figure 1), which iden-
tifies the most different pixels between generated 
and inspected pixels. These differing pixels are 
then input for the clustering process.

Clustering

In the comparison process, anomalies (pixels 
with significantly different values) are separated 
into logical groups, or clusters. These clusters are 
the result of the clustering process performed by 
DBSCAN. This process groups pixels into clusters 
based on two conditions: the Eps-neighborhood of 
a point (denoted as Eps) and the condition of having 
at least a minimum number of points (denoted as 
MinPts). Based on these two parameters, pixels (or 
points) are categorized into three types: core points, 
border points, and noise. A point is classified as a 
core point if its Eps-neighborhood contains more 
than MinPts points. If it does not meet this condi-
tion but is still within the Eps-neighborhood of a 
core point, it is categorized as a border point. Points 

Table 1. Summary of defects in training dataset and corresponding descriptions

Defect type Description Example image
Class

Defect 
type Description Example image

Class
Num. of 
defects

Num. of 
defects

Agglomerate
A ball-like 

gathering of 
particles

0

Crack-
trans

Cracks along 
the transversal 

direction of 
electrode foil

5

2,087 1,976

Pinhole-long

Oval pinhole with 
its long semi-axis 
along the running 

direction of 
electrode foil

1

Line-long

Line defects 
along the 

running direction 
of electrode foil

6

1,919 1,791

Pinhole-
trans

Oval pinhole 
with its long 

semi-axis along 
the transversal 

direction of 
electrode foil

2

Line-
trans

Line defects 
along the 

transversal 
direction of 

electrode foil

7

1,756 1,742

Pinhole-
round Round pinhole

3

Line-Diag

Line defects 
along the 
diagonal 

direction of 
electrode foil

8

2,590 862

Crack-long
Cracks along the 
running direction 
of electrode foil

4

Foreign 
particle

Contamination of 
foreign particles

9

974 1,848
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that do not satisfy either condition are categorized 
as noise [25]. From these clusters, Regions of Inter-
est (RoIs) are obtained. These RoIs are resized to 
224 × 224 × 3 for the classification process.

Classifier

The previous classifier, based on the Xception 
architecture [26], was replaced by a custom archi-
tecture. The previous version used an input layer 
of shape 71×71×3. The new design architecture, 
with an input layer of shape 224×224×3, is bet-
ter suited for these purposes and achieves better 
results with higher resolution. The new classifier 
contains six conv2D layers and four fully connect-
ed layers. The output is in the form of 11 classes, 
corresponding to 10 types of defects and one class 
for good samples detected in this experiment. The 
last class was added to identify incorrect recon-
structions detected as anomalies in the second 
step. To avoid labeling correct samples as defects, 
it is necessary to train the classifier on good sam-
ples as well. A detailed and schematic illustration 
of the entire U2S-CNNv2 is in Figure 1.

The entire process of applying U2S-CNNv2 
is illustrated in Figure 2. Figure 2a shows an im-
age with captured defects in the coating of an 
electrode, represented as black entities on the sur-
face. Due to the characteristics of electrode pro-
duction, the defects are mainly in this form or as 
scratches. The primary purpose of the autoencod-
er is to assimilate these defects into the standard 
pattern of a well-coated surface of electrodes. The 
reconstruction results are illustrated in Figure 2b. 
Differences between Figures 2a and 2b are shown 

in Figure 2c. For the classification process, it is 
suitable to focus on the most different pixels to 
perform a faster clustering process. The pixels 
representing differences are defined in Figure 2d.

These pixels are clustered by DBSCAN into 
clusters. This method is suitable for this task be-
cause points or pixels are separated according to 
their density occurrence in the image. Unlike other 
clustering methods, DBSCAN does not require a 
pre-defined number of clusters [27]. This method 
is resistant to very different shapes of pixel or data 
densities, which is crucial given the defect shapes 
in Figure 2a. The result from clustering is illustrat-
ed in Figure 2e, where the clusters are colorized, 
with each cluster illustrated with a random color.

In the next step, RoIs are created from these 
clusters, which are crucial as input to the classifier. 
These clusters have to be in the form of rectangles, 
produced by determining the minimal and maxi-
mal values of cluster pixel coordinates in the X 
and Y axes for each cluster. After clustering, these 
regions are resized to a unified size suitable for the 
classifier in the form of a standard CNN network. 
The classifier then labels RoIs according to their 
high probability of being specific types of defects.

YOLOv4 method

For this experiment, the original YOLOv4 ar-
chitecture was used and implemented in the Py-
Torch framework. The training process was de-
fined with the following parameters: learning rate 
of 0.05, weight decay of 0.005, 300 epochs, and 
a batch size of 4. The input image size was 640 
× 640 pixels with 3 color channels: red, green, 

Figure 1. Detailed (A) and schematic (B) architecture of U2S-CNNv2 method applied for battery industry
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and blue (RGB). The types of defects used for the 
training process are listed in Table 1. Addition-
ally, to enhance the speed of inference and meet 
the requirements of inline real-time evaluation, 
the model was converted to the Open Neural Net-
work Exchange (ONNX) format and further im-
plemented on the TensorRT inference platform.

RESULTS

The entire verification of U2S-CNNv2 and 
YOLOv4 was performed on 505 image samples 
sized 640 × 640 × 3 in RGB, containing 6357 de-
fects. The complete results from this verification 
are presented in Table 2. YOLOv4 detected 5964 
out of 6357 defects, achieving a detection rate 
of 93.82%. The correctly detected and labeled 
defects were 5791, or 91.10%. Regarding the 
type of defects, the best results were achieved 
for defect types 1, 2, 3, 4, 5, and 8. The detection 
rate for defect types 6 and 7 were less than 85%, 
because these defects typically have a very long 
and thin shape, which is presumably harder to 
be detected. Poor results were observed in de-
tecting contamination by foreign particles (type 
9), with a detection rate of only 26.67%. This 
type of defect often appears as very bright pix-
els, with a very small number of pixels, mainly 
up to 10 pixels corresponding to a defect. In this 

case, the speckle patterns of the foreign parti-
cles are sometimes difficult to be distinguished 
from strong reflections caused by local surface 
structures. The U2S-CNNv2 model consists of 
three parts (unsupervised, unsupervised, and 
supervised learning), where only the last step 
involves learning from labeled data (classifier). 
There are 11 classes correspond to 10 classes to 
defects (Table 1) and one class (class 10) for cor-
rect sample patterns. The most incorrectly clas-
sified defects were labeled “3” and “4”. The cor-
rectly labeled samples in the validation dataset 
were 81.45%. The number of correctly detected 
defects by U2S-CNNv2 was 5329, or 83.83% 
(Table 2). The correctly labeled defects were 
3486, or 54.84%. The good detection results 
were achieved for defect types 1, 2, 3, 6, 7, and 
best result for 8. According to these results, there 
are incorrect labeling between types 1,2,3 and 
mainly type 1 categorized as many times as type 
6. Very bad results with 0% accuracy were ob-
served for defect types 0 and 9, which are very 
small defects. Defect types 4 and 5 also had poor 
results, which are 4.88% (type 4) and 12.03% 
(type 5) reached by U2S-CNNv2. The best la-
beling accuracy was achieved for defect type 8. 
In comparison, the YOLOv4 model performed 
better or much better in capturing and labeling 
defects. For defect types 6 and 7, U2S-CNNv2 
achieved better detection results than YOLOv4 

Figure 2. U2S-CNN in battery industry, (a) – tested image, (b) – reconstructed image, (c) – difference between 
input (a) and output – reconstructed image (b), (d) – threshold differences from (c) (highlighted differences), 

(e) – clustered differences to clusters by DBSCAN method and make regions of interest (RoIs), 
(g) – classified RoIs from (f) to labels
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for defect type 6. In all other cases, YOLOv4 
reached better results in capturing and labeling 
results than U2S-CNNv2. Further analysis of the 
performance of these models involved compar-
ing the number of detections to the true defect 
occurrences in the test data, as shown in Table 3. 
YOLOv4 suggested 11,230 region proposals (N 
in Table 3). Compared to the number of defects 
(Nd = 6357), the ratio Nd/N was 56.61%. This 
means that YOLOv4 suggested many regions 
as detected defects. The true region proposals 
according to defects were 10,173, or 90.59%. 
Correctly labeled proposals were 87.13%. This 
indicates that in this configuration and setup, 

YOLOv4 suggested many region proposals, 
leading to a higher number of regions proposed 
for captured defects. Thus, YOLOv4 generated 
more false positive values (0.0941) compared to 
U2S-CNNv2 (0.0906) (Table 4). However, YO-
LOv4 performed much better in terms of false 
negatives (0.0618) compared to U2S-CNNv2 
(0.1617). From view of unsuccessful capturing 
of defects, the value of Undetected of defects 
(Ud) were 6.18% (YOLOv4) and 16.16% (U2S-
CNNv2). It is opposite value to true detected of 
defects mentioned in Table 2. Incorrectly labeled 
of defects (Md) means true detected defects by 

Table 2. Results of capturing defects by YOLOv4 and U2S-CNNv2 for test dataset (n = 605 samples)

Type Number of 
defects

YOLOv4 U2S-CNNv2

True detected True labeled True detected True labeled

n [%] n [%] n [%] n [%]

0 118 103 87.29 102 86.44 0 0.00 0 0.00

1 944 944 100.00 920 97.46 872 92.37 414 43.86

2 1102 1102 100.00 1073 97.37 989 89.75 681 61.80

3 1797 1786 99.39 1733 96.44 1559 86.76 994 55.31

4 123 118 95.93 114 92.68 27 21.95 6 4.88

5 133 123 92.48 122 91.73 46 34.59 16 12.03

6 823 574 69.74 535 65.00 637 77.40 494 60.02

7 261 211 80.84 194 74.33 209 80.08 104 39.85

8 996 986 99.00 982 98.60 984 98.80 777 78.01

9 60 17 28.33 16 26.67 6 10.00 0 0

Total 6357 5964 93.82 5791 91.10 5329 83.83 3486 54.84

Table 3. Result of detections by YOLOv4 and U2S-CNNv2 in compared to true number of defects in test dataset

Test dataset (n = 605 samples)
YOLOv4 U2S-CNNv2

n Ratio to N [%] n Ratio to N [%]

Number of defects (Nd) 6357 56.61 6357 90.31

Detected regions (N) 11230 – 7039 –

Correct detection of defects (D) 10173 90.59 6401 90.94

Correct labeled of defects (L) 9785 87.13 4957 70.42

--- Ratio to Nd [%] Ratio to Nd [%]

Undetected of defects (Ud) 393 6.18 1028 16.16

Incorrectly labeled of defects (Md) 566 8.90 2871 45.16

Table 4. Result of defect detections by YOLOv4 and U2S-CNNv2 in way of true positive, false positive and false 
negative

Test dataset (n = 605 samples)
YOLOv4 U2S-CNNv2

True positive False positive True positive False positive

0.9059 0.0941 0.9094 0.0906

False negative 0.0618 --- 0.1617 ---
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Figure 3. The results (1–4) from U2S-CNN (A - type) and YOLOv4 (C - type) with True data (B - type)
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Figure 4. The results (5–8) from U2S-CNN (A - type) and YOLOv4 (C - type) with True data (B - type)
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detectors but not correctly labeled were results 
8.90% (YOLOv4) and 45.16% (U2S-CNNv2). 

From the empirical qualitative evaluation, 
several key results emerged. Each type of defect 
has its own specifications. In Figure 3.1B, the true 
data of defects are shown, mainly of defect types 
1, 2, and 3. In this case, both models captured 
defects very well (Figure 3.1A for U2S-CNNv2 
and 1C for YOLOv4). For U2S-CNNv2, there 
were more incorrectly labeled defects compared 
to YOLOv4, but both models provided reliable 
results. In Figure 3.2B, the results were good for 
both models as well. U2S-CNNv2 showed a sig-
nificant advantage in highlighting exact areas of 
defects compared to the RoIs of YOLOv4, with 
which defects can be easily recognized by people 
from the images especially for images which have 
high defect densities. In Figure 3.3C, mainly de-
fect types 5, 6, and 7 occurred. YOLOv4 detected 
the defects very well, except for type 7. It also 
captured defect type 9 (Figure 3.3C), which cor-
responds to the pixel characteristics in this space. 
U2S-CNNv2 detected only one RoI of type 5, 
missing others due to poor reconstruction qual-
ity and low loss values in this area. However, it 
detected a large orange rectangle (Figure 3.3A), 
demonstrating proof of anomaly detection out-
side the training dataset. Similar observations are 
found in Figure 4, specifically in 5A and 7A. In 
Figure 4.4B, defect type 7 occurred, supporting 
the results noted in Table 2 where U2S-CNNv2 
performed better than YOLOv4. The region pro-
posals of U2S-CNNv2 were mainly in smaller 
pieces than the true RoIs, due to slightly worse re-
construction and insufficiently different pixels in 

terms of loss values. For defect type 0, YOLOv4 
achieved good results, while U2S-CNNv2 per-
formed very poorly (Figure 4.5A, 5B, 5C). Figure 
4.8A, 8B, 8C further supports this analysis.

Merging detection with supervised 		
and unsupervised methods

The YOLOv4 and U2S-CNNv2 models are 
based on different approaches and methods. By 
combining these methods, we achieved signifi-
cant improvements, particularly in the detection 
and labeling of defect types “6” and “7.” For oth-
er defects, the improvements were minor or neg-
ligible due to the already high accuracy primarily 
achieved by YOLOv4.

In the case of defect type “9,” the improve-
ment in detection was only 10.00%, with no im-
provement in labeling. This is likely because for-
eign particles typically appear as just a few very 
bright pixels, making them particularly difficult 
to accurately detect. Overall, the success rate for 
correctly detecting defects ranged from 84.57% 
to 100.00%, and for correctly labeling defects, the 
rate ranged from 81.17% to 99.20% (excluding 
type “9”), as defined in Table 5.

CONCLUSIONS

In this paper, we present the issue of defect 
detection on electrode surfaces. The source of 
data obtained by LSP technology are very feasible 
for inspection task in industrial application. The 
evaluation of data we performed by comparing 

Table 5. Results in detection of defects by merging YOLOv4 and U2S-CNNv2

Type Number of 
defects

YOLOv4 ∪ U2S-CNNv2 Improvement

True detected True labeled True detected True labeled

n [%] n [%] n [%] n [%]

0 118 103 87.29 102 86.44 0 0.00 0 0.00

1 944 944 100.00 924 97.88 0 0.00 4 0.42

2 1102 1102 100.00 1077 97.73 0 0.00 4 0.36

3 1797 1789 99.55 1741 96.88 3 0.17 8 0.45

4 123 120 97.56 114 92.68 2 1.63 0 0.00

5 133 125 93.98 122 91.73 2 1.50 0 0.00

6 823 696 84.57 668 81.17 59 7.17 133 16.16

7 261 233 89.27 216 82.76 22 8.43 22 8.43

8 996 995 99.90 988 99.20 9 0.90 6 0.60

9 60 23 38.33 16 26.67 6 10.00 0 0.00

Total 6357 6130 96.43 5968 93.88 103 1.62 177 2.78
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the new developed version of U2S-CNNv2 meth-
od for this task and YOLOv4. It can be observed 
that almost all defects can be detected by both 
methods, demonstrating their reliability for de-
fect detection on battery electrodes. Defects can 
be recognized with both high precision and ac-
curacy. However, challenges remain in detecting 
small defects, such as thin line defects and small 
pinholes and foreign particles. 

YOLOv4 achieved very good results in defect 
detection, confirming results published in scien-
tific papers about the deployment of this model. 
In this study, YOLOv4 had a better performance 
in detecting small and standard defects. The mod-
el’s speed and efficiency are also notable, with the 
ability to analyze 50 fps. The overall detection ac-
curacy was excellent, with 93.82% of defects cor-
rectly detected and 91.10% correctly labeled. The 
primary area for improvement is in detecting long 
and thin defects.

We described the principle, architecture, and 
purpose of the new version of U2S-CNNv2. This 
method combines the advantages of unsupervised 
and supervised learning for defect detection in 
industrial applications. Compared to the original 
method, significant improvements include higher 
resolution (640×640, compared to the previous 
224×224) and a more effective, less complex 
classifier. The main advantages of this method are 
its ability to detect defects outside of the training 
dataset or unknown objects. This confirms results 
from a similar solutions described in introduction 
of this paper. Another confirmed advantage is in 
highlighting the exact areas of defects, not just 
regions of interest (ROIs). This method achieved 
a true positive detection rate of 0.9094 and a 
false positive detection rate of 0.0906, which are 
slightly better than those of the YOLOv4 model.

However, U2S-CNNv2 has some disadvan-
tages, including sensitivity during the reconstruc-
tion process (autoencoder) and slow performance. 
This slowness is primarily due to the logical 
principles of the DBSCAN clustering algorithm, 
which is very slow. The average time tested on 
100 samples was 20 ms per sample for the clus-
tering process and 1017 ms per image when us-
ing the DBSCAN function from the scikit-learn 
library. A parallel solution of DBSCAN required 
211 ms per sample. The classification of ROIs 
took 115 ms per sample, resulting in an overall 
speed rate of 3 fps. This performance was tested 
on a PC with a GPU 3090 and an AMD Ryzen 9 
5900X processor.

By combining both methods, we achieved a 
defect capture rate of 77.40% to 100% in LSP 
data from scanned surfaces of LIB electrodes. 
This scanning technology, in conjunction with the 
applied detectors, shows great promise as a non-
destructive method for ensuring manufacturing 
quality, making it suitable for industrial applica-
tions. This approach guarantees better qualitative 
parameters for electrodes, thereby guarantee the 
overall quality of producing LIBs.
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