
113

INTRODUCTION

Fatigue failure is a type of structural damage 
classified as progressive and localized. The pro-
cess leading to such failure is characterized as an 
irreversible, monotonic degradation of material 
properties due to the acting alternating stresses. 
It is a direct reason for fatigue cracking, an effect 
of material degradation mechanisms. This type of 
failure is typical for properly designed and main-
tained engineering structures, i.e. when the other 
failure factors can be excluded. In this way, fa-
tigue analysis can be used to evaluate the service 
life of components and reduce the probability of 
accidents. It is the reason why fatigue analysis 
is of increasing importance and is a main issue 
in research and development in many engineer-
ing branches. Although the fatigue phenomena 

has been intensively studied from 19th century, 
still the approaches applied are mostly determin-
istic. Such methods often rely on safety factors 
and fixed material properties although the inher-
ent variability in e.g. material properties calls for 
a more realistic and comprehensive approach. 
Within the frames of analysis, fatigue life can-
not be considered as deterministic due to its great 
variation for the same design in identical load-
ing conditions [1–3]. Linear, bilinear or trilinear 
models were proposed to reproduce the s-n or ε-n 
field (stress-life or strain-life, respectively), justi-
fied on the basis of client requirements or prefer-
ences. Such justification may be viewed as unfor-
tunate [1], targeted on one specific approach and 
motivation. On the other hand, assuming constant 
material properties often leads to overly conser-
vative or unsafe predictions. In view of the above, 
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the probabilistic approach to fatigue analysis 
seems to be not only advantageous but necessary.

The variability in fatigue life is usually mate-
rial-driven, evidenced as the effect of microscopic 
inhomogeneity due to manufacturing defects and 
microstructural inconsistencies [3–5]. It should 
be noted however, that the material microstruc-
ture and the resulting fracture mechanism can be 
affected also by the type of fatigue loading, as it 
was shown by e.g. Kowal and Szala [6], Rui et al. 
[7] or Lehner et al. [8]. The effect may become 
particularly significant in the case of SLM ma-
terials, as it was shown by Macek et al. [9], who 
evidenced strong influence of the uniaxial fatigue 
loading applied during the tests on the fracture 
surface roughness of SLM-manufactured AISI 
H13 steel. The correlation between the param-
eters of the fracture surface topography and fa-
tigue performance under certain loadings can be 
evidenced using e.g. the FRASTA [10] or entire 
fracture surface method [11]. As a conclusion, 
various load levels need to be analyzed in order 
to properly describe the s-n field.

Probabilistic methods account for this varia-
tion by considering the material’s strength and 
fatigue life as linear or log random variables with 
specific probability distributions (e.g. normal, 
log-normal and Weibull (most popular) distribu-
tions [1, 12–14]), leading to more accurate predic-
tions of fatigue behavior. This enables to assess 
the risk of failure at different confidence levels, 
which is critical for high-reliability systems. It al-
lows for a more refined safety margin and better-
informed decision-making regarding component 
lifespan and maintenance schedules. Within the 
fatigue reliability analysis, the probability den-
sity function (PDF) as an estimate of the density 
of random variable serves as a tool providing a 
framework to model and quantify uncertainty in 
the behavior of systems and components. Apart of 
the possibility to evaluate the likelihood of failure 
at the given time period, PDF can also be easily 
transformed in order to find e.g. mean time to fail-
ure, reliability function and hazard rate function - 
widely used in condition monitoring and planning 
of maintenance activities [15, 16].

The relation between the probability distribu-
tion and stress-life behavior can be most conve-
niently seen on a joint plot of a probability distri-
bution and one of the typical engineering fatigue 
curves. One of the fatigue curves most popularly 
used in deterministic engineering approaches is 
the stress-life relation portrayed in a double-log 

scale (i.e. the “s-n curve”), an example of which 
was plotted in Figure 1 together with the selection 
of corresponding PDFs.

Figure 1 illustrates the profile of a s–n curve 
in the medium/high cycle fatigue (MCF/HCF, re-
spectively; in state of the art, the difference be-
tween ranges is blurred) at which the curve is as-
sumed to be linear. Outside of this range (towards 
infinity) s-n curve is assumed to be horizontal (if 
the material has a fatigue limit) or with a different 
gradient (for materials that do not have a fatigue 
limit) [19], sometimes reaching a plateau at lon-
ger fatigue lives. The low cycle fatigue (LCF) is 
assumed to be reflected better in an ε -n approach 
due to the large amount of plastic strain within 
the load history. What needs to be pointed out as 
a conclusion is that a different distributions are 
needed to quantify the s-n field at different ranges 
of fatigue life and that the scatter changes along 
with the change of stress level.

Apart of the empirical distributions, estimat-
ing the PDF of a random variable can be per-
formed in a (i) parametric or (ii) nonparametric 
approach. Parametric approach involves deter-
mining the underlying distribution of data from 
either a sample or observational data, when the 
type of the distribution is already assumed. There 
are several methods for estimating the PDF, each 
with its advantages and limitations. In case of the 
group (i) approaches one of the most known is the 
method of moments which involves estimating 
the parameters of a distribution by equating the 
sample moments to the corresponding theoretical 
moments of a chosen distribution. Although it has 
proved to be simple and fast, it may not produce a 

Figure 1. s-n curve for 18Ni300 maraging steel 
under uniaxial tension-compression, together with the 
simulated shape of Weibull PDFs on the tested stress 

levels [17]
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good fit if the moments don’t uniquely determine 
the distribution. Another method, the maximum 
likelihood estimation (MLE) involves numeri-
cal fitting a parametric model to the data in ref-
erence to the likelihood function obtained on the 
basis of the assumed distribution. The estimation 
algorithm determines the local maximum of the 
likelihood function L, which evaluates the joint 
probability density at the observed data sample. 
This type of approach is widely used in practi-
cal engineering, usually providing an optimal and 
unbiased estimate (if the assumed model is cor-
rect). A different approach gaining more attention 
nowadays is the Bayesian estimation. The tech-
nique used incorporates prior knowledge or be-
liefs about the distribution’s parameters through 
a prior distribution, and updates this belief based 
on the observed data using Bayes’ theorem. This 
may be successful, especially due to the natural 
capability of providing uncertainty estimates. Un-
fortunately, such approach may require significant 
computational effort as well as certain knowledge 
needed to select an appropriate prior. 

In contrast to the above, the group (ii) ap-
proaches are statistical methods that do not as-
sume any specific parametric form for the dis-
tribution from which the data are drawn. One of 
these is a histogram-based estimation in which 
the data is divided into intervals and the frequen-
cy of data points in each interval is computed. 
Here, the weakest point is on the selection of the 
length of such interval – a poor choice can lead to 
a considerable under- or over-smoothing. Kernel 
density estimation is a more sophisticated method 
that estimates the probability density function by 
smoothing the data with a one of a number of ker-
nel functions combined with a specific smoothing 
parameter. The overall density estimate is the sum 
of kernels placed at data points and normalized by 
their number. It is more flexible than histograms, 
but a critical attention must be paid to appropriate 
selection of the bandwidth scaling the smoothing 
parameter which poorly chosen can over-smooth 
or under-smooth the estimate. Finally, another 
approach can be also be formulated through a 
spline-based estimation. Very wide applicability 
of piecewise polynomial functions can be used 
also in order to estimate the probability density 
function. Smoothness of the estimate can be con-
trolled by the choice of the spline degree and the 
smoothness parameter controls. As a result, a 
possibility exists that a very smooth density es-
timates can be obtained with fewer assumptions 

about the underlying distribution than the para-
metric methods.

In the paper a possibility to model the prob-
ability density function at different stress levels 
of high cycle fatigue via a B-spline algorithm is 
explored. Apart of the typical spline estimation, 
the B-spline algorithm used herein is applied only 
up to the procedure of finding the basis func-
tions, without the interpolation part itself which 
allowed to shorten the procedure. In this way, the 
assumed model allowed to use an iterative ap-
proach to ensure acceptable fitting accuracy and 
to predict high cycle fatigue life on the desired 
probability level, with prior calibration using the 
sample data of only selected stress levels. Such 
approach could simplify fatigue-reliability com-
ponent design by plugging only the boundary 
conditions at some stress levels and - as a result of 
the iterative algorithm - obtaining the PDFs of fa-
tigue life at the desired, wide range of HCF stress 
level in an automated manner. The approach 
was verified through experimental validation on 
a large sample of fatigue specimens, additively 
manufactured from 18Ni300/MS1 steel powder. 
Although having the advantages like design flex-
ibility, material efficiency or sustainability, their 
probabilistic fatigue behavior and the assumption 
of material stability is still inadequately explored.

The remainder of this paper is organized as fol-
lows. Description of the fatigue tests and specimen 
preparation process are presented, followed by the 
methodology and background of the research on 
the PDF estimation procedure. The PDFs are esti-
mated and compared in the following section, with 
the results discussed to conclude the article.

METHODOLOGY

This study was validated on the log-fatigue 
lives of 18Ni300 maraging steel, a random vari-
able assumed to follow a Weibull distribution. 
Weibull originally formulated the parameters of 
his distribution without a formulation applicable 
to a wide range of stress levels (although there is 
a natural difference between their values at differ-
ent stress levels) [20]. Here, initially the param-
eters were investigated and estimated using the 
maximum likelihood estimation. This investiga-
tion was aimed on finding the PDFs correspond-
ing to the experimentally verified fatigue data 
on selected stress levels. In this way a data basis 
was developed, to which the following B-spline 
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estimated PDFs were compared to in a validation 
process. The procedure served as a tool for verifi-
cation of the assumptions underlying the concept 
for a semi-nonparametric estimation of PDF for 
fatigue life, a rapid way of analyzing probabilistic 
fatigue behavior of an engineering material.

Fatigue tests

The tested specimens were fabricated by direct 
metal laser sintering (DMLS/SLM) on an EOSINT 
M280 machine at Opole University of Technology. 
Such manufacturing technique uses metallic pow-
der materials which are melted to melting tempera-
ture by a laser beam in such a way that the layer 
of metallic powder is fully molten throughout. The 
powder was supplied by EOS GmbH, Germany; its 
composition is presented in Table 1. Geometry od 
the specimens reflected the ASTM guidelines [15], 
as shown in Figure 2. The specimens were manu-
factured with laser powers of 285 W, 138 W and 
60 W for stripe, contour and edge scanning at scan-
ning speeds of 960 mm/s, 300 mm/s and 700 mm/s, 
respectively. The laser spot size was approximately 
0.1 mm. In the process, layers were added on the 
base plate heated to 40 OC with an oxygen concen-
tration less than 0.25% in the process gas atmo-
sphere. After the printing process the specimens 
were cut to the desired lengths using an electrical 
bandsaw. At the end surfaces were smoothly fin-
ished in a bead blasting process using glass beads 
with diameters  ∈ <90, 150>  μm. The material 

microstructure was normalized using a Nabertherm 
N41/H industrial furnace. During this heat treat-
ment process, the material was heated to 490 °C, 
maintained at this temperature for 4 h and cooled 
in the furnace for 48 h. In the tests, the load applied 
to the specimen was constant in amplitude, sinusoi-
dally alternating between tension and compression 
with a load ratio R = -1. The specimen was axially 
loaded in an Instron Electropuls E10000 testing 
machine, realizing a constant-frequency force-con-
trolled system following the ASTM standard [22]. 
The 19–20 specimens were tested at four stress am-
plitude levels from 520–1200 MPa until reaching 
the failure criteria, which was assumed as total rup-
ture or a 50% decrease in force. Number of reached 
load cycles was assumed to be the number of cycles 
to failure nf - the durability. Amplitude of the stress 
applied at the gauge section was calculated as
	 𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 

 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (1)
where:	Fa is the amplitude of the uniaxial force 

(N) and A is the area of the test section 
(mm2). The obtained σa - nf results are pre-
sented in Table 2. The processed data can 
also be found in [17].

After the fatigue tests, the obtained fractures 
were subjected to fracture surface fractography 
using the Tescan Vega scanning electron micro-
scope (SEM). In overall, in such material con-
figuration a soft martensite microstructure that 
includes hard nanoprecipitates is typical [18]. 
After the separation of outliers, the investigated 

Table 1. Chemical composition of powder used in specimen manufacturing process (wt.%) [21]
Element Fe Ni Co Mo Ti Al Cr

Min 17.00 8.50 4.50 0.60 0.05 -

Max 19.00 9.50 5.20 0.80 0.15 0.50

Element Cu C Mn Si P S

Max 0.50 0.03 0.10 0.10 0.01 0.01

Figure 2. Geometry and dimensions of tested specimens
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surfaces evidenced that cracks were initiated at 
the surface, with multiple or single initiation sites. 
Within the tested specimens, the fatigue fracture 
surfaces presented in Fig. 3 were observed along 
the plane of maximum normal stress.

Distribution fitting

A two-parameter variant of the Weibull dis-
tribution was used to model the fatigue life data, 
described by the log fatigue lives random variable 
(Nl~ W(α, β), where: Nl = log(N). The Weibull 

distribution (in different variants) is usually used 
in fatigue analysis and is expected to agree as well 
or better with the test data than the log-normal 
distribution [6.23–25]. This distribution type was 
chosen as the origin in the process of formulation 
of the B-spline PDF estimation model.

Maximum likelihood estimation

The Weibull PDF in a two-parameter variant 
is represented in the following relation:
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 (5) 
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Table 2. The stress-life data obtained through fatigue tests [17]
Stress amplitude σa, MPa Number of cycles to failure nf, -

1200 2189, 1899, 2683, 2241, 2688, 1663, 2042, 2258, 2686, 1902, 1710, 2757, 1510, 2320, 1561, 
2089, 2493, 1852, 1784, 1799

1000 6350, 6826, 5557, 3745, 4481, 6332, 6366, 6875, 6199, 5498, 3923, 5030, 5649, 6200, 3813, 
4384, 5129, 3443, 6111, 5228

800 14173, 12725, 10027, 17423, 10175, 14777, 15276, 12158, 15792, 18678, 15793, 14905, 
18678, 18990, 12856, 17504, 13711, 16331, 20542, 14875

520 57521, 58672, 65341, 41105, 62215, 111748, 46798, 91366, 79041, 110653, 98261, 88955, 
117488, 81423, 61968, 4x runout (nf >1.2 105: 717254, 198394, 135495, 1184961)

Figure 3. Fatigue fracture surfaces of the specimen failed at: (a) 18990 cycles of load at σa = 800 MPa, 
and (b) 61968 cycles of load at σa = 520 MPa, as an example of fracture surface topography
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where:	α and β are the shape and scale parameters, 
respectively. Value of these parameters at 
the tested stress levels were determined 
through maximum likelihood estimation.

MLE is an efficient tool for estimating the 
parameters of a probability distribution based on 
sample data. The estimation algorithm determines 
the local maximum of the likelihood function L, 
which evaluates the joint probability density at 
the observed data sample. The parameters were 
chosen by maximizing the probability to obtain a 
data sample that most likely resembles the actual 
observed sample. Typically, the likelihood func-
tion is parameterized by a multivariate parameter 
θ. If we assume that the probability density of the 
analyzed random variable Nl is a function of nl 
with θ fixed (it depends on parameter θ), the like-
lihood function should be viewed as a function of 
θ with nl fixed. If so, the function 
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⋮
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𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]
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2
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𝑖𝑖=0  (15) 

 

	 (3)

is the likelihood function. A detailed descrip-
tion of the applied algorithm can be described as 
follows:
	• Create a column vector F for the shape param-

eter and another column vector G for the scale 
parameter. Both should have the same length 
j, with points spaced in a specified interval Θ 
(the parameter space):
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	 (4)

	 The quality of the results monotonically de-
pends upon the length j (assuming an un-
changed interval Θ).

	• Generate the matrix M for the maximum num-
ber of possible different combinations of the 
parameters in the likelihood function. Vectors 
F and G should be reshaped, reorganized, and 
merged in the following manner: 
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	 (5)

	 the resulting matrix M has the dimension of 
(j2, 2).

	• Calculate the likelihood function L for each 
vector θi = [αi, βi] represented in the ith row of 
matrix M, where i = <1 ... j2>.

	• Find the value of i for which the θi vector max-
imises the likelihood function.

	• The found vector is considered as the maximum 
likelihood estimate 

 
 𝜃𝜃, 𝜃𝜃 = arg  max

𝜃𝜃∈Θ
 𝐿𝐿(𝜃𝜃; 𝑛𝑛),  
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𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼), (6) 
 

Γ () 
 
1. 𝑗𝑗 = {0, 1, … , 𝑝𝑝}  
 
 

 
a vector whose entries are the values of α and 
β that make the observed data most probable 
within the distribution.

The obtained results are presented in Table 3 
with respect to the tested load levels and without 
considering runouts.

The estimates shown in Table 3 were used to 
investigate if the θ parameter could be considered 
as an unbiased estimator of the population distri-
bution parameters. To do so, sample mean μ was 
compared with the estimated population mean 
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2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

 
, calculated according to the following relation:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (6)
where:	Γ is the Euler’s function (Euler integral 

of the second kind). The sample mean μ 
was calculated at each stress level for the 
log fatigue lives in Table 2. The obtained 
values and the corresponding probability 
of failure Pf, are shown in Table 4.

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (7) 

B-spline interpolation algorithm

A B-spline is a generalization of the Bézier 
curve and has its place in data analysis. It allows to 
derive smooth curves and surfaces on the basis of 
a sequence of limited data which values are known 
as control points. The mathematical model behind 
this approach allows to characterize this method as 
an elastic tool which can be applied in modelling 
of different types of curves and surfaces.

B-spline curve interpolation algorithm is 
based on generation of a smooth curve which 
goes through a set of control points P, P = {P0, 
P1, ... , Pn} where Pi = (xi, yi) (i = {0, 1, ... , k}) 
are coordinates. The curve is fitted with regards 
to these points and the basis functions Nij. The 

Table 3. Parameters of Weibull distribution obtained 
according to MLE

Stress amplitude 
σa, MPa

Shape parameter Scale parameter 

1200 45.606 3.355

1000 53.047 3.761

800 59.985 4.215

520 41.868 4.937
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applied algorithm can be described within the fol-
lowing points:
	• Define the degree of a B-spline curve, denoted 

by p.
	• Generate knots u, U = {u0, u1, ... , um} where  m 

= k + p + 1. Knots could be defined as uniform 
(i.e. equally spaced) or in a different manner.

	• Calculate basis functions, Ni,j(u)  for each knot 
separately, according to the following recur-
rence relation:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (8)

where:	 j is the degree of polynomial in a current 
iteration, j = {0, 1, ... , p} and i is the ordi-
nal,  i ∈ [0, j] (i.e. value dependent on the 
current iteration number). 

The algorithm for calculating Equation 8 
could be illustrated through scheme shown in 
Figure 4.

Normally, when the basis functions are de-
rived the algorithm follows on with the aim to 
determine the coordinates of points lying on the 
fitted curve with respect to each knot. However, 
this is not the case here since the basis function 
of a specific degree could already provide a sig-
moidal shape of the PDF by itself, which – when 
utilized properly – could significantly reduce 

the effort needed to achieve a solution. As it can 
be seen in view of Figure 4, the more knots are 
defined, the higher degree of the basis function 
is assumed and the shape of such function be-
comes more sigmoidal which becomes clear in 
view of Figure 5.

When defining the knot locations a special 
care must be taken as it has a major impact on 
the shape of this function, especially the first and 
the last one (u0 and um, respectively) [26]. When 
knots are equally spaced, the basis function is 
symmetrical; however, when the knot vector is 
characterized by changing knot interval then the 
basis function becomes non-symmetrical with 
the left- or right asymmetry (depending on the 
chosen interval). Additional advantage is that 
the non-uniform B-splines achieve better ap-
proximating results [27]. Within this manner it 
is worth to investigate whether an introduction 
of knot locations defined with respect to the dis-
tribution moments (at only several test levels) 
could be capable of providing a solution appli-
cable to a wider range of fatigue lives. Such an 
approach will disable the necessity of e.g. esti-
mating the feature functions like in [28]. With 
regards to the above, the steps in the procedure 
were defined as: 
	• fatigue tests of a representative samples on 

different σa
(i) stress levels, where i ∈ (1, ... , 4)

	• definition of the border knots, u0 and um,
	• definition of the inside knots u1, ... , um-1,
	• introduction and optimization of the ui(σa)  

function, aimed on providing the solution for 
knot localization on stress levels between and 
different than σa

(i).

By having the results of previously described 
fatigue tests the corresponding u0 and um loca-
tions were assumed as possible to find by kernel 
density estimation (KDE) with sigmoidal kernel. 
Derived results were validated in comparison 

Table 4. Sample and population mean μ and , 
respectively

Stress amplitude 
σa, MPa

Mean value Probability of 
failure

1200 3.314 0.435

1000 3.721 0.435

800 4.176 0.434

520 4.872 0.435

Figure 4. Iteration scheme illustrating the algorithm for calculating the basis function for a given point u, 
on the example of a degree two basis function
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with the distribution portrayed in PDFs estimat-
ed in a MLE approach. As a result, sixth degree 
basis function was found as capable to estimate 
the shape of PDF of fatigue lives. These findings 
would be difficult to derive without some initial 
assumption concerning the rest of the unknown 
knots, i.e u1,  ... , um-1. Simulation studies [29] 
allowed to derive a suggestion providing certain 
fitting accuracy:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (9)

where: 

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

 is the first raw moment (i.e. mean log fa-
tigue life) and std is the square root of the 
second central moment (i.e. standard devia-
tion in a sample of Nl random variable).

Based on such assumption concerning the 
location of those nodes, regression analy-
sis was performed in order to find the ui(σa) 

relation in order to implement the applicability 
in a wide range of fatigue lives. The derived 
regression was then optimized in an iterative 
approach aimed on minimizing the error func-
tion in order to: (i) eliminate imperfections 
resulting from simple least squares fitting and 
(ii) to fit the model more accurately to the real 
data, especially if the data is irregular or has 
deviations. Based on the conducted analysis, 
a generalized block diagram of the algorithm 
for estimating the probability density function 
has been developed, as shown in Figure 6. The 
solution and obtained results are presented in 
the next section.

RESULTS AND DISCUSSION

To estimate the parameters of the prob-
ability distribution of the analyzed 18Ni300 
steel, the results of fatigue tests described in 
section 2.1 were used in the maximum likeli-
hood estimation algorithm, which resulted in 
the values shown in Table 3. Then, using Table 
3 and equation (2), PDF plots were generated 
at the analyzed stress amplitude levels σa, as 
illustrated in Figure 7.

Next, using kernel density estimation on a 
sample without outliers and referring to the es-
timated PDFs, locations of the extreme nodes, 
u0 and um were determined as the extreme points 
of a PDF. Kernel density estimation is a com-
mon nonparametric estimation approach using 
each data point, a smoothing parameter and 
kernel function in order to estimate the PDF. 
Nevertheless it has to be remembered that actu-
al performance of the kernel density estimator 

Figure 5. Simulation of selected non-uniform 
B-spline bases of a different degrees corresponding 

to a 7-element knot vector U defined in the domain of 
log number of load cycles nl  at specific stress level

Figure 6. Block diagram for the algorithm for estimating the probability density function at the desired stress 
level of high cycle fatigue loading history
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still has many shortcomings like the significant 
impact of the smoothing parameter. Here, the 
sigmoidal kernel was used:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (10)

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 

	 (11)

as providing the estimations which were most 
reliable when compared with the MLE obtained 
PDFs. Within this procedure the smoothing pa-
rameter h was assumed according to the Silver-
man’s optimum estimate:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)
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𝑖𝑖=0  (15) 

 

	 (12)
where:	 sc = min(std, IQR/1.34) (IQR is the inter-

quartile range). 

In reference to the above and combined with 
the results obtained after the application of Equa-
tion 9 to fatigue data, a knot vector U was ob-
tained at the four tested stress levels and summa-
rized in Table 5.

Analysis and discussion of knot placement 
and its impact

The knot vectors used in B-spline basis func-
tions play a critical role in shaping the resulting 
PDF. By strategically placing knots, one can effec-
tively control the flexibility and accuracy of the B-
spline estimation and, as a result – the smoothness 
of the resulting PDF, ensured by recursively defined 
Ni,j(u) B-spline basis functions (Equation 8). The in-
herent smoothing effect ensures that the estimated 
PDF remains continuous and differentiable, which 
is beneficial in density integration. Following Table 
5, this section delves deeper into the practical im-
plications and optimization of these vectors for es-
timating the Probability Density Function (PDF) of 
fatigue lives in 18Ni300 steel. Figure 8 illustrates 
the impact of knot placement on the smoothness 
and accuracy of PDF estimation using B-spline ba-
sis functions. Two PDFs were compared:
	• PDF with original (non-uniform) knots: this 

curve demonstrates higher precision in ar-
eas with greater data concentration, such as 
the intervals between u4 and u5. The smaller 
spacing between knots in these regions al-
lows for better representation of local varia-
tions in fatigue life data.

	• PDF with uniform knot spacing: the curve for 
uniformly spaced knots is smoother but less 
precise in capturing the irregularities of the 
data distribution. This approach better reflects 
general trends but lacks the adaptability need-
ed for complex data sets.

Figure 7. Probability density functions according to the MLE estimates of the Weibull parameters

Table 5. Knot vectors obtained according to Kernel 
Density Estimation and Equation 9

Stress 
amplitude 
σa, MPa

Knot vector U

1200 [2.860, 3.131, 3.406, 3.434, 3.463, 3.491, 3.520]

1000 [3.020, 3.544, 3.810, 3.850, 3.890, 3.930, 3.970]

800 [3.600, 3.999, 4.264, 4.295, 4.327, 4.358, 4.390]

520 [3.900, 4.578, 5.018, 5.076, 5.134, 5.192, 5.250]
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As shown in Figure 8, using non-uniform 
knots enables the PDF model to better adapt 
to the actual data distribution, which is crucial 
for analyzing the variability of fatigue life of 
18Ni300 steel. In the study non-uniform spac-
ing was adopted due to the asymmetry observed 
in Figure 7, additionally leveraging the flexibil-
ity of KDE and regression-based adjustments 
to better capture the stochastic nature of fatigue 
life distributions. It has to be remembered, that 
non-uniform spacing of knots accommodates 
varying data scatter across stress levels. For 
example: at σa = 1200 MPa, the smaller inter-
vals between knots (u4 and u5) allow finer res-
olution in regions of high data concentration; 
at σa = 520 MPa, the wider spacing (u5 to u6) 

reflects the greater scatter in fatigue life at low-
er stress level. Based on such assumption con-
cerning the location of those nodes, regression 
analysis was performed in order to find and op-
timize the ui(σa) relation for HCF range. 

Optimized fitting of the knot vector in a wide 
range of fatigue lives

At the beginning stress amplitudes were se-
lected from a set σa = {520; 800; 1000; 1200}   
MPa. Corresponding knot values (ui​) were de-
rived from experimental observations as shown 
in Table 5. Linear regression was employed to 
explore potential trends in knot placement across 
the stress amplitudes. Each knot position at i-th 

Figure 8. Impact of knot spacing on PDF smoothness

Figure 9. Linear fit of knot vectors for stress amplitudes
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load level (ui) was plotted against its correspond-
ing stress amplitude (

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
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𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  
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𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))
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+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)
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). The following equa-
tion described the linear fit for each knot:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =

[
 
 
 
 
 
 
 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]

 
 
 
 
 
 
 

 (5) 

 
 
𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
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ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))
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(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
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	 (13)

where:	ai​ and bi​ are the regression coefficients. Fig-
ure 9 illustrates the fitted lines for each knot 
position, demonstrating how knot locations 
evolve with varying stress amplitudes.

While the linear regression model, as depict-
ed in Equation 13, provides an initial approxima-
tion of the relationship between stress amplitude 
(σa​) and knot locations (ui​), its accuracy is limited 
by the assumption of a strictly linear dependency. 
Given the observed variability in the knot posi-
tions across the stress amplitudes, it was neces-
sary to explore more flexible models to better 
capture the nonlinear nature of these relation-
ships. Here, a quadratic regression model was em-
ployed for intermediate knots (u1,u2,…,um−1​). The 
quadratic model extends the linear formulation by 

introducing a second-order term, allowing for a 
more accurate representation of the data trends: 
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⋮
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	 (14)

where:	 ai​, bi​ and ci are the regression coefficients. 

Such approach ensures that the predicted 
knot values closely match the target knot val-
ues derived from experimental observations and 
Equation 9. The regression coefficients (ai,bi,ci) 
for each quadratic model were optimized itera-
tively to minimize the prediction error, as de-
tailed in Equation 15:

	

𝜎𝜎𝑎𝑎 = 𝐹𝐹𝑎𝑎/𝐴𝐴 (1) 
 
𝑓𝑓(𝑛𝑛𝑙𝑙) = (𝛼𝛼/𝛽𝛽)(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (2) 
 
𝐿𝐿(𝜃𝜃 | 𝑛𝑛𝑙𝑙) = 𝑓𝑓𝜃𝜃(𝑛𝑛𝑙𝑙) (3) 
 
𝐹𝐹 = [𝛼𝛼1 … 𝛼𝛼𝑗𝑗], 𝐺𝐺 = [𝛽𝛽1 … 𝛽𝛽𝑗𝑗] (4) 
 

𝑀𝑀 =
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 𝛼𝛼1 𝛽𝛽1

⋮
𝛼𝛼1 𝛽𝛽𝑗𝑗
⋮
𝛼𝛼𝑗𝑗 𝛽𝛽1

⋮
𝛼𝛼𝑗𝑗 𝛽𝛽𝑗𝑗]
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𝑛𝑛𝑙̅𝑙 = 𝛽𝛽 ∙ Γ(1 + 1/𝛼𝛼) (6) 
 
𝑃𝑃𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑛𝑛𝑙𝑙/𝛽𝛽)𝛼𝛼) (7)  
 

 
𝑁𝑁𝑖𝑖,𝑗𝑗(𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢𝑖𝑖

𝑢𝑢𝑖𝑖+𝑗𝑗 − 𝑢𝑢𝑖𝑖
𝑁𝑁𝑖𝑖,𝑗𝑗−1(𝑢𝑢) + 

+ 
𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢

𝑢𝑢𝑖𝑖+𝑗𝑗+1 − 𝑢𝑢𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑗𝑗−1(𝑢𝑢) 

 
(8) 
 

𝑢𝑢1 = 𝑛𝑛𝑙̅𝑙 − 2𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢2 = 𝑛𝑛𝑙̅𝑙 + 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑢𝑢3 = 
= 𝑢𝑢2 + ∆𝑢𝑢, . . . 𝑢𝑢6 = 𝑢𝑢2 + 4∆𝑢𝑢  

 
(9) 

 
 
𝐾𝐾(𝑟𝑟) = 2/[𝜋𝜋(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑟𝑟) + 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑟𝑟))] (10) 
 
 
𝑟𝑟 = (𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙,𝑖𝑖)/ℎ (11) 
 
ℎ = 0.9 ∙ 𝑠𝑠𝑐𝑐 ∙ 𝑛𝑛−1/5 (12) 
 
𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑏𝑏𝑖𝑖 (13) 
 

𝑢𝑢𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ (𝜎𝜎𝑎𝑎
(𝑖𝑖))

2
+ 𝑏𝑏𝑖𝑖 ∙ 𝜎𝜎𝑎𝑎

(𝑖𝑖) + 𝑐𝑐𝑖𝑖 (14) 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ (𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖)

2𝑚𝑚
𝑖𝑖=0  (15) 

 
	 (15)

The error function, as defined in Equation 
15, quantifies the differences between the pre-
dicted knot positions (upred​) and the experimen-
tally derived values (utarget​) estimated according 
to Equation 9 for each of the stress amplitude. To 
further illustrate the effectiveness of the quadrat-
ic regression model, a heatmap of the magnitude 

Figure 10. Heatmap of knot placement prediction errors

Figure 11. Quadratic regression fitting for knot placement across stress amplitudes
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of prediction errors (errf) is presented in Figure 
10. The heatmap highlights the regions with 
the highest and lowest errors, providing a clear 
indication of the model’s performance across 
the dataset. The darker regions correspond to 
smaller errors, demonstrating the stability of the 
optimized quadratic regression model. In view 
of Figure 10 it can be seen that the quadratic re-
gression model effectively minimized errors in 
intermediate knot placement, which ensures sta-
bility across the dataset.

To further illustrate the effectiveness of the 
quadratic regression model, Figure 11 depicts the 
fitted knot locations (ui) against the experimen-
tal data for each stress amplitude (σa​). The close 
alignment of the fitted lines with the observed 
knot positions demonstrates the robustness of the 
regression model in capturing trends across dif-
ferent stress levels.

The skewness of the generated basis func-
tions was investigated according to Figure 12. In 
this figure each colored line represents a single 
basis function for a specific stress amplitude level. 

These functions were constructed using a set of 
“knots” that divide the parametric range u (x-axis). 

The basis functions are local, meaning their 
influence is limited to a specific segment of the 
u-range. The sum of the basis function values 
at any point u equals 1 (which is a fundamental 
property of B-splines). Y- values are restricted 
to the range from 0 to 1, reflecting the rela-
tive influence of the basis function at different 
points. It can be seen that each basis function 
reaches its peak value near the center of its 
corresponding knot and decreases as it moves 
away. Increasing the number of knots or the de-
gree of the spline alters the shape and width of 
the basis functions.

To evaluate the differences between local 
and global models, PDFs generated using B-
spline basis functions were compared with those 
obtained from a fitted Weibull model across the 
experimentally tested stress levels. The differ-
ences between both PDF types were quantified 
through residual analysis, where the obtained 
residuals highlight the local areas where the 

Figure 12. B-spline basis functions for stress amplitudes

Figure 13. Residuals obtained from comparison between B-spline basis functions and Weibull PDFs
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Table 6. Root mean square error between the PDFs 
estimated according to the B-spline and Weibull 
formulation

Stress amplitude σa, MPa RMSE, -

1200 4.89e-4

1000 4.40e-4

800 5.24e-4

520 5.47e-4

models differ. Although some local differences 
could be seen, the B-spline PDFs aligned closely 
with the Weibull PDFs, validating the proposed 
methodology. Figure 13 illustrates the compari-
son across different stress amplitudes. The close 
alignment validates the stability of the proposed 
algorithm in capturing the stochastic nature of 
fatigue data. Additionally, Table 6 presents the 
root mean square error (RMSE) for each stress 
level, indicating generally good agreement be-
tween Weibull and B-spline PDFs, despite some 
noticeable local discrepancies.

Practical application

Finally, the developed optimized quadratic 
regression model was applied to generate nor-
malized PDFs at selected HCF stress levels. 
The PDFs were used to estimate fatigue lives at 
selected levels of failure probability Pf ∈ {0.95, 
0.50, 0.05}. Estimated lives were compared to 
uniformly distributed six-element sample of ex-
perimental fatigue lives and plotted in Figure 14.

CONCLUSIONS

In the paper a concept for B-spline based estima-
tion of fatigue life PDFs was investigated. The B-
spline interpolation algorithm was applied in order 
to find a basis function with the corresponding knot 
vector which would be suitable for deriving the fa-
tigue PDF. Based on the results of fatigue tests of 
18Ni300 SLM manufactured maraging steel, knot 
vectors were found for the tested stress levels and 
verified with respect to MLE. Based on the obtained 
results, the following conclusions can be drawn:
1.	The b-spline basis functions, with their local-

ized influence, allowed for smooth and precise 
pdf representation, making them well-suited 
for fatigue life analysis.

2.	Focusing on basis functions instead of direct 
interpolation allowed to significantly reduce 
the computational complexity, making the al-
gorithm scalable for larger datasets or addi-
tional stress levels. 

3.	By controlling the number of knots, knot place-
ment and the degree of the basis functions, the 
pdf of fatigue life random variable can be esti-
mated with respect to different ranges of high-
cycle fatigue regime. 

4.	The use of non-uniform knots allowed to evi-
dence a close alignment with observed mle fa-
tigue life distributions and to capture the vari-
ability across stress levels, especially at higher 
stress amplitudes, where data concentration 
was higher. 

5.	By leveraging a combination of kde and opti-
mized quadratic regression, the method could 
successfully accommodate the stochastic na-
ture of fatigue data, providing precise knot 
placement and accurate pdf estimation. 

6.	Satisfying level of control over the final pdf 
was retained after employing the introduced 
knot location optimization model.

7.	The knot location model made the proposed prob-
ability density estimation applicable to stress lev-
els different than the experimental ones. 

8.	Computational efficiency of the proposed ap-
proach could make it a valuable addition to the 
suite of probabilistic modeling techniques.

9.	The proposed approach provides a robust 
framework for fatigue life prediction which 
validates the model as having the potential for 
application in engineering component design.

Figure 14. Comparison between fatigue lives: 
experimental (nexp) and calculated at selected 

probability levels (ncal)
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While the proposed approach demonstrates 
stability and accuracy for the analyzed stress lev-
els, several limitations constitutes the field for 
further investigation:
	• the analysis is confined to four stress levels. 

Extending the methodology to a broader range 
of stress amplitudes or additional materials 
could further validate the approach.

	• the impact of outliers in fatigue data on knot 
placement and PDF estimation requires addi-
tional study.

	• the current approach assumes unimodal dis-
tributions. Adapting the algorithm to handle 
multi-modal fatigue data could enhance its 
applicability.
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