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INTRODUCTION

In terms of road safety, the braking systems 
of agricultural vehicles must comply with several 
requirements set out in EU Delegated Regulation 
2015/68 [1]. These requirements concern, among 
other things, braking performance and high-speed 
operation under emergency braking (reaction time 
of less than 0.6 s) and tracking action during slow 
braking [2]. For trailers travelling at speeds above 
30 km/h, a 50% braking performance requirement 
has been set for both air and hydraulic braking 
systems. In addition, trailers of categories R3, and 
R4 and towed agricultural machinery of category 
S2, i.e. with a gross mass of over 3500 kg and 
travelling at speeds of over 40 km/h, must comply 
with the prescribed distribution of braking forces 
between axles (groups of axles) and ensure com-
patibility with the braking systems of tractors [1].

To select the distribution of braking forces, 
Regulation [1] sets out the permissible limits of 

variation of the utilized adhesion rate of individ-
ual vehicle axles (ratio of braking force to nor-
mal ground reaction) from the ideal distribution 
as a function of the braking rate. As the provi-
sions of [1] treat each part of the combination as 
a single vehicle, without taking into account the 
braking control of the towed vehicle, the permis-
sible ranges of variation of the braking rate of 
both vehicles (expressing the ratio of the braking 
forces generated by the vehicle to its mass) have 
been defined for the tractor-trailer combination. A 
Compatibility is deemed to be met if the curve of 
the braking rate as a function of the control pres-
sure at the coupling head, for both the laden and 
unladen trailer, falls within specified tolerance 
zones, known as “compliance bands” or “compli-
ance corridors” [3].

Axle load transfer and brake force distribu-
tion (BFD) are key factors in road vehicle safety 
and stability [4], so the braking system design 
begins with BFD selection [5]. Braking force 
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distribution is fundamental to the design calcula-
tions and selection of the basic components of 
vehicle brakes and has a significant impact on 
braking performance [6]. In general, for both un-
laden and laden vehicles, the best possible match 
to the ideal distribution is sought [7], while meet-
ing the requirements of [1]. For an ideal BFD, the 
adhesion utilized by each axle is the same, that 
is each axle has the same ratio of brake force to 
its vertical load [8]. For semi-trailers, the ratio 
of longitudinal to vertical force on the coupling 
device of a towed vehicle is also the same [9]. 
Such a distribution is considered optimal as it 
maximizes braking efficiency and ensures brak-
ing stability [10].

Air and hydraulic braking systems for agri-
cultural trailers often use manual or automatic 
braking force regulators with radial characteris-
tics [11, 12], briefly described in section 4. This 
type of regulator provides a linear BFD between 
the front and rear axle(s) according to the vehicle 
load. The boundary and optimum parameters for 
the linear BFD of two-axle vehicles, including 
trailers, can be calculated by analytical methods 
[13]. Recently, optimization methods have been 
increasingly used to realize different BFD strate-
gies for vehicles [14, 15]. Optimization methods 
are particularly useful for selecting the BFD on 
vehicles with tandem suspension [6]. In general, 
reaction moments during braking change the load 
distribution among the leading and trailing axles 
[16]. As load transfer between tandem axles can 
cause premature wheel lockup, the design of the 
tandem unit and the BFD between the axles have 
a clear influence on braking performance [17].

In this paper, metaheuristic optimization algo-
rithms (MOAs) are used to search for the optimal 
linear BFD in agricultural trailers. MOAs have 
been developed based on the simulation of vari-
ous natural phenomena, animal and human behav-
iour, biological and chemical sciences, physical 
concepts, game rules, and other evolutionary pro-
cesses [18, 19]. Metaheuristic algorithms, one of 
the most widely used probabilistic methods, are 
highly effective in solving complex optimization 
problems. Metaheuristic algorithms work by us-
ing a random search mechanism in the problem 
space. The advantages of MOAs include the sim-
plicity of their concepts, ease of implementation, 
independence from the specific problem type, and 
the ability to solve non-linear, non-convex, dis-
continuous, non-derivative, and high-dimensional 
optimization problems [20]. Metaheuristic algo-
rithms, successfully complemented by constraint 
handling techniques [21], are applied to solve 
optimization problems in many fields, including 
artificial intelligence, business, science, and en-
gineering [22, 23]. Optimization of the BFD of a 
two-axle and a three-axle trailer with two variants 
of the tandem unit was carried out using five dif-
ferent metaheuristic algorithms implemented in 
open-source MATLAB code. The results achieved 
were compared with those obtained using a quasi-
Monte Carlo method. Although metaheuristics do 
not always guarantee the exact optimal solution 
but can lead to a computationally efficient near-
optimal solution. An important advantage of me-
taheuristic algorithms in BFD optimization is the 
possibility to use their freely available implemen-
tations in MATLAB.

REQUIREMENTS FOR BRAKE FORCE DISTRIBUTION OF TRAILERS 
Vehicle brake distribution affects braking behaviour, braking performance, and road safety [24]. To 

achieve good longitudinal braking performance of a tractor-trailer combination on a flat and level road, 
it is necessary to achieve as close as possible to an ideal braking distribution, while meeting the type-
approval requirements, including the dynamic stability of the vehicle combination [25, 26]. 

Ideal braking condition is obtained when the adhesion utilized by each axle or group of front or rear 
axles (tandem, tri-axle) is equal to the braking rate z of the combination. For trailers with a group of 
axles, this condition can be expressed as follows: 

𝑓𝑓1 = 𝑓𝑓2 = 𝑓𝑓1𝑖𝑖 = 𝑓𝑓2𝑖𝑖 = 𝑧𝑧 𝑧𝑧 = ∑ 𝑇𝑇1𝑖𝑖+∑ 𝑇𝑇2𝑖𝑖
∑ 𝑅𝑅1𝑖𝑖+∑ 𝑅𝑅2𝑖𝑖

    (1) 
where: T1i, R1i ‒ braking forces and axle loads in the front axle group, T2i , R2i ‒ braking forces and axle 
loads in the rear axle group, i – axle number in the front or rear axle group, f1, f2 – utilized adhesion of 
front and rear group of axles:  

 𝑓𝑓1 = ∑ 𝑇𝑇1𝑖𝑖
∑ 𝑅𝑅1𝑖𝑖

 𝑓𝑓2 = ∑ 𝑇𝑇2𝑖𝑖
∑ 𝑅𝑅2𝑖𝑖

     (2) 
The BFD described by relation (1) is considered optimal because it minimizes stopping distance by 

allowing each axle to reach its maximum braking capability [27] and ensures braking performance [25]. 
Due to variations in the load status of trailers, it is virtually impossible to obtain an ideal BFD, even 

with load-sensing braking force regulators. For agricultural trailers travelling at speeds above 40 km/h, 
Regulation (EU) 2015/68 [1] therefore defines permissible limits for the departure of the adhesion 
utilization curve of individual axles (axle groups) from the ideal BFD. 

When considering the BFD, each part of the vehicle combination is treated as a single vehicle. The 
forces at the coupling are not taken into account. Two acceptable solutions for trailers are shown in 
Figure 1. 

 
Figure 1. Limits of utilized adhesion according to EU Regulation 2015/68 [1]:  

a - first solution, b - second solution 
 
First solution: the rate of adhesion utilisation of each axle group must satisfy the condition of required 
minimum braking performance: 

𝑓𝑓1,2 ≤ 𝑧𝑧+0.07
0.85  for 0.1 ≤ 𝑧𝑧 ≤ 0.61    (3) 

and prevents premature lockup of rear axle wheels to maintain directional stability: 
𝑓𝑓1 > 𝑧𝑧 > 𝑓𝑓2 for 0.15 ≤ 𝑧𝑧 ≤ 0.30       (4) 

Second solution: the rate of adhesion utilisation of each axle group must lie within a range bounded by 
the following inequalities: 

𝑓𝑓1 ≥ 𝑧𝑧 − 0.08
𝑓𝑓1,2 ≤ 𝑧𝑧 + 0.08 for 0.15 ≤ 𝑧𝑧 ≤ 0.30     (5) 

Furthermore, the adhesion utilisation for the rear axle group should satisfy the constraint: 
𝑓𝑓2 ≤ 𝑧𝑧−0.02

0.74  for 0.30 ≤ 𝑧𝑧 ≤ 0.61    (6) 
For a more accurate calculation, the divisor in (6) should be fixed at 0.7381.  
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The requirements for the wheel locking sequence shall be considered to be met if the adhesion 
utilized by the front axle is greater than the adhesion utilized by at least one of the rear axles at a braking 
rate ranging from 0.15 to 0.30. [1]:  

𝑓𝑓1 > 𝑓𝑓2𝑖𝑖 for any 𝑖𝑖      (7) 
 

METHOD FOR THE SELECTION OF THE OPTIMUM LINEAR BFD 
To match the ideal BFD, several types of load-dependent brake force regulators are installed in the 

air braking systems of agricultural trailers. At present, automatic load sensing valves (LSV, ALB) are 
most commonly used on heavy trailers to adjust the brake pressure on the axles according to the load 
status [11]. If the brake distribution is designed correctly, this will prevent the wheels from locking up 
when the trailer is partially laden or unladen. On mechanically sprung trailers the adjustment is relative 
to the spring deflection, on air-sprung trailers it depends on the pressure of the air springs. If there are 
technical reasons against equipping the vehicles with an LSV (especially non-suspended vehicles), 
agricultural trailers or machines should be equipped with a manual brake force regulator. Due to the 
difficulty of meeting the requirements of EU 2015/68 for BFD on vehicles with manual three-stage 
adjustment (full - half - empty), BPW has developed a seven-stage mechanical load-dependent brake 
force regulator (MBL), but with a linear characteristic [28]. This means that the output pressure remains 
proportional to the control pressure. For hydraulic braking systems, manual and automatic load-sensing 
valves with radial characteristics have also been developed [12]. Since the characteristics of the pressure 
distribution of the MLB and ALB regulators are substantially straight lines, the BFD between the front 
and rear group of axles can also be regarded as linear. 

An axle's braking contribution is the ratio of its partial braking force to the trailer's total braking 
force. Thus, for a three-axle tandem trailer, the BFD coefficients are defined as follows: 

𝛽𝛽1 = 𝑇𝑇1
𝑧𝑧∙𝐺𝐺  𝛽𝛽2 = 𝑇𝑇2𝑇𝑇

𝑧𝑧∙𝐺𝐺   𝛽𝛽21 = 𝑇𝑇21
𝑧𝑧∙𝐺𝐺 𝛽𝛽22 = 𝑇𝑇22

𝑧𝑧∙𝐺𝐺  (8) 
where: T2T ‒ total brake force of the tandem axles. 

BFD coefficients can theoretically vary between 0 and 1 and satisfy the relationships:  
𝛽𝛽1 + 𝛽𝛽2 = 1   𝛽𝛽21 + 𝛽𝛽22 = 𝛽𝛽2    (9) 

Using equations (8) and (9) the brake forces of the front and tandem axles are calculated as follows: 
𝑇𝑇1 = 𝛽𝛽1𝑧𝑧 ∙ 𝐺𝐺   𝑇𝑇2𝑇𝑇 = (1 − 𝛽𝛽1)𝑧𝑧 ∙ 𝐺𝐺 𝑇𝑇21 = 𝛽𝛽21𝑧𝑧 ∙ 𝐺𝐺 𝑇𝑇22 = (1 − 𝛽𝛽1 − 𝛽𝛽21)𝑧𝑧 ∙ 𝐺𝐺  (10) 

A directional coefficient of the BFD line crossing the origin of the coordinate system T2T=f(T1) is 
given as the brake force ratio: 

𝑖𝑖𝑃𝑃 = 𝑇𝑇21+𝑇𝑇22
𝑇𝑇1

= 𝑇𝑇2𝑇𝑇
𝑇𝑇1

      (11) 
It is also possible to apply a linear braking distribution to tandem axles, either variable or fixed (if 

there is no braking force regulator):  
𝑖𝑖𝑆𝑆 = 𝑇𝑇22

𝑇𝑇21
       (12) 

Unlike the β coefficients, the iP and iS values can be theoretically varied from zero to infinity, especially 
when the brake force of some axle is zero. 

The following 5 metaheuristic methods were used to optimize the BFD coefficients: MIDACO, 
Cuckoo Search, Firefly Algorithm from the group of swarm-based algorithms, Simulated Annealing 
from the group of physics and chemistry-based algorithms, and Harmony Search from the group of 
algorithms based on human intelligence. The primary criterion for the selection of these algorithms was 
the availability of their implementations in the MATLAB programming environment, and additionally 
in versions adapted to solve constrained optimization tasks. It should be remarked that the vast majority 
of publicly available MATLAB programs with examples of the application of metaheuristic methods 
deal with optimization problems without constraints. 

The MIDACO software (Mixed Integer Distributed Ant Colony Optimisation) implements a global 
optimization algorithm for nonlinear programming problems using an extended ACO algorithm [29] 
coupled with the Oracle penalty method [30] for handling constraints. This advanced and universal 
penalty method requires only one parameter to be tuned and is intended to be used in particular in 
stochastic metaheuristics. The MIDACO software is available in several programming languages, 
including MATLAB [31]. 

Developed by Yang and Deb [32, 33], Cuckoo Search (CS) is an optimization algorithm inspired by 
the behaviour of the cuckoo bird in searching for its eggs, which it incubates in the nests of other birds. 
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It is also possible to apply a linear braking distribution to tandem axles, either variable or fixed (if 

there is no braking force regulator):  
𝑖𝑖𝑆𝑆 = 𝑇𝑇22

𝑇𝑇21
       (12) 

Unlike the β coefficients, the iP and iS values can be theoretically varied from zero to infinity, especially 
when the brake force of some axle is zero. 

The following 5 metaheuristic methods were used to optimize the BFD coefficients: MIDACO, 
Cuckoo Search, Firefly Algorithm from the group of swarm-based algorithms, Simulated Annealing 
from the group of physics and chemistry-based algorithms, and Harmony Search from the group of 
algorithms based on human intelligence. The primary criterion for the selection of these algorithms was 
the availability of their implementations in the MATLAB programming environment, and additionally 
in versions adapted to solve constrained optimization tasks. It should be remarked that the vast majority 
of publicly available MATLAB programs with examples of the application of metaheuristic methods 
deal with optimization problems without constraints. 

The MIDACO software (Mixed Integer Distributed Ant Colony Optimisation) implements a global 
optimization algorithm for nonlinear programming problems using an extended ACO algorithm [29] 
coupled with the Oracle penalty method [30] for handling constraints. This advanced and universal 
penalty method requires only one parameter to be tuned and is intended to be used in particular in 
stochastic metaheuristics. The MIDACO software is available in several programming languages, 
including MATLAB [31]. 

Developed by Yang and Deb [32, 33], Cuckoo Search (CS) is an optimization algorithm inspired by 
the behaviour of the cuckoo bird in searching for its eggs, which it incubates in the nests of other birds. 
The Firefly Algorithm (FA) proposed by Yang [34] is a metaheuristic algorithm inspired by the flashing 
patterns of tropical fireflies. Simulated Annealing (SA), introduced by Kirk-Patrick et al [35], is based 
on the idea of annealing in metallurgy, where metals are cooled and heated to change their physical 
properties. The functions of the last three algorithms developed in MATLAB by Yang [33], freely 
available from the MATLAB Central File Exchange [36-38], have been adapted for optimization. 

Originally invented by Geem et al. [39], the Harmony Search (HS) algorithm is a metaheuristic 
optimizer inspired by the phenomenon that musicians repeatedly adjust the pitch of each instrument to 
eventually reach a beautiful state of harmony. The free MATLAB code for optimization with constraints 
available from MATLAB Central File Exchange [40] was used for the computations. The MATLAB 
programs CS, FA, SA, and HS used for the optimization in this paper are simple versions of 
metaheuristic algorithms with ordinary static penalty functions. All 5 MATLAB programs were 
modified to include custom objective and constraint functions. 

For comparison, the Quasi-Monte Carlo (QMC) method [41] was also used to find optimal solutions 
for a linear BFD. An algorithm of the program developed in MATLAB is described in the paper by 
Kaminski [42]. This program uses an open-access MATLAB function developed by Burkhardt [43] to 
generate quasi-random numbers based on Hammersley's points [44]. Unlike metaheuristic algorithms, 
the QMC algorithm rigorously checks the fulfilment of inequality constraints.  

The optimal values of the BFD coefficients were calculated by the process of minimizing the 
following objective function: 

𝑂𝑂𝑂𝑂 = 𝑤𝑤1[∑(𝑓𝑓1−𝑧𝑧)2+(𝑓𝑓2−𝑧𝑧)2]+𝑤𝑤2∑(𝑓𝑓21−𝑓𝑓22)2
𝑤𝑤1+𝑤𝑤2

     (13) 
where: wi ‒ weighting factor, z – braking rate. 

OF calculations were carried out for braking rate from 0.1 to 0.66 with a step of 0.01. The values 
of the weighting coefficients w1=0.6 and w2=(1-w1)=0.4 were taken arbitrarily. Due to the stochastic 
nature of metaheuristic algorithms, the calculation was repeated 3 times, taking the final result with 
the lowest OF value. 

To determine the adhesion utilization rates for each axle/axle combination (fi, f2i) occurring in the 
OF function, it is required to calculate the vertical axle load during braking as a function of the trailer 
braking rate, as described in the following sections. In the adopted rigid two-dimensional model of 
trailers, aerodynamic drag, and rolling resistance were omitted for simplicity. It was presumed that the 
deceleration-inducing brake forces Ti and/or T2i are known functions of the brake pressure [45]. Changes 
to some suspension dimensions for different load statuses have also been omitted. 

 

OPTIMISING BRAKING DISTRIBUTION ON TWO-AXLE TRAILERS 
The two-axle chassis is used for trailers with a permissible weight of up to 18 tonnes [46]. Using the 

notation in Figure 2, the equations for the balance of forces and moments acting on the braking trailer 
are of the following form: 

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺−𝑇𝑇1 − 𝑇𝑇2 = 0     (14) 
∑𝑍𝑍 = 𝑅𝑅1 + 𝑅𝑅1 − 𝐺𝐺 = 0     (15) 

∑𝑀𝑀1 = 𝑅𝑅2𝐿𝐿1 − 𝐺𝐺 ∙ 𝑎𝑎 + 𝑧𝑧 ∙ 𝐺𝐺 ∙ ℎ = 0    (16) 
where: T1, T2 – front and rear axle braking forces, R1, R2 – axle loads, L1 – inter-axle spacing, a – distance 
from gravity centre (GC) to the front axle, h – GC height, G – trailer weight, z – braking rate.  

Based on the equations above, it is possible to calculate the load on the axles as a function of the 
braking rate z: 

𝑅𝑅1 =
𝐺𝐺
𝐿𝐿1

(𝑏𝑏 + ℎ ⋅ 𝑧𝑧)         𝑅𝑅2 =
𝐺𝐺
𝐿𝐿1

(𝑎𝑎 − ℎ ⋅ 𝑧𝑧) (17) 

where: b – horizontal distance between GC and rear axle, b=L1-a. 
For a two-axle trailer, the limits of the directional coefficient iP of the BFD line crossing through the 

origin of the coordinate system T2=f(T1) can be determined from the permissible ranges of the relative 
brake forces of front 1 and rear 2 axles:  

 𝛾𝛾1 =
𝑇𝑇1
𝐺𝐺 = 𝑅𝑅1𝑓𝑓1

𝐺𝐺 = (𝑏𝑏𝐿𝐿 +
ℎ
𝐿𝐿 𝑧𝑧) 𝑓𝑓1          𝛾𝛾2 =

𝑇𝑇2
𝐺𝐺 = 𝑅𝑅2𝑓𝑓2

𝐺𝐺 = (1 − 𝑏𝑏
𝐿𝐿 −

ℎ
𝐿𝐿 𝑧𝑧) 𝑓𝑓2 (18) 

By substituting the limit values of adhesion utilization f1, f2 for a given trailer in relation (18), it is 
possible to determine the corresponding permissible area of relative braking forces on the graph 2=f(1). 
The results of the calculations for unladen and laden trailers are shown in Figures 3 and 4 respectively. 
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The Firefly Algorithm (FA) proposed by Yang [34] is a metaheuristic algorithm inspired by the flashing 
patterns of tropical fireflies. Simulated Annealing (SA), introduced by Kirk-Patrick et al [35], is based 
on the idea of annealing in metallurgy, where metals are cooled and heated to change their physical 
properties. The functions of the last three algorithms developed in MATLAB by Yang [33], freely 
available from the MATLAB Central File Exchange [36-38], have been adapted for optimization. 

Originally invented by Geem et al. [39], the Harmony Search (HS) algorithm is a metaheuristic 
optimizer inspired by the phenomenon that musicians repeatedly adjust the pitch of each instrument to 
eventually reach a beautiful state of harmony. The free MATLAB code for optimization with constraints 
available from MATLAB Central File Exchange [40] was used for the computations. The MATLAB 
programs CS, FA, SA, and HS used for the optimization in this paper are simple versions of 
metaheuristic algorithms with ordinary static penalty functions. All 5 MATLAB programs were 
modified to include custom objective and constraint functions. 

For comparison, the Quasi-Monte Carlo (QMC) method [41] was also used to find optimal solutions 
for a linear BFD. An algorithm of the program developed in MATLAB is described in the paper by 
Kaminski [42]. This program uses an open-access MATLAB function developed by Burkhardt [43] to 
generate quasi-random numbers based on Hammersley's points [44]. Unlike metaheuristic algorithms, 
the QMC algorithm rigorously checks the fulfilment of inequality constraints.  

The optimal values of the BFD coefficients were calculated by the process of minimizing the 
following objective function: 

𝑂𝑂𝑂𝑂 = 𝑤𝑤1[∑(𝑓𝑓1−𝑧𝑧)2+(𝑓𝑓2−𝑧𝑧)2]+𝑤𝑤2∑(𝑓𝑓21−𝑓𝑓22)2
𝑤𝑤1+𝑤𝑤2

     (13) 
where: wi ‒ weighting factor, z – braking rate. 

OF calculations were carried out for braking rate from 0.1 to 0.66 with a step of 0.01. The values 
of the weighting coefficients w1=0.6 and w2=(1-w1)=0.4 were taken arbitrarily. Due to the stochastic 
nature of metaheuristic algorithms, the calculation was repeated 3 times, taking the final result with 
the lowest OF value. 

To determine the adhesion utilization rates for each axle/axle combination (fi, f2i) occurring in the 
OF function, it is required to calculate the vertical axle load during braking as a function of the trailer 
braking rate, as described in the following sections. In the adopted rigid two-dimensional model of 
trailers, aerodynamic drag, and rolling resistance were omitted for simplicity. It was presumed that the 
deceleration-inducing brake forces Ti and/or T2i are known functions of the brake pressure [45]. Changes 
to some suspension dimensions for different load statuses have also been omitted. 

 

OPTIMISING BRAKING DISTRIBUTION ON TWO-AXLE TRAILERS 
The two-axle chassis is used for trailers with a permissible weight of up to 18 tonnes [46]. Using the 

notation in Figure 2, the equations for the balance of forces and moments acting on the braking trailer 
are of the following form: 

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺−𝑇𝑇1 − 𝑇𝑇2 = 0     (14) 
∑𝑍𝑍 = 𝑅𝑅1 + 𝑅𝑅1 − 𝐺𝐺 = 0     (15) 

∑𝑀𝑀1 = 𝑅𝑅2𝐿𝐿1 − 𝐺𝐺 ∙ 𝑎𝑎 + 𝑧𝑧 ∙ 𝐺𝐺 ∙ ℎ = 0    (16) 
where: T1, T2 – front and rear axle braking forces, R1, R2 – axle loads, L1 – inter-axle spacing, a – distance 
from gravity centre (GC) to the front axle, h – GC height, G – trailer weight, z – braking rate.  

Based on the equations above, it is possible to calculate the load on the axles as a function of the 
braking rate z: 

𝑅𝑅1 =
𝐺𝐺
𝐿𝐿1

(𝑏𝑏 + ℎ ⋅ 𝑧𝑧)         𝑅𝑅2 =
𝐺𝐺
𝐿𝐿1

(𝑎𝑎 − ℎ ⋅ 𝑧𝑧) (17) 

where: b – horizontal distance between GC and rear axle, b=L1-a. 
For a two-axle trailer, the limits of the directional coefficient iP of the BFD line crossing through the 

origin of the coordinate system T2=f(T1) can be determined from the permissible ranges of the relative 
brake forces of front 1 and rear 2 axles:  

 𝛾𝛾1 =
𝑇𝑇1
𝐺𝐺 = 𝑅𝑅1𝑓𝑓1

𝐺𝐺 = (𝑏𝑏𝐿𝐿 +
ℎ
𝐿𝐿 𝑧𝑧) 𝑓𝑓1          𝛾𝛾2 =

𝑇𝑇2
𝐺𝐺 = 𝑅𝑅2𝑓𝑓2

𝐺𝐺 = (1 − 𝑏𝑏
𝐿𝐿 −

ℎ
𝐿𝐿 𝑧𝑧) 𝑓𝑓2 (18) 

By substituting the limit values of adhesion utilization f1, f2 for a given trailer in relation (18), it is 
possible to determine the corresponding permissible area of relative braking forces on the graph 2=f(1). 
The results of the calculations for unladen and laden trailers are shown in Figures 3 and 4 respectively. 

 
Figure 2. Forces acting on the two-axle braking trailer (according to ISO coordinate system [47]) 
 
The first solution is represented by the AB and CD lines in Figure 3-a, Figure 4-a for the adhesion 

utilization rates, and the corresponding curves in Figure 3-b and Figure 4-b for the brake force limits in 
the coordinate system 1-2. In the second solution, the limits of the admissible range of f1, and f2 rates 
are represented by the lines MN and JKL in Figures 3-c and 4-c. The related ranges of relative braking 
forces 1, and 2 are shown in Figure 3-d and Figure 4-d for an unladen and laden trailer respectively. 
The formulae for the border lines and curves in the f1,2-z and 1-2 system, along with the coordinates of 
each point, are listed in Table 1 and Table 2. 
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distribution coefficient for solution 2; a = 1.48 m, L = 2.95 m, h = 1.15 m 
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Figure 2. Forces acting on the two-axle braking trailer (according to ISO coordinate system [47]) 
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the coordinate system 1-2. In the second solution, the limits of the admissible range of f1, and f2 rates 
are represented by the lines MN and JKL in Figures 3-c and 4-c. The related ranges of relative braking 
forces 1, and 2 are shown in Figure 3-d and Figure 4-d for an unladen and laden trailer respectively. 
The formulae for the border lines and curves in the f1,2-z and 1-2 system, along with the coordinates of 
each point, are listed in Table 1 and Table 2. 

 
Figure 3. Linear BFD for unladen two-axle trailer of 4200 kg: a, c - runs f1, f2 of the adhesion 
utilization of the axles; b - limits of the distribution coefficient for solution 1; d - limits of the 

distribution coefficient for solution 2; a = 1.48 m, L = 2.95 m, h = 1.15 m 
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Table 1. BFD curve formulae for two-axle trailers 

Curve Coordinate system z-f1,2 Coordinate system 1-2 Range 

A-B 𝑓𝑓1,2 ≤ (𝑧𝑧+0.07)
0.85   𝛾𝛾1 = (𝑏𝑏

𝐿𝐿 + ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧+0.07

0.85 )  z=0.1-0.61 

C-D 𝑓𝑓1 > 𝑧𝑧 > 𝑓𝑓2  𝛾𝛾1 = (𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) 𝑧𝑧  z=0.15-0.30 

A’-C’ 
D’-B’ 𝑓𝑓1,2 ≤ (𝑧𝑧+0.07)

0.85   𝛾𝛾1 = 𝑧𝑧 − (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧+0.07
0.85 )  z=0.1-0,15 

z=0.3-0.61 

J-K 𝑓𝑓1,2 ≤ 𝑧𝑧 + 0.08  𝛾𝛾1 = 𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 + 0.08);  𝑧𝑧 (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 − 0.08)) z=0.15-0.30 

M-N 𝑓𝑓1 ≥ 𝑧𝑧 − 0.08  𝛾𝛾1 = 𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 − 0.08);  𝑧𝑧 − (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 + 0.08)) z=0.15-0.30 

K-L 𝑓𝑓1,2 ≤ (𝑧𝑧−0.02)
0.74   𝛾𝛾1 = (𝑏𝑏

𝐿𝐿 + ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧−0.3

0.74 + 0.38)  z=0.30-0.61 

K’-L’ 𝑓𝑓1,2 ≤ (𝑧𝑧−0.02)
0.74   𝛾𝛾1 = 𝑧𝑧 − (𝑎𝑎

𝐿𝐿 − ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧−0.3

0.74 + 0.38)  z=0.30-0.61 

 
Table 2. Coordinates of characteristic points (for all ranges 𝛾𝛾2 = 𝑧𝑧 − 𝛾𝛾1) 

Point z f1,2 1 

A 0.10 0.20 0.2 (𝑏𝑏
𝐿𝐿 + 0.1 ⋅ ℎ

𝐿𝐿) 

B 0.61 0.80 0.8 (𝑏𝑏
𝐿𝐿 + 0.61 ⋅ ℎ

𝐿𝐿) 

C 0.15 0.15 0.15 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) 

D 0.30 0.30 0.3 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) 

A’ 0.10 0.20 0.1 − 0.2 (𝑎𝑎
𝐿𝐿 − 0.1 ⋅ ℎ

𝐿𝐿) 

C’ 0.15 0.259 0.15 − (0.22
0.85) (𝑎𝑎

𝐿𝐿 − 0.15 ⋅ ℎ
𝐿𝐿) 

D’ 0.30 0.435 0.3 − (0.37
0.85) (𝑎𝑎

𝐿𝐿 − 0.3 ⋅ ℎ
𝐿𝐿) 

B’ 0.61 0.8 0.61 − (0.68
0.85) (𝑎𝑎

𝐿𝐿 − 0.61 ⋅ ℎ
𝐿𝐿) 

J 0.15 0.23 𝑚𝑚𝑚𝑚𝑚𝑚 (0.23 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) ;  0.15 − 0.07 (𝑎𝑎
𝐿𝐿 − 0.15 ⋅ ℎ

𝐿𝐿)) 

K 0.30 0.38 𝑚𝑚𝑚𝑚𝑚𝑚 (0.38 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) ;  0.3 − 0.22 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿)) 

L 0.61 0.8 (𝑏𝑏
𝐿𝐿 + 0.61 ⋅ ℎ

𝐿𝐿) (0.31
0.74 + 0.38) 

M 0.15 0.07 𝑚𝑚𝑚𝑚𝑚𝑚 (0.07 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) ;  0.15 − 0.23 (𝑎𝑎
𝐿𝐿 − 0.15 ⋅ ℎ

𝐿𝐿)) 

N 0.30 0.22 𝑚𝑚𝑚𝑚𝑚𝑚 (0.22 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) ;  0.3 − 0.38 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿)) 

K’ 0.30 0.38 0.38 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿) 

L’ 0.61 0.8 0.61-(𝑎𝑎
𝐿𝐿 − 0.61 ⋅ ℎ

𝐿𝐿) (0.31
0.74 + 0.38) 
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Table 1. BFD curve formulae for two-axle trailers 

Curve Coordinate system z-f1,2 Coordinate system 1-2 Range 

A-B 𝑓𝑓1,2 ≤ (𝑧𝑧+0.07)
0.85   𝛾𝛾1 = (𝑏𝑏

𝐿𝐿 + ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧+0.07

0.85 )  z=0.1-0.61 

C-D 𝑓𝑓1 > 𝑧𝑧 > 𝑓𝑓2  𝛾𝛾1 = (𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) 𝑧𝑧  z=0.15-0.30 

A’-C’ 
D’-B’ 𝑓𝑓1,2 ≤ (𝑧𝑧+0.07)

0.85   𝛾𝛾1 = 𝑧𝑧 − (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧+0.07
0.85 )  z=0.1-0,15 

z=0.3-0.61 

J-K 𝑓𝑓1,2 ≤ 𝑧𝑧 + 0.08  𝛾𝛾1 = 𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 + 0.08);  𝑧𝑧 (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 − 0.08)) z=0.15-0.30 

M-N 𝑓𝑓1 ≥ 𝑧𝑧 − 0.08  𝛾𝛾1 = 𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑏𝑏
𝐿𝐿 + ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 − 0.08);  𝑧𝑧 − (𝑎𝑎
𝐿𝐿 − ℎ

𝐿𝐿 𝑧𝑧) (𝑧𝑧 + 0.08)) z=0.15-0.30 

K-L 𝑓𝑓1,2 ≤ (𝑧𝑧−0.02)
0.74   𝛾𝛾1 = (𝑏𝑏

𝐿𝐿 + ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧−0.3

0.74 + 0.38)  z=0.30-0.61 

K’-L’ 𝑓𝑓1,2 ≤ (𝑧𝑧−0.02)
0.74   𝛾𝛾1 = 𝑧𝑧 − (𝑎𝑎

𝐿𝐿 − ℎ
𝐿𝐿 𝑧𝑧) (𝑧𝑧−0.3

0.74 + 0.38)  z=0.30-0.61 

 
Table 2. Coordinates of characteristic points (for all ranges 𝛾𝛾2 = 𝑧𝑧 − 𝛾𝛾1) 

Point z f1,2 1 

A 0.10 0.20 0.2 (𝑏𝑏
𝐿𝐿 + 0.1 ⋅ ℎ

𝐿𝐿) 

B 0.61 0.80 0.8 (𝑏𝑏
𝐿𝐿 + 0.61 ⋅ ℎ

𝐿𝐿) 

C 0.15 0.15 0.15 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) 

D 0.30 0.30 0.3 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) 

A’ 0.10 0.20 0.1 − 0.2 (𝑎𝑎
𝐿𝐿 − 0.1 ⋅ ℎ

𝐿𝐿) 

C’ 0.15 0.259 0.15 − (0.22
0.85) (𝑎𝑎

𝐿𝐿 − 0.15 ⋅ ℎ
𝐿𝐿) 

D’ 0.30 0.435 0.3 − (0.37
0.85) (𝑎𝑎

𝐿𝐿 − 0.3 ⋅ ℎ
𝐿𝐿) 

B’ 0.61 0.8 0.61 − (0.68
0.85) (𝑎𝑎

𝐿𝐿 − 0.61 ⋅ ℎ
𝐿𝐿) 

J 0.15 0.23 𝑚𝑚𝑚𝑚𝑚𝑚 (0.23 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) ;  0.15 − 0.07 (𝑎𝑎
𝐿𝐿 − 0.15 ⋅ ℎ

𝐿𝐿)) 

K 0.30 0.38 𝑚𝑚𝑚𝑚𝑚𝑚 (0.38 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) ;  0.3 − 0.22 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿)) 

L 0.61 0.8 (𝑏𝑏
𝐿𝐿 + 0.61 ⋅ ℎ

𝐿𝐿) (0.31
0.74 + 0.38) 

M 0.15 0.07 𝑚𝑚𝑚𝑚𝑚𝑚 (0.07 (𝑏𝑏
𝐿𝐿 + 0.15 ⋅ ℎ

𝐿𝐿) ;  0.15 − 0.23 (𝑎𝑎
𝐿𝐿 − 0.15 ⋅ ℎ

𝐿𝐿)) 

N 0.30 0.22 𝑚𝑚𝑚𝑚𝑚𝑚 (0.22 (𝑏𝑏
𝐿𝐿 + 0.3 ⋅ ℎ

𝐿𝐿) ;  0.3 − 0.38 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿)) 

K’ 0.30 0.38 0.38 (𝑎𝑎
𝐿𝐿 − 0.3 ⋅ ℎ

𝐿𝐿) 

L’ 0.61 0.8 0.61-(𝑎𝑎
𝐿𝐿 − 0.61 ⋅ ℎ

𝐿𝐿) (0.31
0.74 + 0.38) 

 

 
Figure 4. Linear BFD for a laden two-axle trailer of 16250 kg: a, c - runs f1, f2 of the adhesion 
utilization of the axles; b - limits of the distribution coefficient for solution 1; d - limits of the 

distribution coefficient for solution 2; a = 1.48 m, L = 2.95 m, h = 1.63 m 
 
From the graphs 2=f(1)it is possible to determine the permissible values of the directional coefficient 
ip=2/1 of the linear distribution of the braking forces. For a given point P: 

𝑖𝑖𝑃𝑃 =
𝛾𝛾2𝑝𝑝
𝛾𝛾1𝑝𝑝

= (𝑎𝑎𝐿𝐿−𝑧𝑧𝑝𝑝⋅
ℎ
𝐿𝐿)𝑓𝑓2

(𝑏𝑏𝐿𝐿+𝑧𝑧𝑝𝑝⋅
ℎ
𝐿𝐿)𝑓𝑓1

  (19) 

For the first solution, the area of acceptable BFD is bounded at the top by a line passing through 
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(Figure 4-d): 
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If the tangent point T is out of the JK section of the boundary curve, the direction coefficient of the 
lower boundary line is calculated from the point K coordinates (Figure 4-d). The limit values of the 
directional coefficients iP and the corresponding brake force distribution coefficients β1 for the two-axle 
trailer considered, as well as the optimum values of β1 obtained using the different MOAs, are 
summarised in Table 3. 
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Figure 4. Linear BFD for a laden two-axle trailer of 16250 kg: a, c - runs f1, f2 of the adhesion 
utilization of the axles; b - limits of the distribution coefficient for solution 1; d - limits of the 

distribution coefficient for solution 2; a = 1.48 m, L = 2.95 m, h = 1.63 m 
 
From the graphs 2=f(1)it is possible to determine the permissible values of the directional coefficient 
ip=2/1 of the linear distribution of the braking forces. For a given point P: 

𝑖𝑖𝑃𝑃 =
𝛾𝛾2𝑝𝑝
𝛾𝛾1𝑝𝑝

= (𝑎𝑎𝐿𝐿−𝑧𝑧𝑝𝑝⋅
ℎ
𝐿𝐿)𝑓𝑓2

(𝑏𝑏𝐿𝐿+𝑧𝑧𝑝𝑝⋅
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𝐿𝐿)𝑓𝑓1

  (19) 

For the first solution, the area of acceptable BFD is bounded at the top by a line passing through 
point D or B' (select the line with the lower direction coefficient) and at the bottom by the OS line 
tangent to the AB boundary curve at point S (Figures 3-b and 4-b). 
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0.85 ) 𝛾𝛾2𝑆𝑆 = 𝑧𝑧𝑆𝑆−𝛾𝛾1𝑆𝑆  (20) 

For the second solution, the linear BFD upper bound is a straight line through point L' (Figures 3-d and 
4-d). From below, the allowable area is bounded by a straight line tangent to the JK curve at point T 
(Figure 4-d): 

𝑧𝑧𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚

{
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 𝛾𝛾2𝑇𝑇 = 𝑧𝑧𝑇𝑇−𝛾𝛾1𝑇𝑇  (21) 

If the tangent point T is out of the JK section of the boundary curve, the direction coefficient of the 
lower boundary line is calculated from the point K coordinates (Figure 4-d). The limit values of the 
directional coefficients iP and the corresponding brake force distribution coefficients β1 for the two-axle 
trailer considered, as well as the optimum values of β1 obtained using the different MOAs, are 
summarised in Table 3. 
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 Table 3. Limiting and optimum β1 ratios for linear BFD for two-axle trailer 

The first solution acc. to (3), (4) 

Limits  
 

imin=iS=0.1202, β1max=0.8927 imin=iS=0.0434, β1max=0.9584 

imax=iB’=0.5293, β1min=0.6539 imax=iB’=0.2754, β1min=0.7841 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.6913, OF=0.07653 β1=0.7841, OF=0.2408 

MIDACO, CS, FA, HS β1=0.6913, OF=0.07653 β1=0.7828, OF=0.2406 

SA β1=0.6912, OF=0.07653 β1=0.7828, OF=0.2406 

The second solution acc. to (5), (6) 

Limits  
 

imin=iK=0.2832, β1max=0.7793 imin=iT=0.1914, β1max=0.8393 

imax=iL’=0.5293, β1min=0.6539 imax=iL’=0.2754, β1min=0.7841 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.6913, OF=0.07653 β1=0.7841, OF=0.2408 
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SA β1=0.6914, OF=0.07653 β1=0.7829, OF=0.2406 

 
For the unladen trailer, the optimum β1 values calculated using the QMC method and the heuristic 
methods are almost the same. There are slight differences in the results, obtained using the SA method, 
but the differences do not exceed 0.03%. For the laden trailer, identical results were obtained using 
heuristic methods for both the first and second solutions. Examples of adhesion utilization curves fi(z) 
are shown in Figure 5. However, it should be noted that the optimum value β1 obtained by heuristic 
methods for a laden trailer is less than the permissible limit β1min (according to MIDACO kp=(1-
β1)/β1=0.2774) and the curve f2 exceeds the permissible zone (Figure 6). It is worth noting that heuristic 
methods are not strictly accurate methods, especially in the case of optimization with constraints using 
a penalty function. In the case of the QMC method, the optimal value of β1 is equal to the constraint 
β1min=0.7841 for both solutions. 

 
Figure 5. Utilized adhesion curves fi(z) for optimum BFD in two-axle trailer: a - unladen trailer, QMC 
method, I solution, b - laden trailer, QMC method, I solution, c - unladen trailer, MIDACO method, II 

solution, d - laden trailer MIDACO method, II solution 
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Figure 6. Utilized adhesion curves fi(z) for optimum BFD in a laden two-axle trailer  

(MIDACO, II solution) 
 

OPTIMISING BRAKING DISTRIBUTION ON THREE-AXLE TRAILERS 

Heavy farm trailers of around 25 tonnes GVW can be fitted with a three-axle chassis [46]. These are 
usually connected to the tractor by a single-point drawbar, which is used to steer the front axle, and 
tandem axles are fitted to the rear of the trailer. Tandem units are used to increase payload and distribute 
it between both axles regardless of road unevenness [16]. 

The dynamic model of the three-axle trailer during braking is shown in Figure 7. Thus defined, the 
braked trailer model is compatible with any tandem suspension model. 

.  
Figure 7. Forces acting on three-axle trailer with tandem suspension: L1=4.35 m, L2=1.35 m, 

m=7700/24000 kg, a=3.11/3.04 m, h=1.19/1.57 m 
 

Using the notation from Figure 7, the force and moment equilibria are written as:  

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺 − 𝑇𝑇1 − 𝑇𝑇21 − 𝑇𝑇22 = 0     (22) 
∑𝑍𝑍 = 𝑅𝑅1 + 𝑅𝑅21 + 𝑅𝑅22 − 𝐺𝐺 = 0     (23) 

∑𝑀𝑀1 = 𝑅𝑅21𝐿𝐿1 + 𝑅𝑅22(𝐿𝐿1 + 𝐿𝐿2) − 𝐺𝐺 ∙ 𝑎𝑎 + 𝑧𝑧 ∙ 𝐺𝐺 ∙ ℎ = 0   (24) 

where: G – trailer weight, T1, T21, T22 – braking forces, R1, R21, R22 – loads, L1 – inter-axle spacing, L2 – 
tandem axle spread, a – distance from GC to the front axle, h – GC height.  

L1 L2 

 a 

R1 
T1 R21 R22 

T21 T22 

G 

z·G 

h 
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∑𝑀𝑀1 = 𝑅𝑅21𝐿𝐿1 + 𝑅𝑅22(𝐿𝐿1 + 𝐿𝐿2) − 𝐺𝐺 ∙ 𝑎𝑎 + 𝑧𝑧 ∙ 𝐺𝐺 ∙ ℎ = 0   (24) 

where: G – trailer weight, T1, T21, T22 – braking forces, R1, R21, R22 – loads, L1 – inter-axle spacing, L2 – 
tandem axle spread, a – distance from GC to the front axle, h – GC height.  
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For the determination of all vertical forces, the system of equations (22)-(24) must be completed by 
an additional equation between reactions R21 and R22, which requires an analysis of the forces acting on 
the specific tandem suspension. 

 
Bogie suspension 

One of the simple forms of a tandem unit is a mechanical bogie suspension [48], [49]. The bogie 
suspension is designed to adapt to different types of terrain and road conditions, making it a versatile 
option for agricultural trailers that need to operate in different environments. Axles equipped with ABS 
can be used at a speed of up to 65 km/h [48]. In the bogie suspension, parabolic tapered springs are 
attached upside down to the trailer frame (Fig. 8) using a cradle and U-bolts to allow movement between 
the axles [49]. 

Considering the forces and moments applied to the bogie axles (Fig. 8), the following system of 
equilibrium equations is obtained:  

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺2 − 𝑇𝑇21 − 𝑇𝑇22 + 𝑇𝑇2 = 0    (25) 
∑𝑍𝑍 = 𝑅𝑅21 + 𝑅𝑅22 − 𝑅𝑅2 − 𝐺𝐺2 = 0    (26) 

∑𝑀𝑀2 = 𝑅𝑅22𝑑𝑑2 − 𝑅𝑅21𝑑𝑑1 + 𝐺𝐺2𝑏𝑏2 − 𝑧𝑧 ∙ 𝐺𝐺2(ℎ𝑠𝑠 − ℎ2) + (𝑇𝑇21 + 𝑇𝑇22)ℎ𝑠𝑠 = 0  (27) 

where: T2, R2 - horizontal and vertical reactions in the suspension support, d1, d2 - parabolic spring 
lengths, hs - height of support position, b2 - distance from a support to the centre of unsprung weight G2, 
h2 - height of the centre of G2. 

 
By solving equations (23), (24) and (27) together, taking into account from equation (22) that 𝑇𝑇21 +

𝑇𝑇22 = 𝑧𝑧 ∙ 𝐺𝐺 − 𝑇𝑇1, the vertical axle loads are given by: 
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where: 𝐿𝐿2 = 𝑑𝑑1 + 𝑑𝑑2 - tandem wheelbase, 𝐿𝐿 = 𝐿𝐿1 + 𝑑𝑑1 - trailer wheelbase.  

 

Figure 8. Forces acting on a bogie suspension: d1=0.705 m, d2=0.645 m,  
hs=0.567 m, h2=0.547 m, b2=0.03 m 

 
Optimal values of BFD ratios β1 for the three-axle trailer with bogie suspension obtained by various 

simulation methods are summarized in Table 4. 
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For the determination of all vertical forces, the system of equations (22)-(24) must be completed by 
an additional equation between reactions R21 and R22, which requires an analysis of the forces acting on 
the specific tandem suspension. 
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the axles [49]. 
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equilibrium equations is obtained:  

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺2 − 𝑇𝑇21 − 𝑇𝑇22 + 𝑇𝑇2 = 0    (25) 
∑𝑍𝑍 = 𝑅𝑅21 + 𝑅𝑅22 − 𝑅𝑅2 − 𝐺𝐺2 = 0    (26) 

∑𝑀𝑀2 = 𝑅𝑅22𝑑𝑑2 − 𝑅𝑅21𝑑𝑑1 + 𝐺𝐺2𝑏𝑏2 − 𝑧𝑧 ∙ 𝐺𝐺2(ℎ𝑠𝑠 − ℎ2) + (𝑇𝑇21 + 𝑇𝑇22)ℎ𝑠𝑠 = 0  (27) 
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lengths, hs - height of support position, b2 - distance from a support to the centre of unsprung weight G2, 
h2 - height of the centre of G2. 
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where: 𝐿𝐿2 = 𝑑𝑑1 + 𝑑𝑑2 - tandem wheelbase, 𝐿𝐿 = 𝐿𝐿1 + 𝑑𝑑1 - trailer wheelbase.  
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Table 4. Optimal values of ratios β1, and β21, for a linear BFD for a three-axle trailer with bogie 
suspension 

The first solution acc. to (3), (4) 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.5059, β21=0.3319, OF=0.15449 β1=0.5569, β21=0.2998, OF=0.17836 

MIDACO, CS β1=0.5089, β21=0.3287, OF=0.15429 β1=0.5609, β21=0.2951, OF=0.17764 

FA β1=0.5090, β21=0.3286, OF=0.15429 β1=0.5608, β21=0.2952, OF=0.17764 

SA β1=0.5080, β21=0.3295, OF=0.15430 β1=0.5615, β21=0.2947, OF=0.17765 

HS β1=0.5089, β21=0.3288, OF=0.15429 β1=0.5609, β21=0.2951, OF=0.17764 

The second solution acc. to (5), (6) 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.5059, β21=0.3319, OF=0.15449 β1=0.5569, β21=0.2998, OF=0.17836 

MIDACO, CS β1=0.5089, β21=0.3287, OF=0.15429 β1=0.5609, β21=0.2951, OF=0.17764 

FA β1=0.5088, β21=0.3288, OF=0.15429 β1=0.5607, β21=0.2953, OF=0.17764 

SA β1=0.5083, β21=0.3294, OF=0.15429 β1=0.5609, β21=0.2952, OF=0.17764 

HS β1=0.5088, β21=0.3288, OF=0.15429 β1=0.5609, β21=0.2951, OF=0.17764 

 

The results of the BFD coefficients for solutions I and II for the boogie tandem suspension are almost 
identical (Fig. 9). The share of each axle in the total brake force is approximately β1=50.9%, β21=32.9% 
and β22=16.2% for the unladen trailer and β1=56.1%, β21=29.5% and β22=14.4% for the laden trailer. 
The results fully meet the requirements of Regulation UE 2015/68. They exhibit a superior fit to the 
ideal distribution obtained using metaheuristic algorithms, with a marginally lower value of the OF than 
when using the QMC method. 

 
Figure 9. Utilized adhesion curves fi(z) for optimal BFD in three-axle trailer: a - an unladen trailer, 

QMC method, I solution, b - a laden trailer, QMC method, I solution, c - an unladen trailer, CS 
method, II solution, d - a laden trailer CS method, II solution 
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The results of the BFD coefficients for solutions I and II for the boogie tandem suspension are almost 
identical (Fig. 9). The share of each axle in the total brake force is approximately β1=50.9%, β21=32.9% 
and β22=16.2% for the unladen trailer and β1=56.1%, β21=29.5% and β22=14.4% for the laden trailer. 
The results fully meet the requirements of Regulation UE 2015/68. They exhibit a superior fit to the 
ideal distribution obtained using metaheuristic algorithms, with a marginally lower value of the OF than 
when using the QMC method. 

 
Figure 9. Utilized adhesion curves fi(z) for optimal BFD in three-axle trailer: a - an unladen trailer, 

QMC method, I solution, b - a laden trailer, QMC method, I solution, c - an unladen trailer, CS 
method, II solution, d - a laden trailer CS method, II solution 

 
Two-leaf spring suspension 

Another common mechanical tandem suspension used on agricultural trailers is two-leaf spring 
suspension, most often with slipper springs [48], [49]. Slipper spring has a single eye at one end and a 
flat, tapered end at the other. The front eye of the spring is hinged to the front hanger (leading axle) and 
the levelling beam (trailing axle). The rear end of the spring is attached to the levelling beam (Figure 
10). 

For a leading axle with an unsprung weight of G21, the equations of forces and moments are as 
follows:  

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺21 − 𝑇𝑇21 + 𝑇𝑇3 = 0     (31) 
∑𝑍𝑍 = 𝑅𝑅21 − 𝑅𝑅3−𝑅𝑅32 − 𝐺𝐺21 = 0    (32) 

∑𝑀𝑀3 = −𝑅𝑅32𝑐𝑐 + 𝑅𝑅21𝑐𝑐1 − 𝐺𝐺21𝑐𝑐1 − 𝑧𝑧 ∙ 𝐺𝐺21(ℎ𝑠𝑠 − ℎ2) + 𝑇𝑇21ℎ𝑠𝑠 = 0  (33) 
For a trailing axle with an unsprung weight of G22, these equations take the form: 

∑𝑋𝑋 = 𝑧𝑧 ∙ 𝐺𝐺22−𝑇𝑇22 + 𝑇𝑇4 = 0     (34) 
∑𝑍𝑍 = 𝑅𝑅22 − 𝑅𝑅4−𝑅𝑅42 − 𝐺𝐺22 = 0    (35) 

∑𝑀𝑀4 = 𝑅𝑅42𝑐𝑐 − 𝑅𝑅22𝑐𝑐2 + 𝐺𝐺22𝑐𝑐2 − 𝑧𝑧 ∙ 𝐺𝐺22(ℎ𝑠𝑠 − ℎ2) + 𝑇𝑇22ℎ𝑠𝑠 = 0   (36) 
Calculated from equations (33) and (36), the forces acting on the ends of the levelling beam are of the 
form: 

𝑅𝑅32 = (𝑅𝑅21 − 𝐺𝐺21)
𝑐𝑐1
𝑐𝑐 − 𝑧𝑧 ∙ 𝐺𝐺21

ℎ𝑠𝑠−ℎ2
𝑐𝑐 + 𝑇𝑇21

ℎ𝑠𝑠
𝑐𝑐    (37) 

𝑅𝑅42 = (𝑅𝑅22 − 𝐺𝐺22)
𝑐𝑐2
𝑐𝑐 + 𝑧𝑧 ∙ 𝐺𝐺22

ℎ𝑠𝑠−ℎ2
𝑐𝑐 − 𝑇𝑇22

ℎ𝑠𝑠
𝑐𝑐    (38) 

The forces R32 and R42 are related by the equation of moments acting on the levelling beam: 
 𝑅𝑅32𝑑𝑑1 = 𝑅𝑅42𝑑𝑑2      (39) 

 
Figure 10. Forces acting on a two leaf spring suspension: d1=d2=0.21 m, hs=0.717 m, h2=0.567 m, 

c1=0.454 m, c=0.93 m 
 
Substituting (37) and (38) into (39) gives the relationship between the reactions R21 and R22 which, 
together with equations (23) and (24), can be used to determine the axle loads when braking the trailer: 

𝑅𝑅1 = 𝐺𝐺 − 𝐿𝐿2
𝑀𝑀𝑀𝑀 {𝐺𝐺(𝑎𝑎 − 𝑧𝑧 ∙ ℎ) 𝑐𝑐1(𝑑𝑑1−𝑑𝑑2)+𝑐𝑐∙𝑑𝑑2𝐿𝐿2

+ 𝐺𝐺21𝑑𝑑1[𝑐𝑐1 + 𝑧𝑧(ℎ𝑠𝑠 − ℎ2)] − 𝐺𝐺22𝑑𝑑2[𝑐𝑐2 − 𝑧𝑧(ℎ𝑠𝑠 − ℎ2)] −
(𝑇𝑇21𝑑𝑑1 + 𝑇𝑇22𝑑𝑑2)ℎ𝑠𝑠}   (40) 

𝑅𝑅21 =
𝐿𝐿1+𝐿𝐿2
𝑀𝑀𝑀𝑀 {𝐺𝐺(𝑎𝑎 − 𝑧𝑧 ∙ ℎ) 𝑑𝑑2𝑐𝑐2

𝐿𝐿1+𝐿𝐿2
+ 𝐺𝐺21𝑑𝑑1[𝑐𝑐1 + 𝑧𝑧(ℎ𝑠𝑠 − ℎ2)] − 𝐺𝐺22𝑑𝑑2[𝑐𝑐2 − 𝑧𝑧(ℎ𝑠𝑠 − ℎ2)] −

(𝑇𝑇21𝑑𝑑1 + 𝑇𝑇22𝑑𝑑2)ℎ𝑠𝑠}   (41) 
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Two-leaf spring suspension 

Another common mechanical tandem suspension used on agricultural trailers is two-leaf spring 
suspension, most often with slipper springs [48], [49]. Slipper spring has a single eye at one end and a 
flat, tapered end at the other. The front eye of the spring is hinged to the front hanger (leading axle) and 
the levelling beam (trailing axle). The rear end of the spring is attached to the levelling beam (Figure 
10). 

For a leading axle with an unsprung weight of G21, the equations of forces and moments are as 
follows:  
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c1=0.454 m, c=0.93 m 
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where: 𝑀𝑀𝑀𝑀 = 𝑐𝑐2𝑑𝑑2𝐿𝐿1 + 𝑐𝑐1𝑑𝑑1(𝐿𝐿1 + 𝐿𝐿2)  
The results of optimizing the BFD for a trailer with two-leaf spring suspension are summarised in 

Table 5. 
 
Table 5. Optimal values of ratios β1, β21, for a linear BFD for a three-axle trailer with two leaf spring 
suspension 

The first solution acc. to (3), (4) 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.6620, β21=0.0730, OF=0.56170 β1=0.7020, β21=0.0623, OF=0.63207 

MIDACO, CS, HS β1=0.6654, β21=0.0734, OF=0.56117 β1=0.7018, β21=0.0636, OF=0.63099 

FA β1=0.6654, β21=0.0734, OF=0.56117 β1=0.7019, β21=0.0636, OF=0.63099 

SA β1=0.6655, β21=0.0739, OF=0.56128 β1=0.7022, β21=0.0634, OF=0.63105 

The second solution acc. to (5), (6) 

Algorithm Unladen trailer Laden trailer 

QMC β1=0.6009, β21=0.0371, OF=1.11104 β1=0.6426, β21=0.0267, OF=1.36936 

MIDACO β1=0.6143, β21=0.0584, OF=0.73816 β1=0.6546, β21=0.0474, OF=0.87157 

CS β1=0.6143, β21=0.0584, OF=0.73832 β1=0.6544, β21=0.0474, OF=0.87183 

FA β1=0.6142, β21=0.0578, OF=0.73898 β1=0.6544, β21=0.0476, OF=0.87192 

SA β1=0.6141, β21=0.0582, OF=0.74012 β1=0.6543, β21=0.0470, OF=0.87211 

HS β1=0.6143, β21=0.0584, OF=0.73833 β1=0.6544, β21=0.0473, OF=0.87183 

 
Figure 11. Utilized adhesion curves fi(z) for an optimal BFD in a three-axle trailer: a - unladen trailer, 
QMC method, I solution, b - laden trailer, QMC method, I solution, c - unladen trailer, FA method, II 

solution, d - laden trailer FA method, II solution 
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Figure 11. Utilized adhesion curves fi(z) for an optimal BFD in a three-axle trailer: a - unladen trailer, 
QMC method, I solution, b - laden trailer, QMC method, I solution, c - unladen trailer, FA method, II 

solution, d - laden trailer FA method, II solution 

 
The two-leaf spring suspension yielded similar optimum braking force distribution coefficients for 

the first solution only. The share of each axle in the total braking force is approximately β1=66.5%, 
β21=7.3%, and β22=26.2% for the empty trailer and β1=70%, β21=6.4% and β22=23.6% for the loaded 
trailer. The objective function values obtained using the metaheuristic algorithms were consistently 
smaller than those obtained using the QMC method. 

The results obtained by the metaheuristic methods and the QMC method for solution II show 
significant discrepancies. The average values of the BFD coefficients for the metaheuristic methods are 
as follows: β1=61.4%, β21=5.8%, and β22=32.8% for the unladen trailer, and β1=65.5%, β21=4.7%, and 
β22=29.8% for the laden trailer. Solution II shows that the objective function values obtained by the 
metaheuristic methods are significantly smaller than those obtained by the QMC method. It must be 
emphasized, however, that for such a BFD, the waveforms of the f21 curve of adhesion utilized by the 
leading tandem axle fall outside the permissible area when achieving a value of z=0.6, as shown in 
Figure 11-c,d. Furthermore, the data clearly show that for both solutions I and II, the dynamic load on 
the leading axle reaches zero at a braking rate of about 0.7, which means that the wheels of this axle 
detach from the ground. Figure 11 clearly shows that for z≈0.7 the f21 curve approaches infinity and then 
drops below zero (calculations for f21<0 are not physically meaningful). This is a direct result of the 
significant variation in brake forces of tandem axles with this suspension. The rear axle is slightly under-
braked and the front axle is heavily under-braked, as confirmed in the literature [16, 17]. This 
phenomenon is dangerous because braking with very low vertical loads can cause wheel lockup on the 
leading tandem axle. From the optimum ratios β1, and β21 summarised in Tables 4 and 5, it can be seen 
that the BFD of a three-axle trailer depends significantly on the load status and the tandem unit used on 
the trailer. 

 

APPLICATION MECHANISM DESIGN 
Based on the BFD determined for a laden trailer, the required braking forces and torques for each 

axle can be calculated for a braking rate of z=0.5, achieved at a pressure of p=6.5 bar for air and p=115 
bar for hydraulic braking systems. On this basis, the braked axles are selected from the catalogue, and 
the basic parameters of the application mechanism are determined, including the number and size of the 
actuators (stroke and effective area) and the length of the slack adjuster.  

The brake actuator force is calculated from the manufacturer's data using the following generalized 
relationship: 

𝐹𝐹𝑎𝑎 = 𝐴𝐴 ⋅ 𝑝𝑝 − 𝐵𝐵 (43) 
where: p – pressure in actuation system, A, B – coefficients. 
The camshaft input torque is the product of the brake actuator force Fa and the slack adjuster length l: 

𝐶𝐶 = 𝐹𝐹𝑎𝑎𝑙𝑙 (44) 
The axle manufacturer's formulae are used to calculate the brake force of the i-th axle [1], [45]: 

𝑇𝑇𝑖𝑖 = 𝑘𝑘 ⋅ (𝐶𝐶 − 𝐶𝐶0) ⋅ 𝜂𝜂 ⋅
𝐵𝐵𝐵𝐵
𝑟𝑟𝑑𝑑

 (45) 

where: k – number of brake actuators, C0 – threshold camshaft input torque, η – mechanical efficiency, 
rd - rolling wheel radius, BF – brake factor described by the relation [45]: 

𝐵𝐵𝐵𝐵 = 𝐶𝐶∗ ⋅ 𝑟𝑟𝑒𝑒
2𝑟𝑟𝑏𝑏

 (46) 

where: C* - braking efficiency factor, re – effective radius of friction, rb - effective cam radius. 
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actuators (stroke and effective area) and the length of the slack adjuster.  

The brake actuator force is calculated from the manufacturer's data using the following generalized 
relationship: 
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where: p – pressure in actuation system, A, B – coefficients. 
The camshaft input torque is the product of the brake actuator force Fa and the slack adjuster length l: 

𝐶𝐶 = 𝐹𝐹𝑎𝑎𝑙𝑙 (44) 
The axle manufacturer's formulae are used to calculate the brake force of the i-th axle [1], [45]: 
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where: k – number of brake actuators, C0 – threshold camshaft input torque, η – mechanical efficiency, 
rd - rolling wheel radius, BF – brake factor described by the relation [45]: 

𝐵𝐵𝐵𝐵 = 𝐶𝐶∗ ⋅ 𝑟𝑟𝑒𝑒
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where: C* - braking efficiency factor, re – effective radius of friction, rb - effective cam radius. 
 

CONCLUSIONS

The values of the optimum BFD coefficients ob-
tained by the metaheuristic methods are very close 
to those obtained by the QMC method. However, 
the analysis of the results shows that in some cases 
the adhesion curves utilized by the axles do not fully 
comply with the requirements of Directive 68/2015, 
despite lower OF values compared to the QMC 
method. The requirements, which are essentially 
inequality constraints, have been incorporated into 
the metaheuristic algorithms in the form of a penalty 
function. The penalty-based method transforms con-
strained optimization into unconstrained one by add-
ing a penalty to the original OF. The disadvantage of 
this method is that the solution to the problem with-
out constraints will not be an accurate solution to the 
original problem, because the margin of violation 
of the constraints is allowed as long as a significant 
improvement of the OF is obtained. The QMC algo-
rithm, on the other hand, treats constraints strictly. 
Failure to satisfy any of these results in successive 
draws of the decision variables.

However, as already mentioned, the differ-
ences observed between the BFD optimization 
results obtained by the MOM and QMC methods 
are small and acceptable, especially in the early 
stages of brake system design. It should be point-
ed out that the selection of the brake axle param-
eters (brake mechanism, actuators) is iterative, 
since some parameters, such as brake lever length 
and actuator area and stroke, have discrete values.

The advantage of metaheuristic methods is the 
free availability of open-source software devel-
oped in various programming environments such 
as MATLAB, Scilab, Octave, C, C++, and others, 
which only require the user to edit his own objective 
and penalty functions. The use of optimization meth-
ods, especially metaheuristics, is particularly useful 
for three-axle trailers where the BFD is influenced 
by the tandem suspension parameters. Metaheuristic 
methods can also be recommended for the selection 
of BFD for two-axle trailers. These are less labour-
intensive than analytical methods which require the 
calculation of characteristic point coordinates and 
curve equations in the γ1-γ2 system.

From the obtained results of the metaheuris-
tic optimization, the following conclusions can 
be drawn. For the two-axle trailer with a payload 
of approximately 12 tonnes, identical values for 
the coefficient β1 of the linear BFD were obtained 
for almost all metaheuristic algorithms for both 
solution I and solution II. The largest deviations 
were observed for the SA algorithm. For the laden 
trailer, the rear axle adhesion curve f2 slightly ex-
ceeds the permitted range.

Optimization calculations carried out using 
the MOMs and QMC method for the three-axle 
trailer with a payload of approximately 16 tonnes 
have revealed that the BFD is significantly depen-
dent on the type of rear axle suspension. The low-
est minimized OF values (around 0.154÷0.178) 
were obtained for bogie suspension. For both 
solutions, the contribution of each axle to the 
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overall brake force is approximately β1=50.9%, 
β21=32.9%, and β22=16.2% for the unladen trailer 
and β1=56.1%, β21=29.5%, and β22=14.4% for the 
laden trailer. The results fully comply with the re-
quirements of EU Regulation 2015/68.

Significantly higher values of the OF (around 
0.665÷0.872) were obtained for two leaf spring 
tandem axles. In this case, the contribution of each 
axle to the total brake force is more variable and 
lies within the following limits: for β1=61.5÷70%, 
for β21=4.7÷7.3% and β22=23.6÷32.8%, depend-
ing on the trailer load factor and the solution used. 
Furthermore, for a laden trailer, the leading axle 
adhesion curve f21 exceeds the higher limit of the 
permissible zone for z<0.61. Calculations have 
also shown that load transfer between tandem ax-
les leads to premature wheel locking of the lead-
ing axle at a braking ratio of about 0.7. 
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