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INTRODUCTION

Engineering structures undergo long-term 
operation and experience degradation of their 
microstructure and mechanical properties. The 
degree and dynamics of this deterioration are in-
fluenced by operating conditions, including envi-
ronmental factors (1–5), temperature (6–8), and 
other variables (9–17). Consequently, it is neces-
sary to implement strength analyses to assess the 
condition of an object or engineering element.

In the case of strength analyses of engineer-
ing elements, it is possible to use a variety of 
testing methods. These can consist of tests done 
directly on the evaluated object, using non-de-
structive techniques, such as ultrasonic and elec-
tromagnetic acoustic signals, etc. (18–22). If it is 
feasible to extract specimens from an engineering 

component for testing, uniaxial tensile, fracture 
toughness, and/or fatigue tests should be realized 
(2, 9, 21, 23, 24). Performing experiments in a 
laboratory makes it possible to obtain informa-
tion about the basic characteristics of the material 
from the engineering component under consider-
ation and then perform strength analysis. 

An important tool that has already become 
an everyday reality for engineers and scien-
tists involved in strength analysis is the ability 
to simulate the loading of an engineering com-
ponent using numerical methods, including the 
finite element method (FEM) (25–33). FEA en-
ables obtaining important information about the 
stress and strain fields in engineering objects for 
specific loading conditions and fixation. For nu-
merical simulations using FEM, accurate knowl-
edge of the material strength characteristics of the 
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object under consideration is required (32, 33). 
As shown in many works, the way of definition of 
the material model – the true relationship between 
stresses and strains in many cases determines the 
correctness of the obtained results of numerical 
simulations. Utilizing numerical methods for 
strength analysis allows for both quantitative and 
qualitative assessments of the current state of the 
considered object and helps predict its safe opera-
tion under specific operating conditions.

Numerous studies in the literature analyze the 
strength of engineering components and struc-
tures using FEM simulations in the literature, 
covering various applications such as machines 
and their components, bridges, tanks, and many 
other objects. For portal cranes, the analysis of 
standard tests provides a general assessment of 
the technical condition, typically conducted after 
a crack or damage has occurred. A more com-
prehensive evaluation is required for overhead 
cranes that have been in operation for over 30 
years. Chen and He analyzed a portal crane with a 
rated capacity of 12 tons after more than 50 years 
of service (34). The numerical model used data 
from the measurement of the crane’s true condi-
tion, taking into account any reduction in material 
thickness. The maximum effective stresses were 
determined to be about 130 MPa at the location 
subjected to the highest loads during the crane’s 
operation (34). Similarly, Nemchuk, Nesterov et 
al. (35, 36) reported comparable findings in their 
numerical simulations of crane operation. In their 
work, strain gauge measurements were addition-
ally carried out in the loaded elements, specimens 
were extracted from the most heavily loaded 
zones, and strength, ductility and fracture tough-
ness characteristics were determined. The results 
indicated that while the material properties re-
mained sufficient for failure-free operation, there 
was a notable decrease in impact resistance in the 
heavily loaded zones.

This paper focuses on the assessment of the 
condition of material from a portal crane made 
of low-carbon steel after long-term service for 33 
years based on the results of numerical simula-
tion of the loading of three-point bending (SENB) 
specimens. True stress-strain relationships for the 
material were defined based on uniaxial tensile 
tests of specimens taken from two elements of the 
portal crane. The paper presents two methods of 
definition of material dependence consisting of it-
erative fitting of the best convergence of loading 
curves of uniaxially tensile specimens and taking 

into account the triaxiality and Lode parameters 
of the material described in papers (37–39). Dis-
tributions of mechanical fields and changes in 
fracture toughness (J-integrals) during simulation 
loading of specimens were obtained. The results 
from numerical calculations were compared with 
experimental results obtained on specimens taken 
from two crane elements.

MATERIAL AND RESEARCH METHODS

In this study, the condition of material taken 
from two different elements of a portal crane (Fig. 
1a), which was in service for about 33 years, is 
analyzed. During the long-term operation of 
the crane, elements A (thickness 16 mm) and B 
(thickness 12 mm) were cyclically subjected to 
stresses of different levels. On the basis of nu-
merical calculations, the most loaded elements 
of the crane were determined, in which the range 
of stresses, Δσ, was then determined using strain 
gauge measurements: in element A, the stress 
range was within 0–130 MPa, while for element 
B it was 0–55 MPa (3, 40). 

The crane was made of low-carbon rolled 
structural steel. Although the parts are made of 
the same grade of steel (see Table 1), and both 
have a ferritic-pearlitic type of microstructure, 
some differences in their microstructure were ob-
served. For the material of element A, the grains 
of ferrite and pearlite are larger compared to the 
steel of element B (see Fig. 1).

EXPERIMENTAL TESTS

In the uniaxial tensile test (41, 42), specimens 
with a rectangular cross-section of 5.0 × 3.5 mm 
and a gauge length of 20.0 mm were tested. A three 
specimens were tested for each material variant. 
Dashes were made on the gauge section of the 
specimens at 2.0 mm intervals. During the tensile 
test, video recording was used until the specimen 
failed, allowing strain levels to be determined at 
each testing point across the entire gauge section 
and at the most elongated sections, where a local 
constriction – the neck was formed. The strength 
and yield characteristics of the tested material 
are shown in Table 2. Representative nominal 
(engineering) and true (logarithmic) stress-strain 
diagrams, εt – σt, are shown in Figure 2. The true 
values of stress and strain were determined along 
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the section of uniform specimen elongation ac-
cording to the formulae:
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where: εnom – nominal strain; σnom – nominal stress; 

εt – true strain; σt – true stress.

In sections of uniform plastic elongation, the 
true data were approximated by the Ramberg-Os-
good power-law relation (43, 44):
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where: ε0 – strain corresponding to yield strength 
(ε0 = σ0/E, where E is the Young’s modu-
lus); σ0 – yield strength of the material; 
α – constants that depend on the material 
being considered; n – coefficient (expo-
nent) of material consolidation.

Laboratory tests were carried out to deter-
mine the fracture toughness characteristics of the 
materials analyzed. The fracture toughness was 
expressed through the values of the J-integral 
– JQ. The tests were carried out using the sus-
ceptibility change technique, as specified by the 

ASTM standard. Three-point bend specimens 
of the SENB type, measuring 12 × 24 × 96 mm, 
were used in the tests. Figure 3 shows the force 
(F) and deflection (uext) relationships of the speci-
mens recorded during the laboratory tests. The 
value of the J-integral was determined at the mo-
ment of subcritical crack initiation. The deflection 

Figure 1. Schematic view of the portal crane under test with microstructure of the different elements of the crane

Figure 2. Nominal and true stress-strain relationships 
of the materials

Table 1. Chemical composition of analyzed steel (% by weight)
C Si Mn Cr S P Cu Fe

0.17 0.23 0.54 0.11 0.01 0.01 0.1 in balance
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values identified with the moment of crack ini-
tiation are shown schematically in Figure 3. The 
values of the J-integral are summarized in Table 
3. The material from the B section of the analyzed 
port crane was characterized by a higher fracture 
toughness value. The difference in performance 

is about 20%. In this study, the experimentally 
determined values of the J-integral served as ref-
erence values for the results of numerical calcula-
tions carried out using the finite element method.

DEFINITION OF THE TRUE STRESS-
STRAIN RELATIONSHIP FOR NUMERICAL 
SIMULATIONS

The proper definition of the material model, 
i.e. the true stress-strain relationship, is very im-
portant for its usage in numerical simulations. 
A definition of the material description in two 
ranges is required: linear-elastic and plastic. In 
the elastic range, two elastic constants are used 
for definition: Young’s modulus and Poisson’s 
ratio. The occurrence of plastic strain in the ma-
terial under load makes it necessary to define the 

Table 2. Strength and plasticity characteristics of the materials

Material E, GPa
σYS_L,
MPa

σYS_H,
MPa

σUTS,
MPa

σYS_L,
MPa

σYS_H,
MPa

σUTS,
MPa

Nominal True

A 201 284 296 437 287 299 510

B 199 283 299 410 287 302 491

Figure 3. Force-displacement relationships recorded 
during fracture toughness tests of the specimens

Table 3. Test critical values fracture toughness results 
of tested specimens

Material JQ, N/mm uext, mm

A 123 1.4

B 160 1.5

Figure 4. Determination of true strain levels in the material: (a) view of a uniaxially tensile specimen 
with gauge sections; (b) extrapolation of the trend line to the grain size of the material microstructure

(a) (b)
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plastic part of the material. In the first instance, 
an important step is to determine the critical true 
strain and stress levels in the material. In the next 
step, a calibration method must be chosen that 
allows the force-displacement curves obtained 
in laboratory tests and those determined numeri-
cally to converge. The critical true strain of the 
material, εC_t, was determined by measuring the 
elongation of the sections on the specimen (view 
of specimen with sections see Fig. 4a). For this 
purpose, an approach based on the extrapolation 
of a trend line (45) was used, which describes 
the dependence of the strain change determined 
on increasingly smaller increments, ∆i = Li–L0i, 
of the measuring sections, L0i, on an amount 
equal to the material grain diameter, d (example 
see Fig. 4b):
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Subsequently, the modelling of the true 
stress-strain relationship, knowledge of which 
is necessary to perform numerical calculations 
in terms of plastic deformation of the mate-
rial, was carried out. For this purpose, two ap-
proaches were used: (i) modelling according to 
the procedure proposed by Bai-Wierzbicki with 
modifications by Neimitz (BWN) (37–39) and 
(ii) modelling based on an iterative determina-
tion (IM) of the material relationship by best fit-
ting the experimental and numerically calculated 
specimen loading relationship, F-u (46–48). In 
the iterative approach, the true stress-strain rela-
tionship is initially estimated based on a power-
law range of points from yield stress to the true 
critical stress (σC_t) and strain (εC_t) values. The 
true critical stress level was obtained by relating 
the force at rupture to the true area of the speci-
men after testing. The determination of the criti-
cal strain (εC_t) values is shown in Figure 4, and 
it may be noted that other methods of estimating 
the critical stress (σC_t) and strain (εC_t) values are 
presented in the papers (5, 45).

The Bai-Wierzbicki procedure considers the 
influence of the stress triaxiality factor ƞ and the 
Lode parameter L. The relationship determining 
the plasticization stresses (equation 5) is used as 
a basis: 
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 is a function describ-
ing true stresses with respect to plastic strain (ob-
tained from experimental studies). The quantity ƞ 
is the stress triaxiality factor:
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where: σm – medium stresses; σeff – effective 
stresses, η0 – reference stress triaxiality 
factor (for a smooth specimen, uniaxially 
tensioned – η0 = 0.33). 

The γ function takes values within the limits 
0–1, with 0 occurring for the cases of plane strain 
and shear and 1 for axial symmetry. The γ func-
tion is calculated from the relationship:
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where: θ – lode angle, taking a value in the 0 ≤ θ 
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The procedure also uses a normalized Lode 
angle, θ. It takes values in the range from -1 to 1, 
described by the relation:
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The magnitude of the Lode parameter, L, can 
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= [272 (𝜎𝜎11 − 𝜎𝜎𝑛𝑛)(𝜎𝜎22 − 𝜎𝜎𝑛𝑛)(𝜎𝜎33 − 𝜎𝜎𝑛𝑛)]

1
3
 (9) 

 

�̅�𝜃 = 1 − 6𝜃𝜃
𝜋𝜋 = 1 − 2

𝜋𝜋 𝑎𝑎𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 (10) 

 

𝐿𝐿 = −2𝜎𝜎𝐼𝐼𝐼𝐼 − 𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼
𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼

 (11) 

 

𝜉𝜉 = 𝐿𝐿 9 − 𝐿𝐿2

√(𝐿𝐿2 + 3)3
 (12) 

 
𝑐𝑐𝜂𝜂′ = 𝑐𝑐𝜂𝜂[1 + 𝐻𝐻(𝜀𝜀𝑝𝑝𝑦𝑦_0)(𝜀𝜀𝑝𝑝𝑦𝑦 − 𝜀𝜀𝑝𝑝𝑦𝑦_0)]

𝜁𝜁, (13) 
 

 (11)

where: σI – the highest component of the principal 
stress, while σIII the smallest. 

There is a relationship between the quantities 
ξ and L:

 

 
𝜀𝜀𝑡𝑡 = 𝑙𝑙𝑙𝑙(1 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛) 

 
(1) 

𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛(1 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛) (2) 
 

𝜀𝜀
𝜀𝜀0

= 𝜎𝜎
𝜎𝜎0

+ 𝛼𝛼 ( 𝜎𝜎𝜎𝜎0
)
𝑛𝑛

 (3) 

 

𝜀𝜀𝐶𝐶_𝑡𝑡 = lim
𝐿𝐿0𝑖𝑖→𝑑𝑑

𝐿𝐿𝑖𝑖 − 𝐿𝐿0𝑖𝑖
𝐿𝐿0𝑖𝑖

. (4) 

  
𝜎𝜎𝑦𝑦𝑦𝑦𝑑𝑑 = �̅�𝜎(𝜀𝜀𝑝𝑝𝑦𝑦̅̅ ̅̅ )[1 − 𝑐𝑐𝜂𝜂(𝜂𝜂 − 𝜂𝜂0)] [𝑐𝑐𝜃𝜃𝑠𝑠 + (𝑐𝑐𝜃𝜃𝑎𝑎𝑎𝑎 − 𝑐𝑐𝜃𝜃𝑠𝑠) (𝛾𝛾 −

𝛾𝛾𝑚𝑚+1

𝑛𝑛+1)]. (5) 
 

𝜂𝜂 = 𝜎𝜎𝑛𝑛
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

, (6) 

 

𝛾𝛾 =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋6)

1 − 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋6)
[ 1
𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 − 𝜋𝜋

6)
− 1] = 6,46 [𝑐𝑐𝑠𝑠𝑐𝑐 (𝜃𝜃 − 𝜋𝜋

6) − 1] (7) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(3𝜃𝜃) = ( 𝑟𝑟
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

)
3
= 𝜉𝜉 = 27

2
𝐽𝐽3

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒3  

 
(8) 

r = [272 𝑑𝑑𝑠𝑠𝑑𝑑(𝑐𝑐𝑖𝑖𝑖𝑖)]
1
3
= [272 (𝜎𝜎11 − 𝜎𝜎𝑛𝑛)(𝜎𝜎22 − 𝜎𝜎𝑛𝑛)(𝜎𝜎33 − 𝜎𝜎𝑛𝑛)]

1
3
 (9) 

 

�̅�𝜃 = 1 − 6𝜃𝜃
𝜋𝜋 = 1 − 2

𝜋𝜋 𝑎𝑎𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 (10) 

 

𝐿𝐿 = −2𝜎𝜎𝐼𝐼𝐼𝐼 − 𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼
𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼

 (11) 

 

𝜉𝜉 = 𝐿𝐿 9 − 𝐿𝐿2

√(𝐿𝐿2 + 3)3
 (12) 

 
𝑐𝑐𝜂𝜂′ = 𝑐𝑐𝜂𝜂[1 + 𝐻𝐻(𝜀𝜀𝑝𝑝𝑦𝑦_0)(𝜀𝜀𝑝𝑝𝑦𝑦 − 𝜀𝜀𝑝𝑝𝑦𝑦_0)]

𝜁𝜁, (13) 
 

 (12)



131

Advances in Science and Technology Research Journal 2025, 19(4), 126–139

The quantities cη, cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 and m are deter-
mined experimentally. In equation 5, the magni-
tude of 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 depending on the value of the Lode 

angle, 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 is: 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

. 
For the stress-strain curve obtained experimen-
tally in the tensile test: 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 = 1, in the compres-
sion test: 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 = 1, and in the torsion test: 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 = 1. 
A member with the value m was added to the for-
mula for the yield function so that the yield sur-
face is smooth and differentiable with respect to 
the Lode angle (γ = 1). The parameter m usually 
takes values around unity.

In the work of Neimitz and co-workers (39, 
49), it was proposed that the stress triaxiality pa-
rameter η should be calculated as the average val-
ue after the smallest cross-section of the analyzed 
specimen in each calculation step. In the smallest 
section, there were maximum stress levels, triaxi-
ality and strain. It was assumed that the parameter 
η varies linearly from the initial value ηi to the val-
ue at failure ηf. The relationship between the stress 
triaxiality factor η and the strains at each calcu-
lation step was determined. The resulting points 
were approximated by a linear function and used 
in the calibration procedure. Similarly, the distri-
butions of the Lode parameter were determined. 

In addition, a formula has been implemented 
that allows very accurate calibration of the tensile 
curve at this loading stage, considering the effect 
of material softening. This phenomenon is identi-
fied with the initiation, development and coales-
cence of voids in the material before the moment 
of destruction. A formula has been proposed to 
calculate the magnitude of 

cη, 𝑐𝑐𝜃𝜃
𝑡𝑡 , 𝑐𝑐𝜃𝜃

𝑐𝑐 , 𝑐𝑐𝜃𝜃
𝑠𝑠  

 
𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎  
 
�̅�𝜃  𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑡𝑡  for 𝜃𝜃 ̅≥ 0, 𝑐𝑐𝜃𝜃

𝑎𝑎𝑎𝑎 = 𝑐𝑐𝜃𝜃
𝑐𝑐  for �̅�𝜃 ≤ 0  

 
𝑐𝑐𝜃𝜃 

𝑡𝑡 = 1 
 
𝑐𝑐𝜃𝜃

𝑐𝑐 = 1 
 
𝑐𝑐𝜃𝜃

𝑠𝑠 = 1 
 
𝑐𝑐𝜂𝜂

′   
 
𝜀𝜀𝑝𝑝𝑝𝑝_0 
 
H(𝜀𝜀𝑝𝑝𝑝𝑝_0)  
 

 in the form (39):

 

 
𝜀𝜀𝑡𝑡 = 𝑙𝑙𝑙𝑙(1 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛) 

 
(1) 

𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛(1 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛) (2) 
 

𝜀𝜀
𝜀𝜀0

= 𝜎𝜎
𝜎𝜎0

+ 𝛼𝛼 ( 𝜎𝜎𝜎𝜎0
)
𝑛𝑛

 (3) 

 

𝜀𝜀𝐶𝐶_𝑡𝑡 = lim
𝐿𝐿0𝑖𝑖→𝑑𝑑

𝐿𝐿𝑖𝑖 − 𝐿𝐿0𝑖𝑖
𝐿𝐿0𝑖𝑖

. (4) 

  
𝜎𝜎𝑦𝑦𝑦𝑦𝑑𝑑 = �̅�𝜎(𝜀𝜀𝑝𝑝𝑦𝑦̅̅ ̅̅ )[1 − 𝑐𝑐𝜂𝜂(𝜂𝜂 − 𝜂𝜂0)] [𝑐𝑐𝜃𝜃𝑠𝑠 + (𝑐𝑐𝜃𝜃𝑎𝑎𝑎𝑎 − 𝑐𝑐𝜃𝜃𝑠𝑠) (𝛾𝛾 −

𝛾𝛾𝑚𝑚+1

𝑛𝑛+1)]. (5) 
 

𝜂𝜂 = 𝜎𝜎𝑛𝑛
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

, (6) 

 

𝛾𝛾 =
𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋6)

1 − 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋6)
[ 1
𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 − 𝜋𝜋

6)
− 1] = 6,46 [𝑐𝑐𝑠𝑠𝑐𝑐 (𝜃𝜃 − 𝜋𝜋

6) − 1] (7) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(3𝜃𝜃) = ( 𝑟𝑟
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

)
3
= 𝜉𝜉 = 27

2
𝐽𝐽3

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒3  

 
(8) 

r = [272 𝑑𝑑𝑠𝑠𝑑𝑑(𝑐𝑐𝑖𝑖𝑖𝑖)]
1
3
= [272 (𝜎𝜎11 − 𝜎𝜎𝑛𝑛)(𝜎𝜎22 − 𝜎𝜎𝑛𝑛)(𝜎𝜎33 − 𝜎𝜎𝑛𝑛)]

1
3
 (9) 

 

�̅�𝜃 = 1 − 6𝜃𝜃
𝜋𝜋 = 1 − 2

𝜋𝜋 𝑎𝑎𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜉𝜉 (10) 

 

𝐿𝐿 = −2𝜎𝜎𝐼𝐼𝐼𝐼 − 𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼
𝜎𝜎𝐼𝐼 − 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼

 (11) 

 

𝜉𝜉 = 𝐿𝐿 9 − 𝐿𝐿2

√(𝐿𝐿2 + 3)3
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) – 
Heaviside’s function.

The numerical model and loading scheme for 
the tensile specimen are shown in Figure 5a. The 
three-dimensional model of the tensile specimen 
was developed with Abaqus ver. 6.12 (50). The 
dimensions of the numerical specimen model 
were the same as the geometry of the specimens 
used in the uniaxial tensile tests. For symmetry 
reasons, 1/8 of the specimen was modelled. This 
reduced the number of nodes in the model and 
the calculation time. The front of the crack tip 
was modelled as an arc with a radius of 12 μm. 
The specimen model contained 2920 nodes, and 
8-node, three-dimensional finite elements were 
used. The size of the finite elements was reduced, 
approaching the symmetry planes of the specimen 
so that the dimension of the smallest element was 
0.05 mm in this area. The developed finite ele-
ment mesh was verified with a dedicated tool in 
Abaqus, and no elements of unacceptable quality 
were detected. The boundary conditions assumed: 
on the wall, perpendicular to the Y axis, displace-
ments in the Y direction and rotation in the X and Z 
directions were blocked; on the wall perpendicu-
lar to the X axis, the possibilities of displacements 
in the X direction and rotation in the Y and Z direc-
tions were blocked; on the wall along the Z axis, 
displacements in the Z direction and rotation in the 
X and Y directions were blocked. The numerical 
model of the tensile specimen assumed a force in 
the form of a displacement applied to the wall ac-
cording to the scheme in Figure 5a. The displace-
ment value was determined from data recorded 
during uniaxial tensile tests in the laboratory.

Figure 6 shows the plots of the F-u relation-
ship for specimens A and B subjected to experi-
mental tests and the values obtained by numerical 

Figure 5. Numerical model and loading scheme for: (a) tensile specimen, (b) SENB specimen
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calculations, using the material relationships 
obtained by applying the two methods analyzed 
(Fig. 6a: BWN and IM). The criterion for accura-
cy was the best possible convergence of the force-
elongation relationship (F-u) recorded during the 
experimental tests and that obtained from the 
numerical calculations. Good convergence of ex-
perimental and computational data was obtained 
for both the IM and the BWN procedures. This 
demonstrates the correctness of the defined mate-
rial constitutive relations: σt = f(εt). These material 
relations were used in the following studies when 
simulating the loading of SENB specimens.

NUMERICAL MODELLING AND LOAD 
SIMULATION OF SENB SPECIMENS

The stress and strain fields in the area before 
the crack tip determine the subsequent crack de-
velopment mechanism, which is ductile or brittle. 
The occurrence of higher levels of stress compo-
nents σij in front of the crack tip, in particular the 
component normal to the crack plane σ22, and the 
stress triaxiality factor η indicates a higher pro-
pensity of the material to realize cleavage fracture 
and lower fracture toughness (51). The criterion 
formulated by Rice, Knott, and Ritchie (RKR) 
(52) postulated that brittle fracture would be real-
ized when the stress level σ22 exceeds a critical 
value over a certain interval (52, 53) or area (51). 
Later studies (51) showed that the level of stress 
triaxiality factor η and effective plastic strain εpl_eff 
also affect the nature of the development of the 
fracture process in the material. Brittle fracture is 

realised when high values of stress σ22 and stress 
triaxiality factor η are reached at negligible levels 
of plastic strain εpl_eff. On the other hand, at high 
levels of εpl_eff and moderate values of η, ductile 
fracture occurs through the development of voids. 
Shear fracture development is expected at high 
values of εpl_eff and low values of η (39).

Modelling and load simulations of the SENB 
specimens were carried out to assess the fracture 
toughness of test materials A and B. The numeri-
cal model of the SENB specimen is shown in Fig-
ure 5b. Due to the existing symmetry, the model 
assumed the development of ¼ of the SENB 
specimen. The top and bottom rollers were mod-
elled as a shell object. The numerical model of 
the specimen was divided into 21 layers in the 
thickness direction. 8-node and three-dimension-
al finite elements were used. The size of the ele-
ments was reduced as the crack front area was ap-
proached (the smallest finite element size was 65 
μm). The SENB specimen model included 20680 
nodes. The choice of finite element size and the 
way the specimen was partitioned into layers 
was preceded by preliminary analyses in order to 
achieve convergence of the results obtained. The 
crack front was modelled as an arc with a radius 
of 12 μm. In the definition of the boundary condi-
tions, the following was assumed: the possibility 
of displacement of the cracked part of the speci-
men (XOZ direction according to the reference 
system on the fig. 5b) was restrained, the possi-
bility of displacement of the un-cracked part of 
the XOZ specimen in the Y direction was blocked, 
the possibility of displacement of the mid-plane 
of the specimen (XOY direction according to the 

Figure 6. Results obtained from the true material models are as follows: (a) stress-strain relationships 
used in the numerical calculations; (b) experimental and numerical F-u curves
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reference system on the Fig. 5b) in the Z direc-
tion was blocked, and the lower rollers was com-
pletely immobilized. In the load simulation, the 
displacement of the upper roller pressing on the 
specimen was set. The material of the specimens 
was defined according to the constitutive relations 
described in the previous chapter. The specimens 
were loaded with the displacement of the roller in 
the X direction, which corresponded to the real-
ization of a three-point bending scheme.

The true stress-strain relationships obtained 
by applying different procedures for their defini-
tion (the IM and the BWN) were implemented 

into the numerical model of the SENB specimen. 
The distributions of stress components σ11, σ22, 
and σ33 (Fig. 7), the stress triaxiality factor η (Fig. 
8a) and the effective plastic strain (Fig. 8b) were 
determined taking into account the considered 
relations (in the graphs l is the distance from the 
crack front). Figures 7 and 8 show the results of 
numerical calculations for the two displacement 
values used in the simulations: 1.0 and 1.2 mm. 
The results obtained are summarized in Table 4. 
No significant differences were observed in the 
distributions of the stress components σ11 and 
σ33 for the two different methods of defining the 

Figure 7. Numerically determined stress distributions for material A: (a) σ11; (c) σ22; (e) σ33; 
and material B: (b) σ11; (d) σ22; (f) σ33
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material dependence. Differences were observed 
for the component σ22. When the true stress-
strain relationship determined according to the 
IM was used in the numerical calculations in the 
immediate vicinity of the crack tip, an increase 
in stress σ22 was observed (Fig. 7c, 7d). This 
trend in the behavior of the σ22 component oc-
curred for all materials: A and B. The differences 
were small for the opening stress maxima σ22; 
when defining the material model using the IM, 
the maximum occurred at a slightly further dis-
tance from the crack front. The different meth-
ods of determining the σt-εt relationship of the 
material used in the numerical calculations of 
notched specimens showed no significant effect 
on the distributions of the stress triaxiality factor 
and the effective plastic strain. 

Higher values of the normal components 
of the stress tensor occurred for material A. In 
the case of opening stress σ22, the difference be-
tween the maximum values was about 7%. For 
material A, the locations of the σ22 stress maxi-
ma were closer to the crack front with respect to 
material B (Fig. 7c, 7d).

The analyzed specimens were characterized 
by relatively high levels of effective plastic strain, 
in the range of 100–140%. Higher levels of strain 
are found in the material B. The stress triaxial-
ity factor showed similar values for the studied 
steels, with a tendency to be some higher for ma-
terial B. As the numerically simulated deflection 
values of the SENB specimens increased, 1.0 mm 
and 1.2 mm, the maximum values of the η coef-
ficient decreased. The location of the maximum 
value was moving away from the crack front. 

From the presented distributions: stress compo-
nents, strains and stress triaxiality factor, it can be 
concluded that material A is more prone to frac-
ture than B.

Numerical simulations of the loading of the 
SENB specimen were carried out for deflection 
values corresponding to the subcritical crack ini-
tiation moment. This moment was determined 
by fracture toughness tests using the compliance 
change method. The crack initiation moment was 
determined to be critical. As indicated in Figure 
3 and Table 3, the deflections of the specimens 
at the critical moment were: for A – 1.4 mm and 
for B – 1.5 mm. For the above-mentioned val-
ues of deflections in the SENB specimens, the 
distributions of the opening stress and stress in 
front of the crack front were determined. The 
values of the J-integral were also determined and 
confronted with the results of JQ obtained during 
laboratory tests. Specimen B showed lower lev-
els of opening stress σ22 compared to specimen A 
(Fig. 9a). The difference in the maximum values 
of stress σ22 was within 7%. The values of the J-
integral determined numerically were compared 
with the results of laboratory tests on fracture 
toughness – the critical values JQ. A good agree-
ment between experimental and numerical results 
was obtained. The largest difference occurred for 
calculations at the critical moment (Fig. 9b); for 
specimen B, it was about 8% and about 3% for 
specimen A. This may be due to the consequence 
of the larger deflection value assumed in the nu-
merical simulation of loading specimen SENB, 
resulting in significant deformation of the finite 
element mesh in the model. 

Figure 8. Results of numerical calculations in front of the crack tip (for materials A and B): 
(a) stress triaxiality factor η; (b) effective plastic strain εpl_eff
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The higher values of the numerical calculated J-
integral were obtained for specimens designated B. 
The higher level of the J-integral at the same deflec-
tion in specimen B indicates the need for a higher 
level of cumulative energy compared to specimens 
with lower values of the J-integral. This, therefore, 
means that material B is more resistant to fracture 
than the other material considered. However, the re-
sults of the numerical simulations only allow a quali-
tative comparison of the materials investigated. The 
results of numerical calculations for the maximum 
values of the stress component distributions, stress 
triaxiality factor and effective plastic strain, are pre-
sented in Table 4. The calculations were performed 
for two methods of defining the material true stress-
strain relationship for BWN and IM.

DISCUSSION 

This paper presents an assessment of the 
structural integrity of material from portal crane 
components using the numerical finite element 
calculation method. Developments in computer 
techniques and numerical calculation software 
allow accurate assessment of material condition 
(22, 54). The proposed method is based on the 
implementation of a tensile test carried out ex-
perimentally. A crucial aspect of these methods is 
the correct definition of the material model – the 
relationship between true strains and stresses, σt – 
εt. Various methods are proposed in the literature 
to determine this relation (38, 45, 46, 48, 55). As 
a verification of the validity of the relationship σt 

Figure 9. Results of numerical simulations for the subcritical fracture initiation moment distributions: 
(a) of the opening stress σ22; (b) of the J-integral

Table 4. Summary of the numerical calculation results obtained

Mat. uext,
mm

σ11 max l σ22 max l σ33 max l η max l εpl_eff max l,

MPa mm MPa mm MPa mm mm mm

A

BWN

1.00 743.14 0.29 1149.34 0.22 888.29 0.22 2.61 0.29 0.99 1.00

1.20 743.81 0.34 1164.76 0.27 887.97 0.27 2.52 0.34 1.23 1.00

1.40 739.13 0.47 1173.15 0.25 882.26 0.25 2.45 0.47 1.43 1.00

IM

1.00 743.18 0.29 1152.48 0.16 888.50 0.22 2.61 0.29 0.98 1.00

1.20 742.92 0.34 1169.20 0.21 889.39 0.21 2.52 0.34 1.21 1.00

1.40 736.64 0.32 1176.81 0.26 887.24 0.26 2.43 0.48 1.41 1.00

B

BWN

1.00 689.74 0.28 1068.18 0.21 825.53 0.21 2.72 0.35 1.12 1.00

1.20 696.67 0.32 1085.86 0.26 835.02 0.26 2.66 0.48 1.40 1.00

1.50 694.40 0.62 1097.06 0.27 817.75 0.27 2.58 0.62 1.67 1.00

IM

1.00 692.62 0.28 1072.63 0.15 829.27 0.22 2.79 0.28 1.09 1.00

1.20 693.18 0.33 1085.95 0.20 830.53 0.27 2.66 0.33 1.31 1.00

1.50 688.02 0.45 1096.04 0.24 816.47 0.24 2.51 0.65 1.71 1.00

(a) (b)
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– εt, it is assumed to check the convergence of 
the specimen load charts during the tensile test 
determined experimentally and numerically. It 
was proposed two methods of the definition of 
the dependency σt – εt – the iterative selection 
of the relation and its development based on the 
model proposed in papers by Bai, Wierzbicki and 
Neimitz (39, 56). Applying both σt – εt relations 
developed from these approaches in numerical 
calculations indicated good agreement between 
experimental and numerical graphs of uniaxially 
loading specimens. 

These relationships σt – εt were used when 
simulating loading specimens containing a crack 
(SENB). Similar and close stress and strain dis-
tributions in front of the crack tip were obtained 
during calculating using both σt – εt relationships. 
The distributions of the σ11 and σ33 components 
are similar in the wide region before the crack tip. 
Only in the distributions of σ22, immediately in 
front of the crack tip, were some differences ob-
served. In the σ22 stress distributions, calculated 
using true stress-strain relations defined by IM, 
the data increases before the top of the crack. It is 
no right trend, as they should decrease. The reason 
may be that the softening of the material due to the 
growth of voids in the immediate vicinity in front 
of the crack tip is not taken into account. This ef-
fect is considered in the BWN model through the 
function proposed by Neimitz (39, 49). 

The results presented here allow us to con-
clude that a comparative assessment of the mate-
rial condition can be performed using both meth-
ods to define the relationship σt – εt; because the 
plot of stress is similar on most of the range and, 
most importantly, at maximum values. However, 
the BWN method to define the relationship σt – εt, 
although requiring a greater effort in definition, 
allows obtaining physically correct stress distri-
butions even in the immediate vicinity before the 
crack tip. Higher values in the distributions of the 
various stress components were recorded in ma-
terial A compared to B, indicating that A is more 
susceptible to fracture. In contrast, specimens 
from material B are characterized by higher levels 
of plastic strain. 

An important step in the presented research 
is to determine the value of the J-integral char-
acterizing the material from numerical simula-
tion of specimen loading. The paper shows that 
relatively good agreement was achieved between 
the J-integral results from laboratory tests and nu-
merical simulations.

The presented approach allows an assessment 
of the fracture toughness of the material, with 
knowledge only of the true stress-strain relation-
ship in cases where suitable test specimens (e.g. 
three-point bending SENB specimens) cannot 
be taken from the engineering component under 
analysis. On the basis of the numerical simulation 
of the loaded material, it is possible to determine 
a number of characteristic quantities in the mate-
rial that allow a correct qualitative assessment of 
its fracture toughness state.

CONCLUSIONS

The current condition of portal crane ele-
ments was assessed using numerical simulation 
using the finite element method of the load of 
three-point bending specimens and true stress-
strain relationships σt – εt. The constitutive depen-
dencies σt – εt of the material from different crane 
elements were defined based on the uniaxial ten-
sile test data using two methods – the iterative 
fitting method of the experimental and numerical 
relationship and the method considering the stress 
triaxiality and the Lode parameter. The accuracy 
of the defined stress-strain relationships was veri-
fied by comparing the force-elongation graphs 
determined experimentally and numerically. For 
the investigated steel elements, similar stress and 
strain distributions in front of the crack tip were 
obtained by calculating using both σt – εt relation-
ships. Some differences in the distributions of 
σ22, immediately in front of the crack tip, were 
only observed. The distributions of the σ11 and σ33 
components are similar in the wide region before 
the crack tip. Only in the distributions of σ22, im-
mediately in front of the crack tip, were some dif-
ferences observed. Corresponding to this analysis 
result, a comparative assessment of the material 
condition can be performed using both methods 
to define the relationship σt – εt. However, an in-
significant increase in the values before the crack 
tip for the σ22 stress distributions calculated using 
true stress-strain relations defined by the iterative 
fitting method was observed. This result can be 
associated with the material softening due to the 
void growth in the immediate vicinity in front of 
the crack tip, which is not considered in this case. 
At the same time, the method considering the 
stress triaxiality and the Lode parameter to define 
the relationship σt – εt allows obtaining physically 
correct stress distributions even in the immediate 
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vicinity before the crack tip despite requiring a 
greater effort in the definition. 

The presented approach enables an assess-
ment of the material’s fracture toughness using 
only the true stress-strain relationship and numer-
ical simulation of specimen loading. The trends in 
the stress component distributions indicate a high 
level of fracture toughness of the tested materi-
als, ensuring a ductile nature of subcritical crack 
growth. A relatively good correlation between the 
J-integral values obtained by both experimentally 
and numerical simulations was revealed. There-
fore, the approach can be used for evaluating the 
fracture toughness of the material in cases where 
suitable test specimens (e.g. three-point bending 
SENB specimens) cannot be extracted from the 
engineering component for in-laboratory testing. 

This APC project was financed by the Min-
ister of Science of Poland, Grant numbers 
01.0.13.00/1.02.001/SUBB.MKKM.25.001.
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