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INTRODUCTION 

Deep neural networks (DNNs) have recently 
gained much attention in various applications, es-
pecially in combination with CNNs [1]. They have 
been used to improve safety, such as urban flow 
prediction [2, 3], automatic video caption match-
ing [4], speed control [5], in medicine for heart 
disease identifications and bone fractures detec-
tion in X-ray [6, 7], in agricultural robotic vision 
[8–10], fruit quality [11], handwritten digits rec-
ognitions [12], and cancer classification [13–17]. 
That is, the utilization of CNNs become essential 
in most of the classification issues [18]. Accord-
ingly, sports images could be also classified. For 

instance, classifying different sport images into, 
for instance, football playing, swimming, weight 
lifting and so on. There are many standard CNN 
models that can be employed for the abovemen-
tioned applications, such as LeNet-5, which struc-
tured to involve around 60.000 learnable param-
eters. The number 5 in its name is due the five lay-
ers in the whole structure of the model, two con-
volutional layers and three fully connected layers, 
hence, it is the simplest DNN based CNN model 
introduced in 1998 [19]. An improved version 
of LeNet-5 is the AlexNet [20], which has three 
more convolutional layers, then the total number 
of layers in the AlexNet is 8-layers. AlexNet was 
first introduced in 2012 where at that time it was 
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the largest/deepest neural network that was able to 
deal with ImageNet dataset [21], where there are 
60 million learnable parameters in this AlexNet. 
An improved version of AlexNet is the GoogleNet 
which includes only 4-millions of learnable pa-
rameters with enhanced performance [22], which 
is also known as Inception-V1. The GoogleNet, 
which is from Google, constructed from 22-layers. 
In 2010, the sci-fi movie by Leonardo DiCaprio 
was the inspiration of introducing the Inception 
model of versions 2,3, and 4 [22–25]. Inception 
was constructed from blocks, the blocks are built 
from convolutional layers, in other words, it is not 
only stacking layers one after each other, hence, 
the name Inception. Visual Geometry Group also 
invented their own DNN called VGG [26]. They 
used the Rectified Linear Unit (ReLU) activa-
tion, which is borrowed from AlexNet, with more 
convolutional layers of filters that are reduced in 
size than AlexNet. The network constructed from 
13-layers of convolution and three-layers of fully 
connected type, hence an overall leaning param-
eter of 138 million, this version is well-known as 
VGG-16, then the introduced the VGG-19 version. 
Then other standard models are introduced such as 
ResNet [27], DenseNet [28], ResNext [29], Chan-
nel Boosted CNN [30], and EfficientNet [31]. 

Most of the abovementioned standard models 
can be used either as pre-trained using the Ima-
geNet dataset or can be used to be trained from 
scratch, a fresh-copy. However, most of the authors 
are interested in the trained versions where transfer 
learning could be utilized to tune the weights of the 
model, learnable parameters, to the intended data-
set, such as that for the chest x-ray and other datas-
ets. Sports datasets are different in their topics, for 
instance, images for football or images for various 
balls, players motion and reactions, and line detec-
tion. In this work, a dataset for 22-types of sports 
will be adopted for classification. This dataset is 
available online from Kaggle.com and it is called 
Sports Image Dataset that is collected from google.
com image search. The aim of this work is to use a 
CNN-based DNN to quickly and accurately clas-
sify five types of sports: boxing, gymnastics, swim-
ming, tennis, and weightlifting, and to identify 
which algorithm provides the highest identification 
accuracy. The reason behind selecting these five 
types are their challenging correlated features. The 
proposed model consists of 19-layers, excluding 
the input layer, in total of around 549000 learnable 
parameters. The structure of the article is organized 
as follows: in section 2, the works that are most 

related to the discussed topic, i.e. the state of the art, 
will be presented, then the data set will be discussed 
in detail, and then the suggested model will be pre-
sented and analysed. In the results and discussion 
section, the complications of the selected 5 types 
of sports will be shown. In the conclusions section, 
the most important observations and planned fur-
ther research directions will be presented.

RELATED WORK

Various published works display varying re-
sults from suggested models, whether they are 
their own or standard models. Furthermore, the 
literature contains a variety of datasets specific 
to different sports. In fact, the high correlation 
between the image’s features makes it difficult 
to distinguish between different sport-type imag-
es. For example, features such as colors, lines, 
uniforms, dimensions, players, and actions can 
all slightly differ. Some sports, such as swim-
ming, may have completely different features or 
at least more than 50% differences. The swim-
ming pool’s blue-colored water is the dominant 
feature in swimming sport pictures. Generally 
speaking, the conceptual gap in picture interpre-
tation makes sports image categorization a chal-
lenging problem to solve. Accordingly, in 2007 
Rongrong et al. [32] suggested a technique using 
the support vector machine (SVM) in hierarchi-
cal manner, i.e., a multi-SVM to tackle this prob-
lem. However, the pictures that have been uti-
lized in their work is for more than five-types.  In 
the next work, VGG-16 was used to classify 18 
types of sports [33]. However, it can be seen that 
there are five sport types with environments that 
differ significantly from others. These five types 
– chess, football, swimming, table tennis, and 
tennis – showed the highest classification accu-
racy due to their distinct features, making them 
easier to differentiate from other sports [33]. The 
dataset used for this analysis was collected from 
the web by the authors themselves [33]. In the 
following study, the authors employed a novel 
combination of CNN and recurrent neural net-
works (RNN) to classify sequential frames of 
sports types [34]. This approach, while innova-
tive, yielded less accurate results than the meth-
od [33]. Specifically, [34] aimed to classify five 
sports – basketball, cricket, football, ice hockey, 
and tennis – where the features are highly corre-
lated, leading to classification challenges. As a 
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result, the CNN-based approach in [33] demon-
strated improved accuracy compared to the com-
bined CNN-RNN model in [34].

Joshi and his team use Inception-V3 to collect 
features from six types of sports and a neural net-
work (NN) for classification purposes [35]. The 
adopted six-sport types are: rugby, tennis, cricket, 
basketball, volleyball, and badminton. Thus, in this 
research, they offer a solid framework for catego-
rizing sports photos according to their context, such 
as the environment and surroundings. The dataset 
is constructed by extracting frames from films be-
longing to each sports genre on YouTube. The em-
ployed model is significantly deep and may face the 
overfit problem. The four categories of sport types: 
american football, rugby, soccer, and field hockey, 
have almost the same features, but significant differ-
ent features are still available such as the ball’s color 
and shape, shoulder pads, helmets, and visors. Dif-
ferences in features also allowed for classification 
of similar sports images using a convolutional neu-
ral network [36]. Podgorelec et al. proposed setting 
hyperparameters using a differential evolution (DE) 
approach for the CNN model, which was used in 
two subsequent works [37, 38]. The suggested CNN 
model is based on the standard model VGG-19 [26] 
and achieved accuracy of 81.31%. That is, the sug-
gested methodology is very complicated due to the 
employment of DE-algorithm for feature extraction. 
The dataset was created by the authors themselves, 
using google.com image search.

The analysis of sports sequence images using a 
CNN-based network is the main goal of the study 
described by Chen [39]. In light of the fact that 
multiframe detection algorithms are difficult and 
single-frame detection strategies have a poor de-
tection rate, this study suggests a novel algorithm 
that combines the two methods. This will increase 
the detection rate of tiny targets and decrease the 
detection time. The convolution-layer is able to 
see data at various sizes and get additional input 
characteristics because of the network architecture. 
Furthermore, training becomes easier, the gradient 
vanishing phenomenon is successfully suppressed, 
and the network depth is decreased. However, the 
suggested approach has been trained on a dataset 
that is not related to sports types, it is trained on CI-
FAR-10 dataset, which has teen different catego-
ries including: airplanes, automobiles, birds, cats, 
deer, dogs, frogs, horses, ships, and trucks.

Combined DNN methods [40] include residual 
dense module, third-order hourglass networks, and 
attention-based graph convolution, are suggested 

to introduce a novel DNN model for video sports 
classification. From various sources on the Inter-
net, researchers of [40] collected 2200 sports pho-
tographs. Among them, 799 were of football, 689 
were of swimming, and 712 were of table tennis. 
Thus, there are only three sport-types in this exper-
iment. Swimming and football were the most ac-
curate sports in the classification results, whereas 
table tennis had a low level of accuracy. This is due 
to the significantly uncorrelated features between 
the swimming and football sport-types, i.e., two 
different sport classes as team sport class and indi-
vidual sport class. On the other hand, recognizing 
the actions allows one to anticipate the next move 
of a single athlete, which allows one to investigate 
the psychological effects of inauthentic moves in 
sports. In light of this, a three-dimensional con-
volutional model is optimized and provided [41]. 
That is, using CNN and recorded footage of bas-
ketball players’ offensive and defensive processes, 
researchers can forecast their next moves by com-
bining this data with applicable theories from sports 
psychology. Hence, only one sport-type was em-
ployed in their work. A CNN architecture was im-
plemented [40] for movement classification from 
video dataset UCF101 [41]. However, the authors 
did not mention how was the depth of the proposed 
model, but they compared their work with standard 
models, that are mentioned previously. The num-
ber of sport-types was 10: basketball, diving, golf, 
horse riding, kicking-front, running, skate board-
ing-front, swing-bench, walk-front, and weight lift-
ing, in other words, there are two sport classes, the 
team class and individual class sports.

Soccer, the world’s most popular sport, capti-
vates millions of people. Li and Ullah present a DL 
image classification algorithm to recognize soccer 
player activities from videos and images [44]. Their 
novel method uses CNNs and graph convolutional 
networks (GCNs) to identify complex spatial–tem-
poral patterns in player attitudes and movements. 
The approach combines CNN and GCN. Continu-
ous convolutional and pooling layers in the CNN 
generate discriminative visual characteristics using 
player position input frames. With bones as edges 
and skeletal joints as graph nodes, the GCN con-
volutionally combines both temporal and spatial 
data from neighbouring components of the body. 
So, local pose dynamics can be captured. Fusion 
of complementary CNN and GCN feeds through 
fully connected layers classifies player activities 
based on visual representations and pose arrange-
ments. A multi-class cross-entropy loss was used 
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to train the model on extensively labelled soccer 
videos. Researchers classified seventeen complex 
football actions. Ablation studies verify CNN, 
GCN, and fused model contributions. This advanc-
es the use of DNNs for precise and detailed sport-
ing event assessment. In the next work, DL was 
used to automatically classify sports images using 
large datasets [45]. The MobileNetV3 model and 
the modified battle royale optimization strategy 
were combined to achieve this goal. Then, various 
images from the Internet were processed using the 
suggested model. The outcomes were then evalu-
ated alongside other cutting-edge techniques, such 
as InceptionV3, Bayesian classifier, and CNN. 
Participating sports in the study included six differ-
ent kinds of games: rugby, cricket, badminton, bas-
ketball, tennis, and volleyball (combined classes of 
sports, individual and team games). Unfortunately, 
the work relied on the overly complicated standard 
model, MobileNetV3. 

As indicated previously, with so many differ-
ent kinds of sports to sort through, not to mention 
issues with feature recognition and less-than-ideal 
detection results, sports image classification is no 
easy feat. To tackle the issue of categorizing one 
hundred distinct types of sports images, the re-
searchers use four pretrained models: ResNet-50, 
EfficientNet B7, DenseNet-121, and You Only 
Look Once version 8 (YOLOv8) [46]. The dataset 
provides a solid experimental basis for this research 
with 12.200 images of sports. Both the training and 
inference accuracy of the EfficientNet B7 model 
were 37.45% and 62.42%, respectively. Perhaps its 
underwhelming performance is because it struggles 
with certain types of sports image classification 
tasks, which are more demanding on its representa-
tional abilities. On the training set, DenseNet-121 
achieved an accuracy of 71.791%, while on the 
validation set, it reached an accuracy of 86.211%. 
Since it outperforms EfficientNet B7, they can infer 
that the dense connectivity architecture is ideal for 
feature extraction from images. Averaging 94.90% 
accuracy on the training set and 96.60% on the vali-
dation set, the YOLOv8n model also performed ex-
ceptionally well. That is, the authors concluded that 
the dense connection was ideal for feature extrac-
tion process [46], while previous works in this sec-
tion did not agree completely with this conclusion.

There has been a lot of success with picture 
classification, but accurately classifying sports 
images is still challenging. Current methods pro-
duce less-than-ideal categorization results because 
they can’t handle the dynamic components and 

complicated features found in sports images. Be-
cause of the complicated structure of sports images 
– which can include a wide range of lighting cir-
cumstances, backgrounds, and activity patterns—
new and improved classification methods must be 
developed. As a result, complex motions, different 
camera angles, changing lighting, and overlapping 
scenes all contribute to the difficulties of sports 
image categorization. In this paper, we suggested 
an 18-layers, excluding the input and classification 
layers, that sticked in two branches, at the begin-
ning then concatenated, as a first part. Thus, the 
first part consists of two parallel branches, each 
branch has one convolutional-layer followed by 
ReLU layer and batch normalization layer (BNL). 
The results from these two parts will be concate-
nated (a concatenation layer) to feed it to the sec-
ond part. The second part consists of 11-layers, this 
second part is involving two convolutional layers 
and one-fully connected layers, of course there are 
ReLU, dropout, and pooling layers for overfit is-
sue overcoming. The model was evaluated based 
on accuracy, F1-score, and recall. Results reveals 
that the suggested approach for the selected chal-
lenging sport-types are promising for realization.  

DATASET DESCRIPTION AND 
PREPROCESSING

In this work, the adopted dataset was collect-
ed using manual search on the Internet by a con-
tributor, and it has been uploaded to Kaggle.com 
and freely available through the link [https://www.
kaggle.com/datasets/sheikhzaib/sports-image-im-
age-classification]. There are 663, 635, 677, 667, 
and 562 images corresponding, respectively, to 
boxing, gymnastics, swimming, tennis, and weight 
lifting, as listed in Table 1. The original dataset con-
tains 22 sport types: badminton, baseball, basket-
ball, boxing, chess, cricket, fencing, football, For-
mula 1, gymnastics, hockey, ice hockey, kabaddi, 
MotoGP, shooting, swimming, table tennis, tennis, 
volleyball, weightlifting, wrestling, and WWE.

In this study, we have selected only five 
sport types: boxing, gymnastics, swimming, 
tennis, and weightlifting. As mentioned in the 
previous section, the rationale behind choosing 
these five types is their challenging, correlated 
features, which make them suitable for the ob-
jectives of this work.

Figure 1 shows a sample of 25 randomly 
selected images of these five sport types. The 



156

Advances in Science and Technology Research Journal 2025, 19(6), 152–166

image extensions were portable networks graph-
ics (PNG), joint photographic experts group (JPG 
or JPEG), graphics interchange format (GIF), 
ASP.NET generic handler (ASHX), content man-
agement system (CMS), and Web picture format 
(WebP). That is, all of these formats have been 
converted to the PNG format before make use 
of the dataset. However, as the authors point of 
view, the five-selected games in Table 1 and Fig-
ure 1 are the most challenging types, since they 

have mostly the same features. Therefore, we 
have selected these games for the current work. 
The adopted images, that are related to the se-
lected five games, have been reviewed carefully, 
where there are no duplications, no images that 
are not related to the selected games, and there is 
no image that has zero size, in other words, there 
is no empty picture. All of these operations can be 
considered as a first step of the preprocessing, say 
manual preprocessing. As a second step of pre-
processing operations, the selected-dataset was 
augmented, such as image-rotation, flip-left, flip-
right, and flip-up/down.

However, for more exploration inside the se-
lected games, Figure 2 shows 15-pictures of the 
selected sports. It can be seen that the dominat-
ed color is the blue. Further, lines, outfit, areas 
and other features are all similar to each other 
in all of the 15-pictures in Figure 2. That is, first 
column is Boxing-sport, second column is the 

Table 1. Elected sport games from the original dataset
Sport game type Number of images

Boxing 663

Gymnastics 635

Swimming 677

Tennis 667

Weight lifting 562

Total 3204

Figure 1. Twenty-samples of randomly selected images of the adopted 5-games dataset

Figure 2. 15 sample images from the adopted 5-games dataset, illustrating the similar features shared among them
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Gymnastic-sport, third is the swimming-sport, 
fourth is tennis-sport, and last is the weight lift-
ing-sport, where in each column there are six-im-
ages of the same sport-type. This will make a no-
ticeable confusion and mis-classification. There-
fore, it is essential to design a DNN that has the 
capability to distinguish between these five-sports 
correctly as much as possible. 

SUGGESTED MODEL

The suggested model in this work consists of 20 
layers, as shown in Figure 3. The first layer is the 
image input layer, which expects an input image of 
size 15 × 15 × 3. To match this requirement, the input 
images were resized to 15 × 15 pixels in width and 
height, with three channels (colored image). Next, 
the model processes the images through two parallel 
paths. Each path contains a ConvLyr, a ReLU acti-
vation layer, and a batch BNL. The ConvLyr in the 
first path constructed from 200-filters, with size of 
3 × 3. The second ConvLyr in the second path was 
designed to include 200-filters but with size of 5 × 
5. Each ConvLyr is followed by a ReLU layer and 
then by a BNL. Note that the ConvLyr padding is 
calculated during the training process such that the 
output dimension is equal to the input dimension. In 
other words, the horizontal or vertical padding will 
be added to the upper/lower edges equally if stride 
is set to 1, further, if the amount to be added is odd, 
then extra line of padding will be added. The same 
procedure will be followed vertically. However, the 
added values are zeros in both dimensions. The bi-
asing of the ConvLyr is set to zeros. Each ConvLyr’s 
weights have been initialized differently. Thus, for 
the first ConvLyr of the first path, the weights have 
been initialized using ‘He’ algorithm [47].  The 
second ConvLyr, which is in the second path has 
200-filters with 5 × 5 as width and height. The ini-
tializations of this ConvLyr are similar to that of the 
first ConvLyr. The second ConvLyr is followed by 
ReLU and BNL.Each path performs the following 
mathematical operations:

For each input image or feature map 𝑋 of size 
(𝐻=15 × W=15) with 3 input channels, and a filter 
𝐹 of size 𝐾 × 𝐾 (either 3 × 3 in first path or 5 × 5 
in second path) with 200 filters, the output at po-
sition (𝑖, 𝑗) in the feature map is given by:

Additionally, a bias 𝑏 is added to the result of 
this convolution operation, allowing the network 
to learn an offset for each filter. The final output 

for each position ( 𝑖 , 𝑗 ) in the feature map is giv-
en by Equation 1:

	 𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (1)

For ReLU activation, the output Yi, j after ap-
plying the convolution is then passed through a 
ReLU activation function, which is defined as: 
	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (2)
At the next, BNL, batch normalization can be 

applied, which normalizes the output of the layer 
across the batch:

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (3)

where:	𝜇 and 𝜎2 are the mean and variance of 
the mini-batch, respectively. γ is learn-
able parameters that scale and shift the 
normalized output. 𝜖 is a small constant 
added for numerical stability.

As indicated in Figure 3, the two paths will 
be concatenated through the concatenation layer. 
The next part of the model is structured as one 
path of two ConvLyrs. Thus, the third ConvLyr in 
the model is represented by the first ConvLyr of 
the second part of the model, as shown in Figure 
3. There are 128-filters of size 3 × 3 in aforemen-
tioned ConvLyr, followed by ReLU, BNL, and 
dropout layers. The dropout layer will drop con-
nections with probability of 50%, to overcome 
overfitting problem. A dropout layer randomly 
sets a fraction of the activations to zero during 
training to prevent overfitting. If the dropout rate 
is 𝑝, each activation is kept with probability 1 − 𝑝. 
The output after dropout is given by Equation 4:

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (4)

where:	𝑀 is a mask matrix with values of 0 or 
1, sampled independently for each activa-
tion, where each value is 1 with probabil-
ity 1 − 𝑝.

The fourth ConvLyr (last ConvLyr in the 
suggested model) is designed with 256-filters of 
size 3 × 3 followed by ReLU, BNL, and a 25% 
dropout layer. A global average pooling layer is 
following which is followed by fully connected 
layer of five-nodes, according to the number of 
elected sports, then a SoftMax-layer as a last lay-
er before the classification layer, as shown in Fig-
ure 3. However, the same initialization steps of 
the ConvLyrs of the first and second paths of the 
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model was followed for these two last ConvLyrs. 
The whole model was initialized with a specific 
hyperparameters, as will be seen later in the re-
sults section, these hyperparameters were adopt-
ed after a comprehensive investigation.

The output of the global average pooling lay-
er is a vector 𝐺 of length 𝐶, where each element 
Gc

 ​ represents the average value for channel 𝑐.
For each channel 𝑐, the global average pool-

ing operation is defined as:

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (5)

In this context, Yi, j, c represents the value at spa-
tial position (𝑖, 𝑗) within channel 𝑐, and 𝐻 × 𝑊 de-
notes the total number of elements in each channel.

On the other hand, Table 2 lists all the weights 
of the suggested model in Figure 3. It is shown 
that there are 549,349 learnable parameters allo-
cated in the 20-layers of Figure 3. Thus, the first 
layer, which is the image input layer, has no learn-
able parameters. The layer, which is the ConvLyr 
(in the first path), has 5600 learnable parameters. 

Second ConvLyr, which is the first layer in the 
second path, has 15200 parameters that are capa-
ble to be learned. The difference between the first 
and second ConvLyrs in the number of learnable 
parameters comes from the number of filters and 
the size of the filters in each layer. That is, due to 
200-filters of size 3 × 3 within 3-channels, then 
the total number of learnable parameters will be 
3 × 3 × 3 × 200, adding to them the number of 
biasing parameters, 200-parameters, then 3 × 3 × 
3 × 200 + 200 = 5600 learnable parameters. In the 
second ConvLyr, there are 200-filters of size 5 × 
5 for three channels and 200-biasing parameters, 
then there are 5 × 5 × 3 × 200 + 200 = 15200 pa-
rameters. However, the ReLU, dropout, SoftMax, 
Classification, Global average pooling, and Con-
catenation layers have no learnable parameters. 
Consequently, there are 400-learnable parameters 
in each BNL layer, as listed in Table 2. There are 
128-filters of size 3 × 3 of 200-channels (that are 
the number of filters of the previous layer) in the 
third-ConvLyr then the total number of learna-
ble parameters will be 3 × 3 × 200 × 128 with 

Figure 3. Suggestion of the DNN model that consists of twenty-layer
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128-parameters of biasing, i.e., there are 230528 
learnable parameters. The next BNL has 256 pa-
rameters followed by the fourth ConvLyr which is 
constructed from 256 filters of size 3 × 3 of 128 
channels (according to the last layer size), then to-
tal number of parameters will be 295168 learnable 
parameters. Last but not least, there are another 
BNL of 512 parameters and 1285 parameters for 
the fully connected layer.

RESULTS AND DISCUSSION

The model that has been discussed in the pre-
vious section, which consists of 20-layers, will be 
initialized with a specific hyperparameters. The 
hyperparameters are chosen after tens of trials. 
For instance, the optimizer was adaptive moment 
estimation, adam, with gradient decay factor of 
0.9. Further, the initial learning rate was set to 
0.001, when the maximum number of epochs was 
50. The learning rate will be decreased by a factor 
of 0.5 every 5-epochs. Note that at each epoch, 
the data will be shuffled to get real world results. 
The batch size was set to 56 samples from the 
dataset. Table 3 lists the hyperparameter settings 

used in the model. To initiate the training process, 
the dataset of the selected five sports was divided 
into three subsets: training (70%), testing (20%), 
and validation (10%).

Figure 4 shows the training progress for 
50-epochs. That is, there are 40-iterations per sin-
gle epoch. The best validation point was at epoch 
number 48, at which the train, validation, and test 
accuracies were 81.32%, 74.38%, and 74.103%, 
respectively. At this epoch, the learning rate was 
decreased to 1.953125 × 10-6 as indicated in Fig-
ure 5. As indicated previously, most of the fea-
tures of the adopted sports are similar to each oth-
er. Therefore, it is clearly reflected to the training 
progress in Figure 4. It can be seen that the train-
ing accuracy curve did not exceed the 81.32% 
level, even the validation accuracy was not more 
than 74.38%. Worth mention that another model 
was suggested (not shown in this work) was also 
employed, but the results did not improve.

In the sake of getting higher accuracy levels, 
training options were also changed. For instance, 
the initial learning rate value was set to more than 
0.001, but the accuracy was not improved, on the 
contrary, it has been decreased down to around 
65%. While decreasing the learning rate to less 
than 0.001, the accuracy did not exceed 55%. That 
is, the best learning rate was 0.001 in this work. 
Decreasing the learning rate period also has been 
changed, for instance, every 3-epochs or 10-ep-
oches, these changes decreased the accuracy and 
overfit problem appeared. Increasing number of 
epochs also did not give better results, it made the 
model suffers from the overfitting problem. Learn-
ing rage drop factor varied in the experiment, for 
example, it is set to 75% to 10%, however, the 

Table 2. Learnable parameters of the suggested model
Layer index Layer type Number of learnable

1 Image Input 0

2 ConvLyr (1st path) 5600

3 ConvLyr (2nd path) 15200

4 ReLU (1st path) 0

5 ReLU (2nd path) 0

6 BNL (1st path) 400

7 BNL (2nd path) 400

8 Concatenation 0

9 ConvLyr 230528

10 ReLU 0

11 BNL 256

12 Dropout 0

13 ConvLyr 295168

14 ReLU 0

15 BNL 512

16 Dropout 0

17 Global average 
pooling 0

18 Fully connected 1285

19 SoftMax 0

20 Classification 0

Total 549.349

Table 3. Hyperparameters settings to train the 
suggested model

Hyperparameter Value set

Optimizer Adam

Optimizer gradient decay factor 0.9

Initial learning rate 0.001

Number of Epochs 50

Learning rate drop factor 0.5

Learning rate drop period 5 Epochs

Shuffling Every single Epoch

Batch size 56

Train set ratio 70%

Test set ratio 20%

Validation set ratio 10%
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best drop factor was 50% every 5-epochs. Moreo-
ver, the batch size was varied from 200 records to 
20 records, the optimum number of records was 
found is 56-records, as listed in Table 3. 

Consequently, confusion matrix of the train-
ing phase is shown in Figure 6. From this con-
fusion matrix, various measurement metrics can 
be deduced for each class, individually.  That is, 
the accuracy of the first class, boxing sport, was 
calculated from Figure 6 to be 93.09%, for the 
second class, gymnastics sport, the accuracy is 
89.12%, for the swimming sport the delivered 
accuracy is 96.88%, Tennis accuracy was calcu-
lated as 92.91%, and the weight lifting accuracy 
is 90.64%. The highest accuracy was registered 

in the third class, swimming sport, then the Box-
ing sport class, as listed in Table 4. Furthermore, 
in Table 4, there are other measure metrics, in-
cluding: accuracy, sensitivity/recall, precision, 
specificity, negative predictive value (NPV), false 
positive rate (FPR), false detective rate (FDR), 
and F1-score. The highest values for these meas-
ures were found in the swimming sport class, 
as 93.88%, 93.88%, 98.35%, 97.68%, 1.65%, 
6.12%, 92.71%, respectively. Note that the FPR 
and FDR are the best values among other class-
es. The degraded results are mostly found in the 
last class; 67.18%, 93.20%, 6.80%, 32.82%, and 
71.54%, corresponding to precision, specificity, 
FPR, FDR, and F1-score, respectively. This is 

Figure 4. Train progress of the proposed model showing the accuracy and loss curves

Figure 5. Learning rate dropping progress of the proposed model
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clearly seen in Figure 6, where there are 26-Box-
ing records, 67-Gymnastic records, 9-swimming 
records, and 27-tennis records are all falsely clas-
sified as weight lifting-records. The measure met-
rics, including: accuracy, sensitivity/recall, preci-
sion, specificity, NPV, FPR, FDR, and F1-score as 
evaluated by mathematical Equation 6, Equation 
7, Equation 8, Equation 9, Equation 10, Equation 
11, Equation 12,  and Equation 13 respectively.
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∑ (𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (9)

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (10)

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (11)

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 

	 (12)

	

𝑌𝑌𝑖𝑖,𝑗𝑗 = ∑ ∑∑𝑋𝑋𝑖𝑖+𝑚𝑚−1,𝑗𝑗+𝑛𝑛−1,𝑐𝑐 ∙ 𝐹𝐹𝑚𝑚,𝑛𝑛,𝑐𝑐 + 𝑏𝑏                            (1)
3

𝑐𝑐=1

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑚𝑚=1
 

𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑌𝑌𝑖𝑖,𝑗𝑗)  (2) 

𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛾𝛾
𝑌𝑌𝑖𝑖,𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝜇𝜇
√𝜎𝜎2 + 𝜖𝜖

  (3) 

𝑌𝑌𝑖𝑖,𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑌𝑌𝑖𝑖,𝑗𝑗𝐵𝐵𝐵𝐵 · 𝑀𝑀 (4) 

𝐺𝐺𝑐𝑐 =
∑ ∑ 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑐𝑐

𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1
𝐻𝐻 ×  𝑊𝑊   (5) 

Accuracy = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

 

 (6) 
Sensitivity or recall = 

∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

   

(7) 
Precision = 
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(8) 

Specificity =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(9) 

NPV =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

  

(10) 

FPR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)5
𝑖𝑖=1

(11) 

FDR =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖5
𝑖𝑖=1

∑ (𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖)5
𝑖𝑖=1

(12) 

F1 − Score = 2∑ Sensitivity𝑖𝑖 · Precision𝑖𝑖5
𝑖𝑖=1

∑ Sensitivity𝑖𝑖 + Precision𝑖𝑖5
𝑖𝑖=1

(13) 	(13)

where:	True positives (TP) refer to the instances 
that are correctly predicted as belonging 
to a specific class. False positives (FP) 
are instances incorrectly predicted as be-
longing to that class. False negatives (FN) 
are instances that actually belong to the 
class but are predicted as belonging to a 
different class. True negatives (TN) are in-
stances that are correctly predicted as not 
belonging to the class.

Figure 7 shows the confusion matrix for the 
validation phase. In the validation phase. Most of 
the sport game pictures are confused with each 
other, this can be observed clearly in the training 
progress of Figure 4 (black bold line). However, to 

Figure 6. Confusion matrix of the training phase 

Table 4. Train phase metrics results
Metric Boxing Gymnastics Swimming Tennis Weight lifting

Accuracy 93.09% 89.12% 96.88% 92.91% 90.64%

Sensitivity or recall 80.84% 71.61% 93.88% 84.53% 76.52%

Precision 87.28% 74.83% 93.88% 80.73% 67.18%

Specificity 96.61% 93.70% 98.35% 94.99% 93.20%

NPV 94.60% 92.66% 97.68% 96.11% 95.62%

FPR 3.39% 6.30% 1.65% 5.01% 6.80%

FDR 12.72% 25.17% 6.12% 19.27% 32.82%

F1-score 83.94% 73.19% 92.71% 82.58% 71.54%

Figure 7. Confusion matrix of the validation phase
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understand it deeply, the confusion matrix deliv-
ers various measurement metrics, as listed in Table 
5. It can be deduced from Table 5 that the swim-
ming sport results are dominated with respect to 
other sports. The worst results in Table 5 are those 
of the weight lifting sport. However, the accura-
cies of the validation phase are: 90.17%, 87.83%, 
95.48%, 88.61%, and 86.12% corresponding to 
boxing, gymnastics, swimming, tennis, and weight 
lifting, respectively. There is no much difference 
between tennis and weight lifting sport accuracies 
in the validation phase, which is 0.49%, while in 
the training phase the difference is 2.27%, which 
is a logical result. Note that the FPR of the swim-
ming sport is the lowest one that is equal to 1.62%, 
which is the goal, while the other sports are higher: 
5.23%, 7.42%, 8.25%, and 9.43% for the boxing, 
gymnastics, tennis, and weight lifting, respectively.

Last but not least, testing phase confusion ma-
trix is shown in Figure 8. As expected, swimming 
sport results are the superior among other sports. 

However, the deduced measurement met-
rics from the confusion matrix in Figure 8 may 

produce deep exploration in the results, as indi-
cated in Table 6. For instance, starting from the 
boxing sport game; there are 2-gymnastic imag-
es, 2-tennis images, and 3-weight lifting images 
are all wrongly classified as boxing. The most 
wrongly classified images are in the tennis col-
umn, where there are 5 images classified as box-
ing, 7 images classified as gymnastics, 8 imag-
es as swimming, and 5 images as weight lifting. 
Accordingly, the FPR of the tennis sport game 
is higher than others, 9.43%, and its specificity 
is the lowest, 90.57%, as listed in Table 6. The 
highest FDR is captured in the weight lifting sport 
images, 37.50% as worse, this is due to 3-boxing, 
2-gymnastics, 4-swimming, and 5-tennis images 
are classified as weight lifting images, leading 
to second worse FPR in Table 6 as 7.75%. Nev-
ertheless, the accuracies of the five sports were: 
90.63%, 86.88%, 94.06%, 88.13%, and 89.06% 
for the boxing, gymnastics, swimming, tennis, 
and weight lifting, respectively. That is, the high-
est accuracy was 94.06% for the swimming sport 
and the lowest was 86.88% for the gymnastic 
sport. Thus, the suggested model was capable to 
distinguish between the sport games, although the 
images are too similar to each other, as shown in 
Figure 1 and Figure 2.

Comparing our results with other similar 
works, it can be seen that the results from this work 
are more accurate and generalizable, and that the 
selected sports belong to one class, which are indi-
vidual sports. Wang and Sofla achieved high accu-
racy results, which are around 95% and 99%, but 
these results concern 6 sports that are significantly 
uncorrelated with each other [45]. The six sports 
are volleyball, basketball, badminton, rugby, ten-
nis and cricket, where these sports belong to the 
classes of team games and individual games. In 
other words, the differences between the images 
of these six sports are significantly pronounced 

Table 5. Validation phase metrics results
Metric Boxing Gymnastics Swimming Tennis Weight lifting

Accuracy 90.17% 87.83% 95.48% 88.61% 86.12%

Sensitivity or recall 74.31% 68.99% 94.07% 75.00% 62.00%

Precision 80.45% 70.08% 94.07% 67.67% 54.87%

Specificity 94.77% 92.58% 98.38% 91.75% 90.57%

NPV 92.72% 92.22% 95.85% 94.09% 92.80%

FPR 5.23% 7.42% 1.62% 8.25% 9.43%

FDR 19.55% 29.92% 5.93% 32.33% 45.13%

F1-score 77.26% 69.53% 89.75% 71.15% 58.22%

Figure 8. Confusion matrix of the validation phase
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and therefore the classification accuracy was high. 
In the next work, the accuracy for the same six 
sports mentioned above was achieved, which is 
around 86% and 98% [35]. Moreover, Podgorelec 
et al. achieved accuracy of around 81.31%, also 
for the same six sports [36] that are mentioned 
above. This means that the works that were found 
in the literature combined two main classes of 
sports games: team games and individual games, 
unlike our adopted sports that are related only 
to individual sports. Hence, the results that are 
achieved in this work can be considered accept-
able with respect to other works.

CONCLUSIONS

The need for accurate sports image catego-
rization has grown in tandem with the media’s 
lavish coverage of sporting events. Convention-
al methods are inadequate for handling massive 
volumes of data and distinguishing between ex-
tremely similar images due to the human inter-
vention required to select relevant attributes.

The learning process of the proposed model 
involves several steps to achieve optimal classifi-
cation results. The optimization algorithm used is 
Adam, which updates the model’s weights based 
on adaptive estimations of the second-order mo-
ments of gradients. The initial learning rate was 
set to 0.001 and reduced by a factor of 0.5 every 
five epochs to enhance convergence. During 
training, the total number of steps was 768, with 
56 samples processed per epoch. The data was 
shuffled at the beginning of each epoch to prevent 
overfitting and ensure that the model does not rely 
on specific patterns within the data.

Backpropagation was employed to calculate 
the gradient of the loss function with respect to 
the weights, which were iteratively adjusted to 

minimize error. To further reduce overfitting, 
regularization techniques such as dropout layers 
were applied. These layers randomly disable a 
portion of the neuron connections during train-
ing, enhancing the model’s ability to generalize 
to unseen data. This systematic approach ensures 
effective learning while maintaining the model’s 
robustness and applicability in various scenarios.

In this work, an architecture was developed 
that uses a specific method of combining multi-
ple convolutional layers. Then, the results of ap-
plying the suggested model to different images 
downloaded from kaggle.com were compared 
with the results of other state-of-the-art tech-
niques. The selected images are from a specific 
category of sports: individual sports, where the 
focus is on the individual athlete rather than the 
team. Some examples of these sports are weight-
lifting, swimming, gymnastics, tennis, and box-
ing. Due to the high correlation between the 
selected sports, the model achieved accuracy of 
93.09%, 89.12%, 96.88%, 92.91%, and 90.64% 
for boxing, gymnastics, swimming, tennis, and 
weightlifting in the training phase. In the val-
idation phase, the accuracies reached 90.17%, 
87.83%, 95.48%, 88.61%, and 86.12%, respec-
tively. During the testing phase, the accuracies 
were: boxing 90.63%, gymnastics 86.88%, 
swimming 94.06%, tennis 88.13% and weight-
lifting 89.06%. So, in this work, the problem of 
almost similar sports environments is solved and 
the proposed model can be used to classify such 
images with acceptable accuracy.

Based on the positive findings of this study, 
future research will seek to improve the general-
isability of the model and extend the study to oth-
er sports categories other than individual sports. 
One of the areas of improvement that has been 
planned is to improve the architecture to work 
in complex environments where athletes may 

Table 6. Test phase metrics results.
Metric Boxing Gymnastics Swimming Tennis Weight lifting

Accuracy 90.63% 86.88% 94.06% 88.13% 89.06%

Sensitivity or recall 71.95% 67.21% 89.71% 76.36% 71.43%

Precision 89.39% 65.08% 89.71% 62.69% 62.50%

Specificity 97.06% 91.51% 97.17% 90.57% 92.25%

NPV 90.94% 92.22% 95.24% 94.86% 94.70%

FPR 2.94% 8.49% 2.83% 9.43% 7.75%

FDR 10.61% 34.92% 10.29% 37.31% 37.50%

F1-score 79.73% 66.13% 86.52% 68.85% 66.67%
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be partially occluded or in group settings, such 
as in team sports. Moreover, the routines for re-
al-time processing will enable the categorization 
of material in live sports broadcasts promptly and 
accurately. 

The other direction pertains to extending cur-
rent approaches toward extracting the nuanced 
characteristics in sports images, including athlete 
stance and motion that can be improved by apply-
ing transfer learning and hybrid models. Adding 
more images to the dataset that are different from 
the ones used in training and are of high quali-
ty will enhance the generalization ability of the 
model. The intended result is a robust, accurate, 
and flexible sports image classification system 
that can be used and implemented in real-world 
applications, like automated sports content cate-
gorization that may be useful to media companies 
or bringing improved analytical tools to coaches 
and sportscasters.
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