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INTRODUCTION

The proportional-integral-derivative (PID) al-
gorithm is widely used for the control of industri-
al process loops. Due to its simplicity and ease of 
re-tuning it remains one of the most popular con-
trol methods, even despite the passage of years 
[1]. According to an extensive survey carried out 
in the early 2000, up to 97% of control loops use 
the PID algorithm [2]. Among them, 64% are sin-
gle loop and 36% are multi-loop. Approximately 
85% of them are the feedback type, up to 6% are 
the feedforward type, and 9% are connected in a 
cascade [3].

The topics of the papers indicate the possi-
ble wide range of applications of the PID algo-
rithm. In addition to classic applications related 
to motion control, chemical processes, HVAC or 

renewable energy, papers on medicine and phar-
maceutics were also presented, e.g., drug dosing 
in anaesthesiology [4], blood glucose regulation. 
In parallel to PID systems, other control strate-
gies are also being developed, including predic-
tive control, adaptive control, fuzzy logic control, 
neural control, optimal control. However, none of 
these strategies has gained such a widespread use 
in practice as the PID algorithm [5].

Studies show that only one-third of control 
loops are optimally tuned [6]. Control inaccu-
racy is usually associated with higher material 
loss costs, or lower energy efficiency [2]. The tun-
ing of a PID controller always involves an object 
identification process. Identification involves the 
determination of a parametric model describing 
the static and dynamic properties of the object. 
Depending on the process, it can be carried out 
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in open or closed loop, using various excitation 
signals, including step, pulse or harmonic signals 
[7]. Based on the model parameters, the controller 
settings are then calculated. The simplest way is to 
use one of the many tuning rules described in the 
literature; for example, O’Dwyer’s study collected 
more than 1700 of them [8]. Another way is to use 
optimisation methods to find optimal settings tak-
ing into account one or more criteria, e.g. describ-
ing the quality or robustness of the control system.

The accuracy of the control will therefore de-
pend on the accuracy of the identification. In ad-
dition, changes in the dynamics of the plant may 
occur over time due to ageing of materials, wear 
or replacement of actuators or sensors, change of 
operating point. These differences are referred to 
as model-plant mismatch [9]. In the literature, the 
phenomenon of model-plant mismatch is used in 
different ways. Sometimes studies focus on de-
tecting differences between model and plant, e.g. 
to update the model [10]. Other times they use 
model-plant mismatch to generate artificial data 
to train machine learning models [11]. A descrip-
tion of the impact of the mismatch between model 
and process can most often be found in papers on 
MPC systems [12]. In one study [13], the effect of 
model mismatch on control quality is investigat-
ed, but without modifying the controller settings.

In our study, we introduced model mismatch 
as an additional identification step in order to as-
sess whether this would have an effect on correct-
ing the controller settings and consequently also 
on improving control performance. We called this 
approach the MMS. A novelty in MMS is the use 
of the mismatch model to re-tune the controller 
running in a classical feedback structure. The 
method was tested on a designed and built pro-
totype of the rotarod apparatus (RRA), which is 
described in more detail in Section 2. The RRA 
is usually applied to investigate the safety profile 
of novel drug candidates acting on the nervous 
system. The MMS improves the accuracy and sta-
bility of RRA speed control. To the authors’ best 
knowledge, in the world literature this approach 
applied to improve the function of this type of ap-
paratus has not been described previously.

DESCRIPTION OF ROTAROD APPARATUS 
OPERATION

First described by Dunham and Miya [14], the 
rotarod test is one of the oldest and most widely 

used behavioural tests for detecting motor deficits 
in laboratory animals (mice and rats). Therefore, 
it is regarded to be of great value in preclinical re-
search evaluating the influence of chemical com-
pounds, including drugs and drug candidates, on 
motor coordination of experimental animals. 

The RRA for laboratory rodents (Figure 1) is 
supplied with a long cylindrical rod which rotates 
with a forced motor activity. Several parameters 
can be measured using this test, such as time spent 
on the rotarod apparatus or endurance, and this 
task seems to be particularly useful for testing the 
effect of various drugs or assessing motor skills of 
experimental animals [15–17]. Because of poten-
tial concerns that the test substances will negative-
ly influence human motor skills in the future, the 
rotarod test is frequently used at the early stages 
of drug development process to screen out chemi-
cal compounds for this potential adverse effect.

In this test, a rodent is placed on a long cy-
lindrical rod which rotates along its long axis. 
When the animal falls off from the rod onto the 
surface below, the latency to fall (in seconds) is 
recorded [16]. The horizontally oriented rotating 
cylinder (rod) is suspended above a cage floor, 
which is low enough not to injure the animal, but 
high enough to induce avoidance of fall. Rodents 
naturally try to stay on the rotating cylinder, or 

Figure 1. RRA available in laboratory
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rotarod, and avoid falling to the ground. The 
length of time that a given animal stays on this 
rotating rod is a measure of their balance, coordi-
nation, physical condition, and motor-planning. 
The speed of the rotarod may either be held con-
stant, or accelerated. 

The main advantage of this test is that it very 
easy to perform and it gives results which can be 
used for statistical purposes. This test does not 
use subjective judgments of motor skills, and 
therefore its inter-rater reliability is very good. 
The length of time the animal stays on the rotat-
ing rod is a measure of its balance, coordination, 
and physical condition. Any other activity, or ob-
servations during the test, e.g., the occurrence of 
jumping, passive rotations can also be recorded. 
Moreover, these parameters may be adjusted vari-
ously to optimize the statistical separation of dif-
ferent conditions.

On the other hand, there are several draw-
backs of this method which uses the rotarod test. 
Firstly, the speed of the device is mechanically 
driven and it can be held constant throughout the 
experiment, or it can be accelerated. However, if 
the speed is constant, some animals with poor co-
ordination will fall off at the start of the test. 

Secondly, with most devices, the researcher 
does not know if the speed remains the same after 
a load change, or if the system spins slower, or 
faster. Mostly, these devices use a stepper motor, 
and there is no feedback regarding the shaft ro-
tation speed. This flaw can cause misinterpreta-
tion of the set shaft speed and distort final experi-
mental results. No information is available on the 
implemented control algorithm and how it can be 
improved or adjusted.

Thirdly, inter-laboratory reliability and repli-
cability will be achieved only if the various pa-
rameters including the size and speed of cylinder, 
composition material of surface, and the amount 
of practice/training an animal is exposed to are 
also thoroughly replicated.

INTRODUCTION TO MODEL MISMATCH 
STRATEGY

The MMS assumes the preparation of two 
datasets. The first dataset which can be called 
the learning dataset, will be used to build the 
initial model MI. The second dataset, the test 
dataset, will be used to select a mismatched 
model MM.

The first step in the MMS approach is deter-
mining the parameters of the first-order lag plus 
time delay (FOTD) model. This model will be 
treated as the initial model MI:

 𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 (1)

where: K – proportional gain, T – time constant, 
L – delay time.

The method of determining the MI model 
parameters is arbitrary. One can use specialized 
software for this purpose, e.g., the system iden-
tification toolbox of the Matlab package [18], 
or use a classical approach, e.g., the so-called 
63% step response method [19]. Regardless of 
the method chosen to determine the MI mod-
el parameters, there is a risk of selecting the 
model with inaccuracy. The consequences of 
inaccuracy can have serious effects. Kula [20] 
showed that underestimating or overestimating 
the value of the time constant by 20% can in-
crease the control settling time by 64–100%. To 
minimise this risk in the MMS method, we in-
troduce a set of mismatch models based on the 
initial model parameters by varying the initial 
gain K, time constant T and delay L by the co-
efficients ΔK, ΔT and ΔL of the assumed range:

 

𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 (2)

where: ΔK, ΔT – model mismatch coefficients.

We then evaluate all models with varying co-
efficients ΔK, ΔT, and ∆L for fit to the second da-
taset, i.e. the test dataset. This evaluation step is 
done by simulation. We determine the accuracy 
of the models using the NRMSE (normalized root 
mean square error) index, which will be abbrevi-
ated as fit:
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(3)

where: y(t) – measured output, 

𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 – simulated 
output, 

𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 – mean of the measured output.

The model with the highest accuracy for the 
test set is selected as the MM model. The con-
troller settings are calculated according to the 
adopted tuning rule based on the model param-
eters, i.e. ΔKK, ΔTT and ΔLL. In our research, we 
adopted the PI controller, described by the trans-
fer function:
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𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 (4)

where: Kp – controller gain, Ti – integral time.

To demonstrate the universality of the meth-
od, we chose two controller tuning rules: AMI-
GO [21] and SIMC [22]. The controller settings 
are calculated according to formulas 5 and 6 in 
the AMIGO and SIMC tuning rule respectively:

 

𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 

 (5)

 

 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾

⋅ ∆𝑇𝑇𝑇𝑇
2(∆𝐿𝐿𝐿𝐿)

 

𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} 
 
(6) 
 
 

 (6)

MATERIALS AND METHODS

Data collection scheme from the rotarod 
apparatus prototype

The new tuning selection method was test-
ed on a prototype of a new generation of RRA 
that was constructed. The system consists of a 
DC motor, a rotating mass and a two-phase mo-
tor as a disturbance. The configuration also in-
cludes mechanical and control components, i.e. 
a power bridge to control the DC motor. The 
system is a single input single output (SISO) 
type. The system’s input is the voltage [V] ap-
plied to the DC motor, and the output is the 
motor shaft speed (expressed as rotations per 
minute [rpm]). The speed is measured using 

an encoder with a resolution of 400 pulses per 
rotation, resulting in 1 pulse per 0.9 degrees. 
Disturbances in the system are generated using 
a two-phase induction motor controlled by a 
voltage signal. A higher voltage means a higher 
load on the whole system.

Data was acquired using a computer 
equipped with a National Instruments NI PCIe-
6323 data acquisition board using a high-speed 
PCI express interface, Matlab and Simulink en-
vironment (R2022b, MathWorks, Natick, MA, 
USA) with the desktop real-time toolbox. All 
signals, i.e. input u, output y and disturbance 
d, were acquired at 100 Hz. Figure 2 shows the 
block diagram of the measurement system.

Description of test scenarios

To test the effectiveness of the control perfor-
mance improvement method, we performed tests 
assuming two scenarios: step change and load dis-
turbance. In the first scenario, the speed setpoint 
yref was changed by several steps (Figure 3). In the 
second scenario, the setpoint was constant at one 
speed, and disturbances were added to the system 
in steps (Figure 4). The duration of the experiment 
in the two scenarios remained different and was 95 
and 35 s fot the step change and load disturbance 
scenarios, respectively. We selected the value of 
the d and yref signals in such a way that the anti-
windup mechanism would not be activated.

We conducted the tests for two sets of con-
troller settings. The first set was calculated for the 
MI model parameters, and the second one for the 
MM model parameters. During the tests, we eval-
uated the control quality. The control quality was 

Figure 2. Schematic of data acquisition system
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measured using integral indices: integral absolute 
error (IAE) and integral square error (ISE):
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where: et – error signal, i.e. yref(t)-y(t), dt – sam-
pling period, here it was equal to 0.01.

RESULTS

The learning and testing datasets are shown in 
Figures 5 and 6. The MI model’s parameters were 
determined based on the learning set. The classi-
cal 63% method determined the time constant T 
and the gain K. The 63% point was detected as the 
first sample reaching this level. The value of the 
delay L was also read from the step characteristics. 
This was the time after which the first increment 
of the output signal y was observed. This time can, 
therefore, be regarded as pure transport delay. As a 
result, the MI model is described by the equation:
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According to the MMS assumptions, the next 
step was to find the MM model by introducing the 
mismatch coefficients ΔK, ΔT and ΔL. Since we 
read the transport delay time directly from the 
step characteristics, it is reasonable to introduce 
mismatch coefficients only for the gain and time 
constant. Based on a preliminary analysis of the 
impact of mismatch coefficients on model quality, 
we assumed the following ranges:
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During the simulation study, the entire set of 
resulting models was assessed for fit to the test 
set. Figure 7 shows the fit index values obtained 
during this study. The model with the highest in-
dex value (red dot in Figure 7) was selected as the 
MM model. Thus, the mismatch coefficients of the 
MM model are ΔK = 1 and ΔT = 1.64, respectively.

The MM model is described by the transfer 
function (11). A comparison of the Fit coefficients 
of the two models is shown in Table 1.

  (11)

To evaluate the effectiveness of the MMS, we 
chose two tuning rules: AMIGO and SIMC. These 

Figure 3. The set point yref signal changes during step change and load disturbance test scenarios

Figure 4. The disturbance d signal changes during 
load disturbance test scenario

Table 1. Calculated model quality metrics

Model
Fit [%]

Learning dataset Testing dataset

MI 97.14 77.83

MM 84.65 80.34
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Figure 5. Input u and output signal y in the learning dataset

Figure 6. Input u and output signal y in the testing dataset

Figure 7. Fit index for the testing dataset with different values of the mismatch model parameters: blue dot 
indicates the MI model, red dot indicates the model with the highest fit, i.e. the selected MM model
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rules were also tested by Hägglund [6]. The PI con-
troller parameters calculated for each method based 
on the MI and MM models are shown in Table 2. The 
calculated controller settings were tested in two test 
scenarios. The test runs with settings according to 
the AMIGO rule are shown in Figures 8 (for the 
step change scenario) and 9 (for the load distur-
bance scenario). Similarly, Figures 10 and 11 show 
the test runs for the SIMC rule. The results of the 
experiments summarized in the form of IAE and 
ISE quality index values are presented in Table 3.

Table 2. Calculated controller parameters

Model Kp [-] Ti [s]

AMIGO tuning rule

MI 0.0095 0.2299

MM 0.0164 0.2763

SIMC tuning rule

MI 0.0156 0.24

MM 0.0255 0.24

Figure 8. Plant output y for AMIGO tuning rule in step change scenario

Figure 9. Plant output y for AMIGO tuning rule in load disturbance scenario

Table 3. Control performance assessed for MI and MM models

Model
Step change Load disturbance

IAE [-] ISE [-] IAE [-] ISE [-]

AMIGO tuning rule

MI 748 1.35∙105 92.5 1 009

MM 644 1.22∙105 84.1 567

SIMC tuning rule

MI 674 1.30∙105 78 532

MM 573 1.10∙105 80.9 374
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Figure 10. Plant output y for SIMC tuning rule in step change scenario

Figure 11. Plant output y for SIMC tuning rule in load disturbance scenario

DISCUSSION

For the AMIGO tuning rule, applying the 
MMS increased the value of the gain Kp by ap-
proximately 73% (from 0.0095 to 0.0164). It in-
creased the integration time Ti by approximately 
20% (from 0.2299 s to 0.2763 s). For the SIMC 
tuning rule, a similar pattern was observed for the 
Kp value, i.e. an increase of approximately 64% 
(from 0.0156 to 0.0255). In contrast, the integra-
tion time Ti remained unchanged (0.24 s). This 
follows directly from the formulae (6). The mis-
match model parameters only changed concern-
ing the time constant T (ΔT = 1.64, ΔK = 1, ΔL = 1). 
The control objects the FOTD model can describe 
are categorized into three groups: lag-dominated, 
balanced or delay-dominated. Belonging to a cat-
egory is determined by the value of the normal-
ized time delay τ calculated as:

 

𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1  (1) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1  (2) 

 
𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − ‖𝑦𝑦(𝑡𝑡)−�̂�𝑦(𝑡𝑡)‖2

‖𝑦𝑦(𝑡𝑡)−𝑦𝑦‖2
) ∙ 100% (3) 

 
𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝐾𝐾𝑝𝑝 ⋅ (1 + 1

𝑇𝑇𝑖𝑖𝑇𝑇) (4) 
 

𝐾𝐾𝑝𝑝 = 0.15
∆𝐾𝐾𝐾𝐾 + [0.35 − (∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)

(∆𝐿𝐿𝐿𝐿 + ∆𝑇𝑇𝑇𝑇)2] ∆𝑇𝑇𝑇𝑇
(∆𝐾𝐾𝐾𝐾)(∆𝐿𝐿𝐿𝐿) 

𝑇𝑇𝑖𝑖 = 0.35∆𝐿𝐿𝐿𝐿 + 13(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇)2

(∆𝑇𝑇𝑇𝑇)2 + 12(∆𝐿𝐿𝐿𝐿)(∆𝑇𝑇𝑇𝑇) + 7(∆𝐿𝐿𝐿𝐿)2  
 
(5) 
 
 

𝐾𝐾𝑝𝑝 = 1
∆𝐾𝐾𝐾𝐾 ⋅ ∆𝑇𝑇𝑇𝑇

2(∆𝐿𝐿𝐿𝐿) 

 
 
𝑇𝑇𝑖𝑖 = min{∆𝑇𝑇𝑇𝑇, 8(∆𝐿𝐿𝐿𝐿)} (6) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫|𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)|𝑑𝑑𝑓𝑓 = ∑ |𝑒𝑒𝑡𝑡|𝑛𝑛

𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (7) 
 
𝑃𝑃𝐼𝐼𝐼𝐼 = ∫[𝑦𝑦𝑟𝑟𝑒𝑒𝑟𝑟(𝑓𝑓) − 𝑦𝑦(𝑓𝑓)]2𝑑𝑑𝑓𝑓 = ∑ 𝑒𝑒𝑡𝑡

2𝑛𝑛
𝑡𝑡=0 ⋅ 𝑑𝑑𝑓𝑓 (8) 

 
𝑀𝑀𝐼𝐼(𝑠𝑠) = 𝐾𝐾𝑒𝑒−𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇+1 = 514𝑒𝑒−0.03𝑠𝑠

0.48𝑇𝑇+1  (9) 
 

∆𝐾𝐾∈ {0.8,0.84,0.88, … ,1.12,1.16,1.2} 
∆𝑇𝑇∈ {0.2,0.36,0.52, … ,1.48,1.64,1.8}  

∆𝐿𝐿= 1 
 

(10) 
 

𝑀𝑀𝑀𝑀(𝑠𝑠) = (∆𝐾𝐾𝐾𝐾)𝑒𝑒−𝑇𝑇(∆𝑠𝑠𝐿𝐿)

(∆𝑇𝑇𝑇𝑇)𝑠𝑠 + 1 = 514𝑒𝑒−0.03𝑇𝑇

0.787𝑠𝑠 + 1 (11) 

 

𝜏𝜏 = 𝐿𝐿
𝐿𝐿 + 𝑇𝑇 (12) 

 
 (12)

The literature conventionally indicates the fol-
lowing ranges for each category: 0 ≤ τ ≤ 0.2  for 

lag-dominated, 0.2 < τ < 0.6 for balanced and 0.6 
≤ τ ≤ 1 for delay-dominated processes [6,7,23]. 
The MI and MM models’ normalized time delay 
values were 0.059 and 0.037. In both cases, it was 
lag-dominated object dynamics. According to a 
detailed analysis [6], in AMIGO and SIMC, the 
gain Kp has the highest values and the most sig-
nificant variability for lag-dominated objects. This 
may be a suggestion for matching the tuning rule to 
the model dynamics. Tuning rules that show more 
significant variability of the controller parameters 
with a change in the model dynamics will have a 
chance for a more remarkable improvement in the 
control quality when using MMS.

Testing of the step-change setpoint scenario 
showed that the use of MMS led to an improve-
ment in control performance for both tuning rules 
(AMIGO and SIMC). The IAE and ISE indices 
were reduced, meaning the desired speed was 
maintained more accurately with step chang-
es. A reduction of about 14% in the IAE index 
(from 748 to 644) and about 10% in the ISE index 
(from 1.35∙105 to 1.22∙105) was achieved. In the 
case of the SIMC rule, the values of both indices 
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decreased by about 15% (from 674 to 573 for IAE 
and from 1.30∙105 to 1.10∙105 for ISE).

For the load disturbance scenario, the results 
are more varied. For the AMIGO rule, MMS ben-
efited both indices – IAE decreased by more than 
9% (from 92.5 to 84.1) and ISE by nearly 44% 
(from 1009 to 567). In contrast, for the SIMC 
rule, the IAE index increased by less than 4% 
(from 78 to 80.9). At the same time, the ISE in-
dex improved significantly, decreasing by almost 
30% (from 532 to 374). The differences in the 
IAE index for the SIMC rule are due to the inte-
gration intensity of the controller. In both cases, 
the parameter Ti was the same (0.24 s), but as can 
be seen from the transfer function of the control-
ler (4), the integration action is also affected by 
the value of the gain Kp. Finally, the integration 
action of the controller calculated according to 
the MI model parameters is more intensive. This 
results in a slightly more effective minimisation 
of the control error. An increase in the IAE index 
with a simultaneous decrease in the ISE may in-
dicate that errors of smaller amplitude but with 
a greater frequency are occurring in the system. 
The controller reacts more quickly, oscillating 
the controlled signal with a small amplitude. The 
benefit of this case is that more significant errors 
caused by a sudden spike in disturbances will be 
compensated more quickly. In the load distur-
bance scenario, this behaviour was desirable.

CONCLUSIONS

The results of the present study lead to the 
following conclusions:
 • the use of MMS appeared to be an effective 

way to improve the control performance of the 
RRA, which is an example of a lag-dominated 
control object. We observed an improvement 
in control performance regardless of the cho-
sen tuning rule,

 • the effect of MMS on control performance of 
the RRA was particularly beneficial for step 
changes in the setpoint. The performance in-
dices were reduced irrespective of the adopted 
tuning rule,

 • in the case of a load disturbance scenario, us-
ing MMS significantly improved the reduction 
of significant amplitude errors,

 • using a control based on a PID algorithm in 
the RRA prototype provides confidence that 
the speed set by the operator will be precisely 

maintained, which is not guaranteed in the 
currently available rotarod devices.

The MMS was used to improve the function 
of the RRA. At present, this might be regarded 
as a potential limitation of the present study be-
cause the method proposed was tested with the 
use of only one type of devices used for behav-
ioural pharmacological testing. It has to be not-
ed therefore that we are planning to develop the 
MMS further. In our future work, we intend to ap-
ply MMS to balanced and delay-dominated con-
trol systems. We will also attempt to evaluate the 
method with the active use of the ΔL coefficient, 
modifying the transport delay of the model.
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