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INTRODUCTION

Intelligent skin sensors (ISS) imitate the ca-
pabilities of human skin, such as touch response, 
sensing multiple elements of the environment at 
once, such as liquid, heat, and structure, distin-
guishing pressure, temperature, humidity, or re-
mote proximity of objects. Their flexibility and 
sensitivity make them suitable for applications in 
automation, robotics, and computer science that 
interact with the Internet of Things (IoT). The aim 
of this study is to develop general models of smart 
skin sensors on array structures, focusing on their 
applications in intelligent autonomous systems 
integrated with the IoT. Navigation in dynamic 

environments using such sensors allows for real-
time detection of changes in the environment. In 
the paper [1] provides an overview of materials 
and structures used in electronic skin and their 
functions in the context of robotics and IoT ap-
plications. The design, manufacturing, and appli-
cation processes of multi-responsive flexible sen-
sors and the challenges of manufacturing these 
sensors for the next generation of e-skin and 
wearable electronics presents in the work [2]. The 
main approaches used to construct more flexible 
and stretchable sensors and the efforts to provide 
high-performance e-skin as well as the urgent 
needs for various types of artificial intelligent e-
skins for personalized medicine highlights in the 
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paper [3]. The system of powering such systems 
is always relevant and in the work [4] recent 
progress on flexible nanogenerators for mechani-
cal energy harvesting toward self-powered sys-
tems, including flexible piezoelectric and tribo-
electric nano-generator, is reviewed. In the field 
of AI review presented in [5] explores the conflu-
ence of e-skins and machine learning to build au-
tonomous soft robots, integrated with capabilities 
for informative. The review presented in [6] sum-
marizes technologies using soft sensors and ac-
tuators, as well as power sources based on flexible 
and stretchable electronics for artificial electronic 
skin, wearable biosensors and stimulators. In-
spired by natural biological systems soft robots 
have been developed, showing tremendous po-
tential in real-world applications because of their 
intrinsic softness and deformability using intelli-
gent e-skin sensors [7]. The specific hybrid of 
electronic skins and machine learning is exten-
sively studied to create effective biomimetic ro-
botic systems. This study presents a shape-sens-
ing electronic skin that can recognize surface 
conformations with minimal interference from 
pressing, stretching, or other surrounding stimuli. 
It is integrated with soft robots to reconstruct their 
shape during movement, serving as a kinesthetics 
sense with deep sensation. The next review [8] 
examines the latest developments in feedback 
sensing technologies for soft robots. In the paper 
[9] five typical skin-like electronics with sensi-
tivities analogous to the human senses (olfactory, 
visual, auditory, tactile, and gustatory senses) and 
their potential applications in IoT. The work [10] 
presents progress in electronic skin or e-skin re-
search is reviewed, focusing on technologies 
needed in skin-attachable electronics, robotics, 
prosthetics and some perspectives on challenges 
and opportunities for research in flexible hybrid 
electronics. The materials with intrinsic stretch-
ability and self-healing properties are of great im-
portance for several reasons. First, since e-skin 
will be exposed to prolonged stresses of various 
kinds and needs to be conformally adhered to ir-
regularly shaped surfaces. Second, in different 
applications tactile sensing capability by the de-
tection of pressure, strain, slip, force vector, and 
temperature are important for health monitoring 
in skin attachable devices. Next review in [11] 
mainly focuses on the representative advances of 
the flexible sensors for health monitoring, such as 
applies skin-like pressure and strain sensors inte-
grated with the human body owing to their 

excellent flexibility and adaptability. The repre-
sentations of flexible sensors with the favourable 
biocompatibility and self-driven properties are 
also introduced, important from the point of view 
of implantable bioelectronics. The other proposed 
approach [12], combined with a deep neural net-
work, enables us to freely select the sensing mode 
according to our purpose, where artificial skins or 
flexible pressure sensors can transduce tactile 
stimuli to quantitative electrical signals by mim-
icking the perceptual functions of human cutane-
ous mechano-receptors. The paper [13] describes 
the reverse design of artificial skins using ma-
chine learning on small data sets, which allows 
for efficient creation of solutions adapted to dif-
ferent materials. The articles [14, 15] present 
highly sensitive optical skin in which the primary 
sensory elements are optically driven, using the 
simple construction of the sensors by embedding 
glass micro/nanofibers in thin layers of 
polydimethylsiloxane. This optical sensors show 
ultrahigh sensitivity, low detection limit and fast 
response 10µs for pressure sensing, significantly 
exceeding the performance metrics of state-of-
the-art electronic skins. Electromagnetic interfer-
ence free detection of high-frequency vibrations, 
wrist pulse and human voice are realized. Many 
publications provide up-to-date information on 
the latest developments in the field of smart skin 
sensors in the context of their applications in ro-
botics and IoT. Skin offers a diagnostic interface 
rich with vital biological signals from the inner 
organs, blood vessels, muscles, and dermis/epi-
dermis. Soft, flexible, and stretchable electronic 
devices provide a novel model to interface with 
soft tissues for robotic feedback and control, re-
generative medicine, and continuous health mon-
itoring [16]. The authors use the term “lab-on-
skin” to describe a set of electronic devices that 
have physical properties resembling skin, such as 
thickness, thermal mass, elastic modulus, and wa-
ter vapor permeability. These microsystems can 
conformally laminate onto the epidermis to miti-
gate motion artifacts and mechanical property 
mismatches of rigid electronics, providing accu-
rate, non-invasive, long-term, and continuous 
health monitoring. Therefore, it is also perfect for 
smartphone skins. Self-powered tactile sensors 
do not require an external power source to drive, 
which makes the entire system more flexible and 
lightweight [17]. Therefore, they are excellent for 
mimicking the tactile perception functions for 
wearable health monitoring and ideal electronic 
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skin (e-skin) for intelligent robots. The review 
[18] discusses the materials, structural designs, 
and integrated techniques for e-skins and how to 
optimize the performance is also discussed. The 
existing flexible sensing materials and micro-
structures, including flexible stimuli-responsive 
materials and response- and stretchability-en-
hanced microstructures, are reviewed in the paper 
[19]. A typical skin-like electronics with sensi-
tivities analogous to the human senses (olfactory, 
visual, auditory, tactile, and gustatory senses) and 
their corresponding applications (gas, light, 
chemical composition, sound, and mechanical 
signal monitoring) are introduced. The perspec-
tives of challenges and opportunities for future 
research on flexible hybrid electronics are indi-
cated. Learning from nature provides endless in-
spiration for scientists to invent new materials 
and devices and the work [20] have the review 
state-of-the-art technologies in flexible electron-
ics, with a focus on bio-inspired smart skins. This 
review focuses on the development of e-skin for 
sensing a mechanical loads, temperature, light, 
and biochemical cues, with a trend of increased 
integration of multiple functions. It highlights the 
most recent advances in flexible electronics in-
spired by animals such as chameleons, squids, 
and octopi whose bodies have remarkable camou-
flage, mimicry, or self-healing attributes. In the 
next article [21] it was emphasized that human 
skin is a large-area, multi-point, multi-modal 
stretchable sensor that has inspired the develop-
ment of electronic skin for humanoids, enabling 
them to simultaneously detect pressure and ther-
mal distributions. In this paper, authors report the 
recent progress of stretchable thin-film sensors 
that are developed for application to robotics and 
wearables. In the study [22], design guidelines for 
robotic gloves are proposed, because e-skin is 
playing an increasingly important role in medi-
cine, health detection, robotic teleoperation, and 
human-machine interaction, but most e-skins cur-
rently lack the integration system of signal acqui-
sition and transmission modules. Based on this 
developed e-skin system and developed robotic 
multi-fingered hand, authors conduct gesture rec-
ognition and robotic multi-fingered teleoperation 
experiments using deep learning techniques [23]. 
A unified e-skin system can enable IoT communi-
cation across the entire body, positioning humans 
as integral nodes in the Internet of Everything, 
streamlining information transmission for greater 
efficiency [24]. However, how to ensure stability 

and long-term reliability while maintaining a 
highly sensitive, flexible, and stretchable is a 
challenge. Another work has shown that achiev-
ing high sensing performance comparable to our 
skin is still a huge challenge [25]. Basic strategies 
are here presented to enable e-skins to perform 
functions such as strain sensing, pressure sensing, 
shear sensing, temperature sensing, humidity 
sensing, and self-healing. 

Above, only a cross-section and a small frag-
ment of the publications concerning the area base 
for intelligent skin sensors is cited. Next, the 
specification of the sensors that are the basis of 
this work is presented. 

MATERIALS AND METHODS

Advancements and comparison

The flexibility, sensitivity, and integration ca-
pabilities make ISS’s suitable for applications in 
robotics, wearables, and industrial systems. Smart 
Skins in technology enhance telemedicine by 
transmitting medical data and improve robotics 
with precise manipulation, safety, and real-time 
adjustments. Humanoid and mobile robots use 
these sensors for touch interaction, obstacle de-
tection, rescue operations, and advanced medical 
devices. In IoT and robotics, smart sensors boost 
real-time operation, safety, and accuracy, enabling 
remote monitoring and control. Smartphones le-
verage smart sensors for touch detection, pressure 
measurement, and proximity features. Acting as 
IoT hubs, they enhance user interaction, safety, 
and personalized medicine through advanced au-
tomation. The authors compared of the ISS and 
traditional sensors across several aspects: design 
and materials (Table 1), functionality (Table 2), 
applications (Table 3), communication (Table 4), 
energy efficiency (Table 5), durability (Table 6), 
and cost (Table 7). ISS’s provide advanced func-
tionalities beyond traditional sensors, offering 
improved design, materials, and integration.

Intelligent skin sensors offer advanced func-
tionalities that are significantly different from 
traditional sensors used in automation, IoT and 
robotics. Here are the key differences between 
them. Based on Tables 1–7 above intelligent skin 
sensors outperform traditional sensors in terms of 
multifunctionality, flexibility, energy efficiency, 
and the ability to integrate with IoT.
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They are particularly useful in applications 
that require precision, flexibility, and operation 
in diverse environmental conditions. Traditional 

sensors, on the other hand, are more cost-effec-
tive, easier to implement in basic applications, 
and nowadays more widely available.

Table 1. Construction and materials
Features Intelligent skin sensors Traditional sensors

Flexibility Made of flexible and stretchable materials such as 
polymers (e.g. PDMS, PVDF). Usually rigid, made of metals or rigid plastics.

Complexity of 
construction

Multi-layer structures enabling integration of multiple 
functions (e.g. pressure, temperature, humidity).

Usually single-function (e.g. only pressure or 
temperature sensor).

Table 2. Functionality and measurement capabilities
Features Intelligent skin sensors Traditional sensors

Multifunctionality
They can simultaneously measure pressure, 
temperature, humidity, vibration, and even 
proximity.

Typically single-function, requiring many separate 
sensors for similar applications.

Sensitivity range Very high sensitivity, enabling detection of micro-
changes in the environment.

Sensitivity dependent on design, often limited to 
macroscale.

Stimuli response More precise representation of mechanical and 
environmental stimuli, inspired by human skin.

They respond to stimuli, but without the ability to reflect 
complex interactions.

Table 3. Applications
Features Intelligent skin sensors Traditional sensors
Robotics 

applications
Ideal for applications in humanoid robots, grippers, 
and mobile devices. Limited to rigid structures and more basic applications.

Wearable Can be integrated with clothing and medical 
devices. Rarely used in clothing or flexible applications.

Environmental 
monitoring

They can be used in smart buildings, monitoring 
many parameters simultaneously. They require the use of many different types of sensors.

Table 4. Communication and integration
Features Intelligent skin sensors Traditional sensors

IoT Integration They integrate easily with IoT systems thanks to 
built-in communication modules.

They require additional elements to communicate with 
IoT (e.g. gateways).

Modularity They can be modular, combining multiple functions 
into one item. Usually used as single components.

Table 5. Energy saving
Features Intelligent skin sensors Traditional sensors

Power They can be powered by piezo-electrics or other 
energy-harvesting technologies.

They usually require an external power source, such as 
batteries or a wired power supply.

Power 
consumption

Very low power consumption due to advanced 
power management.

They consume more energy due to their less optimized 
design.

Table 6. Strength and durability
Features Intelligent skin sensors Traditional sensors
Damage 

resistance
Thanks to flexible materials, they are more resistant 
to cracking and mechanical damage.

Rigid structures may be susceptible to damage from 
mechanical forces.

Adaptation to 
the environment

Can be used in variable environmental conditions 
(e.g. high humidity, vibrations). Limited ability to work in extreme conditions.

Table 7. Cost and availability
Features Intelligent skin sensors Traditional sensors

Cost Higher unit cost due to advanced technology and 
materials. Usually cheaper due to simpler design.

Availability Still developing technology, available mainly in 
specialist applications.

Widely available in a wide range of industrial and 
consumer applications.



366

Advances in Science and Technology Research Journal 2025, 19(3), 362–380

Demonstrative model basic concept

IoT integrates devices with the cloud for re-
al-time monitoring, analysis, and control in au-
tomation, enabling machine condition monitor-
ing, failure prediction, and remote management. 
The authors proposed a model for integrating 
artificial skin through the ISS (also called smart 
skin sensors 3S) sensor with an autonomous IoT 
system (Fig. 1). 

The integration operates as follows: ISS de-
tects data such as touch, pressure and tempera-
ture. This data is processed by a microcontroller, 
which transmits the signal to an IoT gateway. 
The gateway then forwards the data to the cloud, 
where it is analyzed and visualized. Energy stor-
age for the system is managed by supercapacitors, 
providing a flexible and efficient power source. 
Where necessary, zero-energy operation requires 
combining piezoelectricity with triboelectricity 
to increase efficiency [26-28]. Triboelectricity 
is a phenomenon of static electricity that occurs 
when two different materials come into contact 
with each other and are then separated, leading 
to the transfer of electric charges between them. 
Integrating smart skin sensors with IoT is key to 
a new generation of systems that are more au-
tonomous, safe, and efficient. The use of these 
technologies in combination with predictive and 
data analysis systems is transforming traditional 
approaches to automation, laying the foundation 
for the smart factories of the future. 

3S and IoT integration

 Integrating smart skin sensors 3S with IoT 
(Fig. 1) is crucial for developing autonomous, 
safe, and efficient systems. Smart skin sensors ad-
vance IoT and robotics by enabling real-time op-
eration, safety improvements, and task accuracy. 
In IoT, these sensors enable anomaly detection, 
failure prediction, and environmental monitoring, 
such as proximity sensors for movement detection 

or smart furniture for posture monitoring [29]. In 
healthcare, wearable sensors monitor tempera-
ture, pulse, and pressure, while telemedicine em-
ploys smart skins to transmit medical data to cloud 
systems. In robotics, smart skins enhance precise 
object manipulation, real-time grip adjustments, 
and safe human-robot interaction by detecting hu-
man contact and preventing injuries. They enable 
humanoid robots to mimic human touch for in-
teraction and emotional communication. Mobile 
and medical robots benefit from these sensors 
for obstacle detection, collision avoidance, and 
improved prosthetics functionality. Surgical and 
rescue robots use them for precise force control 
and victim detection in rubble. In smartphones, 
they enhance touch detection, gesture recogni-
tion, and user safety. Capacitive sensors enable 
precise gestures, while proximity sensors manage 
automatic functions like screen shutdown during 
calls. Biometric sensors and humidity detection 
further improve safety and interaction, position-
ing smartphones as central IoT nodes in homes, 
businesses, and hospitals.

IoT-enabled 3S security

In the context of the 3S-IoT-AS, data security 
is a critical concern, particularly regarding the 
risk of data leakage. Sensitive data, such as in-
formation from fingerprint and touch force sen-
sors, can be intercepted if not properly protected. 
A recommended solution is encrypting biometric 
data and storing it locally in secure hardware ar-
eas, such as Secure Enclave in processors. IoT de-
vices and smartphones acting as IoT hubs, are po-
tential targets for cyberattacks, especially when 
sensors communicate with other devices without 
sufficient security measures. To mitigate this risk, 
communication between IoT devices should be 
encrypted using protocols like TLS/SSL, and 
robust authorization and authentication mecha-
nisms should be implemented [30]. Smartphones, 
as IoT gateways, can securely collect data from 

Figure 1. The integration of smart skin sensors with IoT for autonomous systems (3S-IoT-AS)
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automation systems and transmit it to the cloud, 
leveraging smart sensors [31]. These devices also 
cooperate with robots equipped with smart skins, 
which provide data on operational status. In sce-
narios involving touch and gesture recognition, 3S 
can further enhance security by functioning as ac-
cess authorization tools. Properly securing these 
systems ensures safe and efficient operation in 
IoT-enabled environments.

Datasets

 Datasets for smart skin sensors in IoT-en-
abled autonomous systems should encompass a 
broad range of data types to support the system’s 
development, training, and evaluation. This study 
uses data from sensor modelling. Sensor data cap-
ture interactions such as touch, pressure, temper-
ature, humidity, and proximity. Data on changes 
in capacitance and inductance, resulting from 
physical interactions, supports the modelling of 
dynamic behavior and touch-sensitive controls or 
gesture. This data enhances the system’s ability to 
interact intelligently with users and performance 
measures the operational efficiency and reliability 
of the smart skin sensor system. To ensure data 
integrity and user privacy, robust security mea-
sures such as encryption and anonymization must 
be implemented to protect sensitive biometric 
and operational data. These datasets collectively 
facilitate the design of smarter, safer, and more 
efficient autonomous systems.

EFHI3S architecture

3S are advanced sensor systems embedded in 
flexible, thin and often stretchable materials that 
mimic the properties of human skin. For some or-
der, some explanations are needed. 3S can detect 

various parameters as pressure, temperature, hu-
midity and even bioelectrical signals of the body. 

The capacitive or piezoelectric sensors are 
used to detect pressure and proximity, detecting 
touch and pressure in real time. Bioelectric moni-
toring is done using electrodes embedded in the 
skin that record signals. The skins can adapt to 
curved surfaces such as the human body or robot 
parts or smartphone surfaces, which makes them 
flexible and stretchable. the energy flow in hybrid 
intelligent skin sensors system (EFHI3S) integrat-
ed with IoT is shown in Figure 2. Supercapacitors 
(Hybrid-SupLiC) are devices that store electrical 
energy, which combine the properties of tradition-
al capacitors with those of batteries. Their main 
advantage is the ability to quickly store and re-
lease energy and an exceptionally high number of 
charge and discharge cycles compared to chemi-
cal batteries. Supercapacitors do not use chemical 
reactions to the same extent as batteries, but store 
energy on the principle of electrostatic charge ac-
cumulation (double layer) or through pseudo ca-
pacitance resulting from surface reactions. 

In the future, this technology may play a key 
role in power supply system’s requiring high dy-
namics and durability, especially in combination 
with other energy storage technologies. Hybrid-
SupLiC provide energy to magnetic field energy 
storage (MagFES) via a MosFET key. The en-
ergy is stored here and decreases over time. The 
inductive sensor contains a coil through which 
an current flows. The current flow generates an 
alternating electromagnetic field around the coil. 
If the conductor is near the electromagnetic field, 
eddy currents are induced in the material. These 
currents generate their own magnetic field, which 
counteracts the field generated by the sensor coil. 
The resulting eddy currents cause a decrease in the 
current amplitude in the coil (due to the generation 

Figure 2. The energy flow in hybrid intelligent skin sensors system integrated with IoT
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of energy losses) and a change in the coil imped-
ance, in particular inductance. The sensor analyse 
changes in the circuit of the coil (e.g. a decrease in 
the amplitude or a phase shift of the current). On 
this basis, it is detected whether the object is in the 
sensor’s detection field. After detecting a change 
in the magnetic field, the sensor generates an out-
put signal (e.g. digital or analog). This signal can 
be used to control other devices, record the pres-
ence of an object, etc. The energy stored in a mag-
netic sensor is due to its ability to store energy in a 
magnetic field. In the case of an inductor coil (the 
main element of a magnetic sensor), this energy 
is described by the equation E = 0.5LI2, where E 
is energy stored in the magnetic field [J], L is the 
coil inductance [H] and I is the current flowing 
through the coil [A]. The energy flow in the sensor 
can be modelled as a relationship between energy 
EIN supplied by the voltage source, energy ESTORE 
stored in the coil and energy ELOSS lost to the coil 
reactance and other elements. The dynamic rela-
tionship is described by the equation EIN = ESTORE 
+ ELOSS. In real-world situations, we use interval 
calculations to account for uncertainties in key pa-
rameters: L inductance in the range [𝐿min, 𝐿max], XL 
reactance in the range [X𝐿min, X𝐿max] and input volt-
age V in the range [Vmin, Vmax]. The dynamic en-
ergy changes can be expressed in ranges: ESTORE(t) 
= 0.5LI(t)2. The current 𝐼(𝑡) is a function of the 
voltage and impedance:

	 I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

 	 (1)

The following values ​​were assumed for the 
simulation: min inductance L0_min = 9e-3 [H], max 
inductance L0_max = 11e-3 [H], ZL_min = 4 [Ω], ZL_max 
= 6 [Ω], min voltage V_min = 0.9 [V], max voltage 
V_max = 1.1 [V], current frequency f = 1e3 [Hz]. 
Similarly, from Hybrid-SupLiC energy is trans-
ferred to the electric field energy storage (EcFES) 
capacitive sensor system. The capacitive sensor 
works on the principle of measuring changes in 
electrical capacitance, which is dependent on the 
geometry and electrical properties of objects lo-
cated near the sensor. The capacitance change is 
converted into an electrical signal that can be ana-
lyzed. The basic equation for such a sensor is that 
of a capacitor and is given by the formula
	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

	 (2)

where:	C is capacitance [F], 𝜀 electrical permit-
tivity of the material (𝜀 = 𝜀0𝜀𝑟), A is ca-
pacitor plate area [m²] and d distance be-
tween plates [m]. 

If a conductive or dielectric object comes 
close to the sensor, the permittivity (𝜀), distance 
(𝑑) or effective area (𝐴) changes. The electronic 
processing circuit reads the capacitance changes 
and converts them into a digital or analog sig-
nal. The capacitive sensor measures changes in 
capacitance 𝐶, which are related to: approaching 
an object (reducing the distance), changes in the 
dielectric (change in permittivity 𝜀𝑟). In a special 
system, capacitance changes are converted into 
frequency changes:
	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

 	 (3)

or

	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

 	 (4)

where:	𝑅 and 𝐿 are constant circuit elements. 

Frequency is converted to voltage using recti-
fier or digital circuits. The 𝑉/𝐼 converter circuit is 
used, e.g. an operational transconductance ampli-
fier (OTA), where IOUT = GmVIN, where Gm is the 
transconductance coefficient. Once the signal has 
been converted into current, it can be further pro-
cessed for analysis, transmission, or control. The 
minimum capacitance (𝐶min) results from the min-
imum values ​​of 𝜀𝑟, 𝐴 and the maximum distance 
d. The maximum capacity (𝐶max) corresponds to 
the maximum values ​​of 𝜀𝑟, 𝐴 and the minimum 
distance 𝑑. The capacitance range shows how pa-
rameter changes affect the possible capacitance 
values ​​of the sensor. The simulation parameters 
were defined as: 𝜀0 = 8.854e-12 [F/m], 𝜀r_min=1.0, 
𝜀_r_max=5.0; min area Amin=1e-4 [m²], Amax=2e-4 
[m²], min distance dmin=1e-3 [m] and max dis-
tance dmax = 5e-3 [m].

Sensor signal measurement

The block diagram is shown on the Figure 3. 
The measurement system consists of a capacitive 
sensor (CS) that measures capacitance changes. 
The oscillator (Osc.) converts capacitance chang-
es to frequency. The frequency detector (FD) con-
verts frequency to voltage. The 𝑉→𝐼 converter 
converts voltage to current. The ADC digitizes 
the signal for further analysis. The control unit 
(CU) analyses the signal and makes decisions 
(e.g. sending data to the IoT cloud).

Sensor peaks

In this study, the authors showed how a forced 
harmonic change of the sensor capacitance affects 
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the corresponding current. The sensor parameters 
are: minimum capacitance 10e-12 [F], maximum 
capacitance 100e-12 [F], sampling rate 1e3 [Hz]. 
The nature of these sensor capacitance Ct changes 
clearly shows the dependence:
	 Ct = Cmin +(Cmax – Cmin)(0.5+0.5sin(2π2t)).	 (5)

The sensor parameters are: minimum capaci-
tance 10e-12 [F], maximum capacitance 100e-12 
[F], sampling rate 1e3 [Hz]. RC oscillator oscil-
lations are frequency ft versus capacitance with 
resistance R = 1e3 [Ω]

	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

	 (6)

Frequency to voltage conversion (f𝑡/𝑉𝑡) with 
voltage normalization [0, 1]: Vt = f𝑡/maxf𝑡 [Hz]. 
The conversion of voltage into current was imple-
mented as It = Gm·Vt [A], with transconductance 
coefficient Gm = 1e-3 [A/V].

Harmonic sensor capacitance

Here we will present a sensor model, based 
on Figure 2 and [32, 33], with a AC voltage  
V(t) = V0sin(2πft), which ensures proper opera-
tion of the measurement system. For clarity, we 
will assume zero initial conditions for the ca-
pacitive sensor (EcFES) system uC(0-) = 0 and  
iL(0-) = 0 for inductive sensor (MagFES). The 
simulation parameters are: voltage amplitude 
V0=5 [V], voltage frequency f = 50 [Hz], mini-
mum capacity Cmin=10e-12 [F], maximum capac-
ity Cmax=100e-12 [F], frequency of capacitance 
changes fC = 2 [Hz]. The simulation assumed that 
the capacity changes according to the relationship:
	 Ct = Cmin + (Cmax – Cmin) sin(2πfCt).	 (7)
where:	Cmin, Cmax minimum and maximum capac-

ity, 𝑓𝐶 frequency of capacitance changes. 

The current flowing through the sensor in the 
capacitive branch:

	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

 	 (8)

Distance between capacitor plates

In this study we analysed how the distance 
between the capacitor plates affects the sensor 
capacitance. We assumed here that: ε0 = 8.854e-
12 [F/m], plate area A = 1e-4 [m²], min distance 
dmin = 1e-3 [m], max distance dmax = 5e-3 [m]. The 
change in distance over time is as follows:
	 dt = dmin + (dmax – dmin) (0.5 +

	 + 0.5sin(2π0.5time)).	 (9)

Sensor capacitance is equal Ct = ε0 ·A/dt [F]. 
This creates the possibility of using adaptive al-
gorithms to change the capacitance of the sensor 
itself. The control of G(t) and distance dt using 
such an adaptive algorithm may depend on (i) 
environmental Ec conditions G(t) = f(Ec), (ii) the 
nature of the external Se stimulus G(t) = f(Se), for 
which the algorithm should be implemented.

Touch simulation

The unique experiment conducted by the 
authors concerns the simulation of the nature 
of touch. You can simulate a touch that changes 
the effective area of ​​the capacitor plates, given:  
ε0=8.854e-12 [F/m], plate distance d=1e-3 [m], 
minimum plate area Amin=1e-5 [m²] and maxi-
mum area Amax=1e-4 [m²]. To simulate a touch 
that changes the surface A, we use the following 
relationship 
	 At = Amin + (Amax – Amin) (0.5 +

	 + 0.5sin(2π0.8time)).	 (10)

Figure 3. Converting a capacitive sensor signal to a current signal within a single element of a matrix consisting 
of several sensors
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Inductive sensors detect metal objects by 
changes in the electromagnetic field generated 
by the coil (MagFES). When a metal object ap-
proaches the coil, its inductance changes and 
thus affects the parameters of the system, such as 
the oscillation frequency in the LC oscillator. In  
a dedicated mathematical model of such a sensor, 
its dynamic inductance 
	 L(t) = L0 – ΔL·e-αd(t)	 (11)
where:	L0 is base inductance [H], ΔL change of 

inductance depending on the object, α is 
damping coefficient (depending on the 
material) and d(t) distance of the object 
from the sensor [m]. 

The oscillator frequency

	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

	 (12)

where:	L(t) is dynamic sensor inductance and C 
is constant capacitance in the system. 

The following parameters were adopted to 
simulate the model of such a sensor: V0 = 5V, 
base inductance L0=10e-3[H], maximum induc-
tance change ΔL = 5e-3 [H], damping coefficient  
α=10 [1/m] and capacitance C = 1e-6 [F]. The 
distance of the object from the sensor was experi-
mentally determined as
	 d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 	 (13)

The voltage oscillates as a function of time at 
a frequency of 𝑓OSC. 

Sensor uncertainty 

The authors proved that simulation of an in-
ductive sensor model using interval calculations 

makes it possible to take into account uncertain-
ties in parameters such as inductance, object dis-
tance or resistive losses. The mathematical model 
takes into account dynamic inductance with inter-
vals: L(t) ϵ [Lmin, Lmax], Lmin and Lmax are lower and 
upper limits of inductance uncertainty. Oscillator 
frequency with intervals is equal
	

I(t) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅+𝑗𝑗𝑗𝑗𝑗𝑗  

C = 𝜀𝜀 𝐴𝐴
𝑑𝑑  

f = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿  

f = 1
𝑅𝑅𝑅𝑅  

Ct = Cmin +(Cmax - Cmin)(0.5+0.5sin(2π2t)). 

ft = 1
2𝜋𝜋𝜋𝜋𝐶𝐶𝑡𝑡

 [Hz]  

Ct = Cmin +(Cmax - Cmin) sin(2πfCt). 

I(t) = C(t)𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  

dt = dmin + (dmax - dmin) (0.5 + 0.5sin(2π0.5time)).  

At = Amin + (Amax - Amin) (0.5 + 0.5sin(2π0.8time)). 

L(t) = L0 - ΔL·e-αd(t),  

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 1
2π √𝐿𝐿(𝑡𝑡)𝐶𝐶,  

d(t) = 0.02 + 0.01·sin (2π·1·time) [m]. 

𝑓𝑓osc ϵ [ 1
2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶, 1

2𝜋𝜋√𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)𝐶𝐶]  

V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.  

𝒙̇𝒙(t) = Ax(t) + Bu(t),  

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽]. 

X(s) = [s1 - A]-1[BV(s) + X(0)].  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].  

 	 (14)

The current in the sensor coil with intervals 
I(t) ϵ V(t)/ZCOIL, ZCOIL = Rs + jωL − j(ωC)-1​. The in-
ductance changes sinusoidally in the [Lmin, Lmax] 
range simulating dynamic conditions. The lower 
and upper limits of the coil impedance were cal-
culated depending on Lmin and Lmax. 

ICM sensor

In this sensor (inductive-capacitive model), 
the authors show the possibilities of using it 
for millisecond interactions. This study demon-
strates model analysis using state variable meth-
od. Algorithm of the method is presented in Ta-
ble 8 and shows the influence of the V(t) source 
on the EcFES and MagFES elements. Analysis 
of the common sensor system (inductive-capac-
itive) over time determines the initial zero con-
ditions and the courses of the main parameters 
x1(t) and x2(t) [34].

Let us determine the form of the state vec-
tor in operator form [35-37]. The MagFES cur-
rent i1(t) = x1(t) and the voltage on the EcFES ca-
pacitive sensor uc(t) = x2(t) were assumed as state 
variables. The initial conditions were assumed for 
the calculations were uc(0-) = 0 and iL(0-) = 0. So 
for t > 0 the MagFES branch

Table 8. Algorithm for ICM
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V = R1i1 + L𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑 

,      (15) 
and for the EcFES branch  

V = R2i2 + uc = R2C
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑 

 + uc.            (16) 
Further transformations lead to the equation of state 

𝒙̇𝒙(t) = Ax(t) + Bu(t),      (17) 
in the form 

[
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

] =  [
− 𝑅𝑅1

𝐿𝐿 0
0 − 1

𝑅𝑅2𝐶𝐶
] [ 𝑖𝑖1

𝑢𝑢𝑐𝑐
] + [

1
𝐿𝐿
1

𝑅𝑅2𝐶𝐶
] [𝑽𝑽].       (18) 

 
The Laplace transform method will be used to determine the state vector.  

X(s) = [s1 – A]-1[BV(s) + X(0)].     (19) 

In the case under consideration  

X(0) = [ 𝑖𝑖1(0− )
𝑢𝑢𝐶𝐶(0− )] = [0

0].            (20) 

and determinant 

det[s𝟏𝟏 − 𝐀𝐀] = 𝑑𝑑𝑑𝑑𝑑𝑑 {[
𝑠𝑠 + 𝑅𝑅1

𝐿𝐿 0
0 𝑠𝑠 + 1

𝑅𝑅2𝐶𝐶
]} = (𝑠𝑠 + 𝑅𝑅1

𝐿𝐿 ) (𝑠𝑠 + 1
𝑅𝑅2𝐶𝐶),    (21) 

[s𝟏𝟏 − 𝐀𝐀]−1 =  
[
𝑠𝑠+ 1 

𝑅𝑅2𝐶𝐶 0

0 𝑠𝑠+ 𝑅𝑅1
𝐿𝐿

]

(𝑠𝑠+𝑅𝑅1
𝐿𝐿 )(𝑠𝑠+ 1

𝑅𝑅2𝐶𝐶)
 =  [

1
𝑠𝑠+ 𝑅𝑅1

𝐿𝐿
0

0 1
𝑠𝑠+ 1 

𝑅𝑅2𝐶𝐶

].     (22) 

Therefore, the operator form is as follows (for v = |Vm|sin(𝜔𝜔t + Ψ)), and 

V(s) = [𝑉𝑉𝑚𝑚
1

𝑠𝑠−𝑗𝑗𝑗𝑗] ,      (23) 

𝑿𝑿(𝑠𝑠) =  [

1
𝑠𝑠+ 𝑅𝑅1

𝐿𝐿
0

0 1
𝑠𝑠+ 1 

𝑅𝑅2𝐶𝐶

] [
𝑉𝑉𝑚𝑚

1
(𝑠𝑠−𝑗𝑗𝑗𝑗)𝐿𝐿

𝑉𝑉𝑚𝑚
1

(𝑠𝑠−𝑗𝑗𝑗𝑗)𝐶𝐶𝐶𝐶2

]  =  [
𝑉𝑉𝑚𝑚

1
(𝑠𝑠−𝑗𝑗𝑗𝑗)(𝑠𝑠+ 𝑅𝑅1

𝐿𝐿 )𝐿𝐿

𝑉𝑉𝑚𝑚
1

(𝑠𝑠−𝑗𝑗𝑗𝑗)(𝑠𝑠+ 1 
𝑅𝑅2𝐶𝐶)𝐶𝐶𝐶𝐶2

],   (24) 

and  

𝒙𝒙(𝑡𝑡) =  {ℒ−1 ([
𝑉𝑉𝑚𝑚

1
(𝑠𝑠−𝑗𝑗𝑗𝑗)(𝑠𝑠+ 𝑅𝑅1

𝐿𝐿 )𝐿𝐿

𝑉𝑉𝑚𝑚
1

(𝑠𝑠−𝑗𝑗𝑗𝑗)(𝑠𝑠+ 1 
𝑅𝑅2𝐶𝐶)𝐶𝐶𝑅𝑅2

])}.     (25) 

After calculations and transformations we have the system’s response in the form 

X1(t) = i1(t) = [ |𝑉𝑉𝑚𝑚|
|𝑍𝑍1|  sin(𝜔𝜔𝜔𝜔 + 𝛹𝛹 – 𝜑𝜑1) − |𝑉𝑉𝑚𝑚|

|𝑍𝑍1|  sin(𝛹𝛹 – 𝜑𝜑1)𝑒𝑒− 𝑅𝑅1
𝐿𝐿 𝑡𝑡]1(t),   (26) 

X2(t) = uC(t) = |𝑉𝑉𝑚𝑚|
|𝑍𝑍2|𝜔𝜔𝜔𝜔 [sin(𝜔𝜔𝜔𝜔 + 𝛹𝛹 + 𝜑𝜑2  − 900) – sin(𝛹𝛹 +  𝜑𝜑2  − 900)𝑒𝑒− 1

𝐶𝐶𝐶𝐶2
𝑡𝑡]1(t),  (27) 

where the internal impedance for MagFES is equal 

|Z1| = √𝑅𝑅1
2 + (𝜔𝜔𝜔𝜔) 

2 and 𝜑𝜑1=arctg(𝜔𝜔𝜔𝜔
𝑅𝑅1

),       (28) 

where 𝑅𝑅1 is the sensor resistance and the internal impedance for EcFES is equal  

|Z2| = √𝑅𝑅2
2 + ( 1

𝜔𝜔𝜔𝜔) 
2
 and 𝜑𝜑2 = arctg( 1

𝜔𝜔𝜔𝜔𝜔𝜔2
),         (29) 

where 𝑅𝑅2 is the sensor resistance. Model simulations are shown in the results. 
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RESULTS

EFHI3S

 In the Figure 4a showed simulations of en-
ergy flow in a magnetic sensor inside MagFES. 
Additionally, they implemented energy balance 
there, in an interval approach. Minimum energy 
level (𝐸min) shows the lower limit of energy in the 
magnetic field with the smallest possible param-
eters. Maximum energy (𝐸max) shows the upper 
limit of energy in the magnetic field, considering 
the maximum possible parameters. The energy in 
the coil decreases due to resistive losses, which 
is consistent with the physics of the system. The 
graph shows the assumptions that the energy de-
creases over time, mainly due to resistive losses. 
The parameters (inductance, resistance) have un-
certainties described by ranges. The green area 
shows the possible energy range over time, show-
ing the uncertainties resulting from the parame-
ters. Energy stored in the coil decreases over time 
according to the equation

	 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  = – 𝐼𝐼2(𝑡𝑡)𝑍𝑍𝐿𝐿 

E(t+Δt) = E(t) + Δt 𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑑𝑑  

	 (30)

where:	 I2(t)ZL these are the power losses in the 
coil impedance ZL. 

The energy value at subsequent moments of 
time is calculated as: 

	

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  = – 𝐼𝐼2(𝑡𝑡)𝑍𝑍𝐿𝐿 

E(t+Δt) = E(t) + Δt 𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑑𝑑  	 (31)

The initial energy (𝐸0) is stored in the magnet-
ic field when the current in the coil is maximum 
and 0.5L0I0

2. Both the energy output from the 
sensor and the sensor capacitance or inductance 
should be considered as an interval set. 

Taking into account the uncertainties of the 
sensor parameters, a simulation of a capacitive 
sensor with intervals (Fig. 4b), located inside 
EcFES (on the Fig. 2). The sensor generates  
a signal in the form of a variable capacitance. To 
convert it into a current signal, electronic circuits 
are used that interpret the changes in capacitance 
and convert them to a current proportional to the 
measured value. Both the variable energy of the 
magnetic sensor and the variable capacitance of 
the capacitive sensor enable simultaneous hybrid 
use and generation of a signal response to the re-
alized touch. 

Sensor peaks 

 Simulation of signal processing from a ca-
pacitive sensor is shown in Figure 5a. The capaci-
tance (𝐶t) changes dynamically over time, simu-
lating the sensor’s operation. Capacitance chang-
es are a sinusoidal simulation. Frequency/voltage 
(𝑉𝑡) corresponds to capacitance changes and is 
linearly scaled. A certain specific capacitance val-
ue corresponds to the maximum voltage, which 
indicates the maximum output current from the 
V/I converter. This current signal is further con-
verted in the CU module into a decision directed 
to the IoT [38-40]. The current peaks correspond 
to minimum sensor capacitance levels and maxi-
mum voltage levels.

A certain specific capacitance value cor-
responds to the maximum voltage, which indi-
cates the maximum output current from the V/I 
converter. Current signal optimization involves 
improving its quality, precision, and usability to 
minimize information loss and maximize data uti-
lization. For the graph on Figure 5b a shaded area 

Figure 4. Energy flow simulating graph in the magnetic sensor with intervals (a), and the capacitive sensor 
simulation with intervals (b)
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representing the interval range of capacitance 
with dashed and solid lines for lower and upper 
bounds. The graph shows the voltage range cor-
responding to capacitance, with bounds clearly 
marked. Shaded interval range for current show 
how capacitance variability propagates through 
the system for flexibility in response. 

Harmonic sensor capacitance

 As you can see on the Figure 6, the capaci-
tance changes over time, which affects the current 
characteristics – the current amplitude increases 
over time, above the level of 100 nA (green co-
lour). The current changes dynamically depend-
ing on the voltage and capacity, reflecting the ac-
tual operating conditions of the sensor. 

Conversely, the dynamic reduction of the sen-
sor capacitance, represented by a nonlinear pro-
cess (red curve), leads to a reduction of the sen-
sor current to at least the level of 100 nA (green 
colour). Therefore, the dynamic change of the 
sensor property leads to its curvilinear current 
response, constituting a control signal to its IoT 
environment.

Distance between capacitor plates

As our experiments show, you can change 
the distance between the capacitor plates, which 
affects the capacitance (Fig. 7a). For this model 
and the mentioned data, the simulation shows 
that the sensor capacity decreases as the distance 
increases. 

Figure 5. Simulation for converting a capacitive sensor signal to a current signal

Figure 6. Dynamic response of the capacitive sensor to V(t) input
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As we can see, this change and this impact 
are not directly proportional. The authors’ key 
insights are that the interval approach (Fig. 7b) 
provides a realistic representation of the system’s 
behavior, accounting for possible deviations in 
the distance between the plates. An increase of 
the distance by 1 mm from 3 to 4 mm causes a 
non-linear decrease of the sensor capacitance 
from 0.295 pF to 0.21 pF. In turn, a reduction of 
the distance from 5 mm to 4 mm leads to an in-
crease of the sensor capacitance from about 0.18 
pF to about 0.22 pF. 

Touch simulation and sensor uncertainty 

 Touch can be simulated, which changes the 
effective area of ​​the capacitor plates (Fig. 8). The 
gradual change of plate area over time and alter-
nating leads to alternating changes of capacitance 
over time. The dynamics of changes is as follows: 
changing the effective plate area from 0.6 to 0.8 
cm2 causes the capacitance to change from 0.5 
pF to over 0.5 pF. The dynamics of the changes 
are as follows: changing the effective plate area 
from 0.6 to 0.8 cm2 causes a change in capaci-
tance from 0.5 to over 0.7 pF. Therefore, a larger 
surface imprint on the sensor corresponds to a 
relatively higher sensor capacitance, which trans-
lates into a current signal to the IoT environment. 
Now the question arises, what will happen when 
the touch has too large a surface. In such a case, it 
would be necessary to provide an adaptive algo-
rithm to reduce the sensor response signal to the 
IoT environment, depending on its nature.

 The dynamic inductance and oscillator fre-
quency are visualized in Figure 9. The object 
distance 𝑑(𝑡) varies sinusoidally, simulating the 
object’s movement relative to the sensor. The dy-
namic inductance 𝐿(𝑡) decreases exponentially 
with decreasing object distance. The oscillator 
frequency 𝑓osc increases with decreasing induc-
tance. The voltage oscillations reflect the chang-
es in the LC circuit. As a result of the presented 
modeling, the sinusoidal change in distance simu-
lates the dynamic movement of the object. The 
inductance decreases exponentially as the object 
approaches. The voltage oscillations change their 
frequency proportionally to the dynamic changes 
in inductance. 

 The authors further demonstrated the influ-
ence of Gaussian noise on the energy effect of a 
single sensor. The effect of noise on energy was 
negligible. In Figure 8 effective plate area com-
pares the ideal area (solid line) with the noisy 
area (dashed green line). Capacitance shows how 
Gaussian noise affects the property, with a solid 
red line for the ideal values and a dashed black 
line for the noisey values. The lower graph illus-
trates the energy stored in the capacitor, compar-
ing the ideal energy (solid magenta line) with the 
noisy energy (dashed cyan line).

The model shows how changes in the dis-
tance of a metal object affect the inductance and 
voltage oscillations in an LC circuit (sensors used 
without contact). The first graph in blue shows 
the slow nonlinear increase of distance of metal 
object over time. The corresponding nonlinear in-
crease of inductance over time is shown in black. 

Figure 7. The dynamic effect of changing the distance between the capacitor plates on the sensor capacity
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It corresponds to the non-linear slow increase of 
inductance over time. 

ICM model

The results of the hybrid sensor is shown 
in Figure 10. The modeling assumed: Vm=5[V], 
f=50[Hz], C=1e-6[F], L=1e-3[H]. As we can see, 
the current of the MagFES sensor follows the in-
crease of the input voltage V(t). 

The scale on the time axis indicates that we 
are moving in millisecond ranges. Therefore, 
such hybrids can be used at higher frequencies, 
because they will react to the quickly changing 
environment. 

 The presented figure shows that the sensor 
current is small, on the order of a fraction of mA, 
so it can be successfully used in such systems. 
Its value increases in response to the decreasing 
wave of the input signal to a certain extent and 

Figure 8. Simulating touch changing the surface and capacitance of the sensor

Figure 9. Inductive sensor simulation
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stabilizes. The corresponding capacitance sensor 
signal does not stabilize and shows negative dy-
namics of about -1.0V/1ms. 

DISCUSSION 

EFHI3S model

First, our results indicate that it is possible to 
control the sensor energy flow (Equation 30) over 
time in a dissimilar sensor array. This flow can be 
adjusted by changing the signal frequency or by 
interval control of the MagFES parameters. This 
process is important because it involves tech-
niques to minimize and control energy consump-
tion, increase efficiency, and optimize power and 
energy storage methods [41, 42].

Second, we propose that it is possible to gen-
erate an interval signal by a sensor array, meaning 
that the variable energy of the magnetic sensor 
and the variable capacitance of the capacitive sen-
sor enable simultaneous hybrid use at the same 
time instant and generation of a signal response 
as realized touch. 

Sensor peaks 

We managed to show that it is possible to ob-
tain capacitive sensor parameters whose peak val-
ues ​​correspond to the minimum capacitance lev-
els of the sensor and the maximum voltage levels. 
In this way, we know a priori the current peaks at 
the microampere level and we can predict them in 
order to select the level of adaptation of the sen-
sors on the matrix. Peak detection is an approach 

that reduces energy costs. A similar sentence was 
shown in [43, 44 ]. We were able to demonstrate 
that it is possible to select more optimal param-
eters of the sensors on the matrix [45, 46] as also 
suggested in the work [47]. 

 A potential threat from the environment here 
is interference with the sensor. The challenge is 
to ensure the safety and the most undisturbed op-
eration of the sensor array. Therefore, it requires 
ensuring the security of the entire system. The 
authors additionally suggested the concept of re-
sponse flexibility for the sensor (Fig. 5b). This 
flexibility is provided by the interval approach, 
when sensor 1 changes the parameters Cmin = 10 
pF to Cmax = 100 pF, sensor 2 – Cmin = 20 pF to 
Cmax = 150 pF and sensor 3 – Cmin = 5pF to Cmax = 
50 pF. This interval approach to designing smart 
sensors: increases the reliability and flexibility 
of sensors, takes into account the uncertainty of 
parameters and conditions, enables better de-
sign optimization, promotes integration with IoT 
and AI systems, reduces the risk of failures and 
improves the validation process. This approach 
opens new possibilities for smart measurement 
systems, increasing their adaptability and preci-
sion in dynamic environments. 

Harmonic sensor capacitance

It is possible to indicate the ranges of dynam-
ic capacitance over time for which the generated 
sensor signal will have, based on the harmonic 
source, a tendency of increasing current response 
amplitude at the level of nanoamps and tens of 
picofarads (Fig. 7a). This study showed that the 

Figure 10. Hybrid sensor parameters: (a) the voltage for EcFES and (b) the current for MagFES 
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transition from the green sensor to the red and 
then to the blue one (Fig. 7b) is characterized by 
increasing capacitance, which corresponds to a 
higher amplitude of the signal response. There-
fore, by algorithmically controlling, for example, 
capacitive trimmers, one can induce differences 
in the control signals coming from the sensors. 
There is an inflection point for the interval rep-
resentation to which the distance between plates 
can be reduced. 

Distance between capacitor plates

Key insights are that the interval approach 
provides a realistic representation of the system’s 
behavior, accounting for possible deviations in 
the distance between the plates. Dynamic behav-
ior and variations in capacitance over time due to 
distance changes are explicitly shown, which is 
crucial for designing robust sensors with practical 
applications. This study showed that there is an 
inflection point for the interval representation to 
which the distance between plates can be reduced.

Touch simulation and sensor uncertainty 

A study shows the impact of Gaussian noise 
on the touch of the sensor (Fig. 8). This is an 
important issue in many cases when the sensor 
may become dirty. Gaussian noise in the context 
of a touch sensor represents random fluctuations 
or variations in the sensor’s signal due to envi-
ronmental, material, or electronic noise sources. 
It typically follows a normal distribution (bell-
shaped curve) and affects the reliability and ac-
curacy of the sensor’s output. In our simulation, 
noise introduces small, unpredictable variations 
in measurements, such as changes in the effective 
plate area, capacitance, or energy stored in the sys-
tem. This can make it difficult to distinguish be-
tween intentional touch inputs and noise-induced 
variations. Reduced Sensitivity results from the 
fact that noise can mask subtle changes caused by 
a light touch, leading to reduced sensitivity. 

 The chart shows that small signal variations 
might be perceived as part of the noise floor, mak-
ing weak interactions harder to detect. Addition-
ally, the authors noted that false positives occur 
when the noise mimics a legitimate touch signal. 
False negatives occur when a valid touch signal 
is obscured by noise, leading to missed detection. 

 Gaussian noise reduces the accuracy of the 
sensor’s measurements. For instance effective plate 

area variations might incorrectly suggest different 
pressure or touch intensity. Capacitance noise may 
lead to incorrect position or contact force estima-
tion to sensor area. Especially with very small sen-
sor contact surfaces or delicate stimuli.

 The work [48] presents the concept of de-
veloping energy generation from the e-Skin hand 
area alone, over 100W, with a body area of ​​ap-
proximately 1.5 m2. With this assumption, if the 
hand surface of 8400 mm2 was covered with 
e-skin and if each sensor (C = 1 µF) consumes  
Ec= 0.5·1e-6·0.5·0.5 = 0.125 μW of power over 
1s time. If the hand surface of 8400 mm2 was 
covered with e-skin and if each sensor consumes 
0.125 μW of power, the sensor hand would 
consume 8400×0.125 = 1050 μW so about 1 mW. 
This seems to be sufficient, assuming also the use 
of multisensors  at the nodal points of the mesh 
covering the artificial hand. 

 Distance 0.75mm corresponds to an increase 
of inductance of 20 µH changing the voltage fosc. 
Such a sensor built into the skin allows for non-
contact detection of the metal surface with high 
sensitivity. Based on the change in frequency, 
the sensor recognizes that a metal object has en-
tered its range. The simulations we performed 
show that the maximum current and minimum 
current should be predicted for each sensor of 
the matrix separately. 

ICM model

The voltage on the EcFES sensor drops the 
more the input voltage increases, which is mainly 
caused by the exponential factor (Fig. 10). This 
proves that capacitive sensors are versatile and 
increasingly applied in advanced and emerging 
fields due to their high sensitivity, low power 
consumption, and ability to detect various physi-
cal and chemical properties in a short time (here 
we have milliseconds). Such models can be trans-
ferred to the scale of nanogenerators and used to 
work with them. We modelled this sensor as a hy-
brid structure. 

 The proposed technique in [49-51] uses both 
the inductance and stray capacitance of the pla-
nar coil, but works in a different structure and 
scheme. In our study we have two two-sensor cir-
cuits partially connected to each other as shown 
by Equations (26) and (27). Therefore, the ex-
pectations for such a hybrid are different. It was 
noted that for the presented graphs the current of 
the MagFES sensor follows the input voltage. For 
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the presented graphs the current of the MagFES 
sensor goes the opposite way to the input volt-
age and with different tracking dynamics. Such 
a multifunctional sensor allows for simultaneous 
point application to the local area, generating two 
signals simultaneously, detecting the human body 
and a metal surface. 

 Moreover, an interesting property has been 
shown, looking at Figure 10b, that the sensor cur-
rent for t = 1 ms changes direction to the right or 
left, while the input signal is dynamically decreas-
ing what is an interesting property of a multisen-
sor. The tendency of object recognition requires 
the adaptation of capacitance and inductance, 
therefore, further research on adaptive control 
algorithms in such hybrid systems with adapted 
sensitivity detection is important.

 The works [52, 53] confirm the importance of 
such integrated systems and can be used for phys-
ical human-robot interaction or for the detection 
of metal-lubricant materials. The fine detection 
of oil abrasive particles in mechanical equipment 
is crucial to the fault determination of the equip-
ment, especially when particles of two different 
materials are mixed through the sensor. 

CONCLUSIONS

The presented research highlights the sig-
nificant potential of intelligent skin sensors in 
enhancing the functionality and safety of au-
tonomous systems integrated with IoT. Using  
a hybrid approach involving capacitive-inductive 
integrated sensors, the proposed modeling tech-
niques demonstrate both energy dynamics and 
signal processing issues. The interval-based rep-
resentation of sensor parameters enables a more 
robust and flexible design that accounts for envi-
ronmental uncertainties and changes. 

 Simulations demonstrated the dynamic in-
teraction of energy flow in the magnetic sensor 
and capacitance changes in the capacitive sen-
sor, revealing key insights into their individual 
and hybrid behaviours. Key findings include that 
the magnetic sensor exhibits predictable energy 
dissipation. The capacitive sensor dynamically 
responds to capacitance changes induced by ex-
ternal factors such as plate distance and touch 
simulation, enabling precise signal generation 
and current optimization.

 The interval modeling approach enhances 
the reliability and adaptability of the sensors, 

ensuring consistent performance under different 
conditions. Notably, the introduction of Gaussian 
noise simulation provides a realistic understand-
ing of the sensor behavior in practical operational 
scenarios such as environmental pollution or sig-
nal interference.

 The hybrid nature of the proposed smart sen-
sors enables simultaneous detection of multiple 
parameters such as human touch and presence 
of metallic objects, making them suitable for ap-
plications in advanced robotics, human-machine 
interfaces, and environmental monitoring. Fur-
thermore, the findings highlight the importance 
of adaptive control algorithms to optimize sen-
sor response, especially in dynamic and uncertain 
environments.

 This work provides a foundation for further 
exploration of integrated intelligent sensor sys-
tems, promoting their use in IoT-enabled appli-
cations requiring very high sensitivity, precision, 
and energy efficiency and in the THz frequency 
band. Further research will focus on improving 
the adaptive algorithms and extending the ca-
pabilities of such multi-sensors to nano-scale 
applications.
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