
108

INTRODUCTION

The landscape of software development is un-
dergoing a profound transformation, driven by the
convergence of advanced technologies and inno-
vative methodologies. CI/CD pipelines are at the
heart of this revolution, and they have emerged
as critical infrastructure for modern development
teams seeking to deliver high-quality, reliable
software solutions rapidly [1]. Exponential in-
creases in available data, computing power, and
algorithm sophistication have catalysed unprece-
dented developments in artificial intelligence that
drastically change how organizations think about
software delivery and operational efficiency. Ma-
chine learning and related technologies now bring

intelligent solutions to long-existing bottlenecks
in operational practices.

Modern software architectures consist of
intricate networks of interlinked services and
microservices across diverse technological en-
vironments. While these complex systems offer
enhanced flexibility and scalability, they also in-
troduce significant performance challenges. De-
velopment teams often encounter issues such as
long build times, frequent pipeline failures, ineffi-
cient resource utilization, and complex dependen-
cy management across various services and envi-
ronments [2]. More and more, traditional pipeline
management approaches still need to adequately
diagnose and rectify systemic issues. More adap-
tive and intelligent solutions have now become

Optimizing continuous integration and continuous deployment
pipelines with machine learning: Enhancing performance
and predicting failures

Dileepkumar S.R.1,2 , Juby Mathew3*

1 Computer Science and Multimedia, Lincoln University College Malaysia, No. 2, Jalan Stadium, SS 7/15, Kelana
Jaya, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia

2 Marian College Kuttikanam (Autonomous), Peermade, Kuttikkanam, Kerala 685531, India
3 Computer Science and Engineering, Amal Jyothi College of Engineering (Autonomous), Kanjirapally, Kerala, India
* Corresponding author’s e-mail: jubymathew@amaljyothi.ac.in

ABSTRACT
Continuous integration and continuous deployment (CI/CD) pipelines form the backbone of modern software de-
velopment but typically suffer from long build times, repeated failures, and inefficient use of resources. This work
presents a machine learning-based framework that systematically improves pipeline performance through predic-
tive modelling. More specifically, the work will focus on developing a Support Vector Machine model to predict
pipeline failures; it minimizes build times through optimized resource allocation while building dynamic frame-
works for continuous improvement of CI/CD pipelines. The study assumes an exhaustive literature review and pro-
pounds a new approach by using an SVM model. Critical performance metrics such as the build duration, test pass/
fail rates, and resource consumption are analysed and the framework is found to have significant improvements by
the measurements: a 33% decrease in the build time, a 60% decrease in the failure rates, and optimization of CPU
and memory utilization. The experiments validated the outcome of being scalable in an intelligent manner such that
persistent problems with CI/CD are solved in modern DevOps practices. This work provided initial groundwork by
bringing in the concept of ML in CI/CD process, aiming to enhance reliability and efficiency in the pipelines that
would lead towards major strides in adaptive systems in the context of software engineering workflows.

Keywords: machine learning, CI/CD, performance prediction, reinforcement learning, predictive analytics, DevOps.

Received: 2024.10.22
Accepted: 2025.01.10
Published: 2025.02.01

Advances in Science and Technology Research Journal, 2025, 19(3), 108–120
https://doi.org/10.12913/22998624/197406
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology
Research Journal

https://orcid.org/0009-0004-9774-1936
https://orcid.org/0000-0002-4660-5940

109

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

acutely necessary. Machine Learning represents
the most revolutionary approach to overcoming
such challenges as it employs state-of-the-art
predictive abilities to analyse data, find patterns
hidden within the data, and create insights that a
human operator might not have found [3].

The potential of machine learning in optimiz-
ing CI/CD pipelines is extraordinary. Machine
learning techniques can use advanced algorithms
that analyse build logs, test results, and system
performance metrics to predict potential failures,
suggest optimizations, and support data-driven
decision-making. This approach turns CI/CD
pipelines into intelligent, self-improving systems
that can foresee bottlenecks and improve overall
development efficiency. Integrating AI and ML
into software development processes is more than
upgrading technology; it constitutes a complete
rethinking of complex systems in design, testing,
and implementation [4]. It is very important to be
able to rapidly iterate, collaborate seamlessly, and
maintain high-quality standards within increas-
ingly dynamic digital ecosystems [4].

This research delves into the transformative
potential of AI-powered CI/CD pipelines, ex-
ploring how advanced Machine Learning tech-
niques can address the multifaceted challenges
of modern software development [5]. By investi-
gating intricate interactions between artificial in-
telligence, software engineering methodologies,
and operational efficiency, we hope to provide in-
sights into the future of intelligent, adaptive soft-
ware delivery systems. Our study will delve into
the technical mechanisms, performance implica-
tions, and strategic opportunities presented by
AI-enhanced CI/CD pipelines, offering a compre-
hensive analysis of this emerging paradigm. We
seek to contribute to the ongoing dialogue about
technological innovation in software develop-
ment and operational management through rig-
orous examination and empirical investigation.
This paper presents a novel Machine Learning
framework designed to enhance the performance
of CI/CD pipelines in a controlled manner. The
study demonstrates a comprehensive approach
to predict and mitigate pipeline failures using
SVM modelling, while concurrently optimizing
resource allocation and build processes. The pro-
posed framework is a paradigm shift in the work-
flow management of software deployment by in-
tegrating three sophisticated architectural layers:
a robust performance metrics collection system,
an advanced predictive analysis mechanism, and

a dynamic real-time adaptive feedback loop. The
research is designed to fundamentally change
how organizations conceptualize and implement
pipeline management and software deployment
strategies through this meticulously designed ar-
chitecture. This research opens new frontiers in
software development reliability and efficiency
by introducing machine learning techniques into
CI/CD processes [6]. The framework not only
addresses immediate operational challenges but
also provides a blueprint for more intelligent,
adaptive software engineering practices. As or-
ganizations continue to seek competitive advan-
tages through faster and more reliable software
delivery, the integration of machine learning into
CI/CD pipelines represents a critical evolution in
modern software development methodologies.

BACKGROUND

CI/CD pipeline optimization

CI/CD offers significant benefits, including
reliability in model deployment, agility, cost opti-
mization, scalability, and efficiency. It is built on
fundamental principles such as automation, con-
tinuous deployment, automated testing, continu-
ous monitoring, and feedback loops. Numerous
research studies have examined the importance of
streamlining the CI/CD pipeline to reduce build
times, improve test accuracy, and enhance the
overall quality of software delivery [7]. One such
study investigates how slow build processes neg-
atively impact the productivity of software teams.
The authors highlight that reducing build times is
crucial for increasing developer satisfaction and
refining feedback loops. The study focuses on in-
cremental builds and caching as key solutions to
remove redundant work in CI/CD pipelines. Ap-
plying these techniques, they were therefore able
to report reducing build time by an impressive
40%, not only making software delivery fast but
also within their desired quality standards.

The research emphasizes enhancing the ac-
curacy and efficiency of test suites within CI/CD
pipelines. The authors have proposed an algo-
rithm for automatic test selection based on the lat-
est code changes to decide on relevant tests. With
a dynamic prioritization of selecting only the
most relevant tests, they could reduce the execu-
tion time of test suites by 30% with high accuracy
in tests. This approach reduces redundant test

110

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

runs while maintaining the quality of software de-
livery without being slow. The study [8] outlines
the development of a machine learning-based
predictive model for identifying build failures
in CI/CD pipelines. A model analyses historical
build log files and test results against some prede-
termined patterns and makes the right predictions
of potential build failure before they occur during
a build process. Results have shown an impres-
sive increment of accuracy in failure predictions
of nearly 85%. It makes pipeline reliability better
and enables continued observance of elevated ex-
cellence in software development.

The research highlights [9] that continuous
testing is essential for delivering high-quality
software that meets established standards. The
authors here provide an advanced continuous
testing framework which incorporates different
types of tests that are applied at the unit level,
integration level, and also system-level testing
into the software development lifecycle. It pro-
vides real-time insight into the quality of the code
and early identification of defects. It shows that a
20% decrease in post-deployment defects proves
the efficiency of continuous testing in improving
software quality.

The study [10] examines two deployment
strategies, Teal and Canary, within the framework
of CI/CD pipelines. Both strategies enhance de-
ployment reliability, but the research reveals that
the Canary deployment method provides better
incremental control, enabling quicker rollbacks
with minimal downtime. The findings demon-
strate that optimizing deployment strategies can
lead to a smoother and more efficient software
delivery process, reducing problems during the
production deployment phase. The introduced
ensemble learning approach to predict software
build failures in CI/CD pipelines [11]. Their
methodology employed a hybrid machine learn-
ing model combining random forest and gradient
boosting algorithms to analyse historical build
logs and code commit patterns. The primary chal-
lenge addressed was the software development
processes’ high variability and complexity, which
traditionally made failure prediction difficult. By
integrating multiple machine learning techniques,
they achieved an 87.5% accuracy in early failure
detection, significantly improving the proactive
identification of potential pipeline disruptions.

They developed a sophisticated machine
learning framework for dynamic resource al-
location in cloud-based CI/CD environments.

Their approach utilized time series analysis and
reinforcement learning algorithms to optimize
computational resource distribution. The key
challenges they confronted were the unpredict-
able nature of computational workloads and the
inefficient static resource allocation methods
prevalent in traditional pipeline management. By
implementing an adaptive learning model, they
demonstrated a 40% improvement in pipeline
performance and reduced operational costs.

The growing complexity of software devel-
opment processes has driven significant interest
in optimizing CI/CD pipelines. A mixed-methods
approach, combining qualitative and quantitative
analyses to evaluate CI/CD pipeline restructuring
actions [12]. The researchers manually analysed
615 configuration change commits, resulting in
a taxonomy of 34 restructuring actions aimed at
improving extra-functional properties and modi-
fying pipeline behaviour. Challenges identified
include the frequent changes in specific pipeline
components and the growing adoption of Docker,
which complicates maintenance and necessitates
continuous adaptation of pipelines to evolving
technologies and practices [13].

Another notable contribution involves the ex-
ploration of advanced methodologies for optimiz-
ing CI/CD pipelines in DevOps environments.
This research emphasized strategies such as par-
allelization, distribution, containerization, and
orchestration to enhance automation levels. The
challenges faced included the need for effective
feedback loops and maintaining version control
amidst rapid changes. The study highlighted [14]
that while automation can significantly improve
efficiency, it also introduces complexities that re-
quire careful management to avoid bottlenecks in
deployment cycles. Additionally, common chal-
lenges across various studies include inefficient
implementation due to lack of expertise and co-
ordination issues among teams, emphasizing the
importance of training and standardized practices.
Table 1 shows tabular summary of the methods
and challenges each author addressed:

Machine learning in DevOps

Recently, there has been an increase in inter-
est in integrating machine learning into DevOps
procedures. The application of ML models for
anomaly detection and predictive maintenance
is highlighted in a number of publications. How-
ever, rather than predicting optimization inside

111

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

the CI/CD pipeline itself, these models mostly
concentrate on operational duties. The function
of ML models in detecting irregularities in De-
vOps processes is examined in this paper. They
suggest an unsupervised learning strategy that
looks at performance data, resource utilization,
and system logs to identify odd trends instantly.
The paper emphasizes how operational problems
like system breakdowns or performance deterio-
ration can be proactively addressed via anomaly
detection. Nevertheless, they do not look at CI/
CD pipeline optimization, instead concentrating
on operational anomaly detection [21].

The study [22] explores the application of
predictive maintenance in DevOps settings. They
anticipate hardware malfunctions and system
breakdowns before they have an impact on op-
erations by utilizing machine learning algorithms
that examine past infrastructure data. Their ma-
chine learning models guarantee system depend-
ability and offer helpful insights for infrastructure
management. There is need for more research
because, like Zhao et al., this paper concentrates
on operational maintenance rather than using ML
models to optimize CI/CD pipelines.

The study [23] focuses on optimizing opera-
tions within the CI/CD pipeline. Using past CI/
CD data, including build logs, test results, and
deployment metrics, they create a machine learn-
ing model to forecast build and deployment er-
rors. Their supervised learning-based model has
an accuracy of up to 82% in predicting failures.
The study, which focuses on predictive optimiza-
tion with a particular focus on failure prediction
rather than more general pipeline optimization, is
one of the few instances in which machine learn-
ing is directly implemented within the CI/CD

pipeline itself. An ML-based anomaly detection
framework adapted to a DevOps microservices
architecture. Their work highlights the impor-
tance of anomaly detection at the microservice
level using ML models trained on service health
metrics and logs. While this approach increases
operational efficiency in DevOps environments,
the research does not address predictive optimi-
zation for CI/CD pipelines. Their focus remains
on improving system reliability through continu-
ous monitoring [24].

This study examines how predictive analyt-
ics integrates into the CI/CD workflow, with a
particular focus on optimization strategies. Ex-
perts suggest using machine learning algorithms
to predict potential bottlenecks in pipelines, such
as prolonged build times and inefficient resource
allocation. Their analysis indicates that machine
learning can reduce construction time by up to
35% and enhance overall pipeline efficiency [25].
While the focus is on predictive optimization,
the essay highlights the early stage of research
in this field and emphasizes the need for further
investigation.

A deep neural network model was proposed
for detecting anomalies and performance bot-
tlenecks in continuous integration processes.
Their methodology incorporated convolutional
and recurrent neural networks to analyze com-
plex, multi-dimensional software development
metrics. The primary challenge was identifying
subtle performance degradation patterns that tra-
ditional monitoring tools often missed. Their ap-
proach successfully created a real-time anomaly
detection system capable of predicting potential
performance issues before they escalate [26].
Advanced log analysis techniques were explored

Table 1. Summary of the methods and challenges CI/CD pipeline optimization
Reference Focus area Methodology Challenges addressed

Saidani I, Ouni A, Mkaouer
MW [14] Reducing build time Incremental builds and caching

strategies
Reducing build time to enhance
productivity and feedback loops

Zampetti F, Vassallo C,
Panichella S [15] Enhancing test efficiency

Automated test selection
algorithm based on recent code
changes

Minimizing redundant tests while
maintaining accuracy

Saidani I, Ouni A,
Chouchen M [16] Predicting build failures Machine learning model

analysing historical build logs
Proactively detecting build failures
to improve reliability

Zampetti F, Vassallo C,
Panichella S [17] Continuous testing Continuous testing framework

integrating various test types
Ensuring early defect detection to
maintain quality standards

Vassallo C, Proksch S,
Gall HC [18]

Deployment strategy
comparison

Comparison of Teal vs. Canary
deployment strategies

Managing deployment reliability and
rollback efficiency

Vassallo C, Proksch S,
Jancso A [19] Build failure Test selection algorithm Efficiency of ML Algorithms

DileepKumar SR, Mathew
J [20] Test Case prioritisation Machine learning algorithm Test case priority

112

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

using natural language processing and machine
learning algorithms. Their research developed an
innovative method for parsing and interpreting
software development logs to predict potential
system failures. The significant challenge they
addressed was software logs’ unstructured and
protracted nature, which traditionally hindered
comprehensive analysis. They created a robust
predictive maintenance framework by imple-
menting sophisticated text mining and clustering
techniques [27].

The study focused on the critical challenge
of feature selection and model interpretability
in machine learning-driven CI/CD pipelines.
Their methodology employed explainable AI
techniques and advanced statistical methods to
identify the most relevant features for predicting
pipeline performance. The primary challenge
was reducing model complexity while maintain-
ing high predictive accuracy. They developed
a novel approach that provided transparent in-
sights into the decision-making process of ma-
chine learning models. Table 2 shows tabular
summary of the methods and challenges each
author addressed:

Predictive analytics for CI/CD pipelines

When it comes to predictive analytics, its
widespread use in various industries for perfor-
mance forecasting contrasts with its underex-
plored application in optimizing CI/CD pipe-
lines. The focus lies on leveraging predictive
analytics in the manufacturing sector to antici-
pate machine performance, identify equipment

failures, and enhance resource distribution. Re-
search reveals that employing predictive models
can slash downtime by 25% and enhance over-
all operational efficiency [28]. Despite shedding
light on the advantages of predictive analytics,
the study fails to extend these methodologies to
software engineering domains like CI/CD pipe-
lines, exposing a gap in applying similar tactics
to DevOps practices.

Delving into the realm of cloud infrastruc-
ture maintenance unveils the potential of predic-
tive analytics in foreseeing hardware and system
failures before they manifest. Studies demon-
strate that such analytics can substantially mini-
mize system downtime and boost performance
levels. While showcasing the efficacy of predic-
tive analytics in operational scenarios, this ex-
amination neglects delving into CI/CD channel
optimizations, reinforcing the notion that lever-
aging predictive analytics within CI/CD con-
texts remains nascent [29].

That is a step toward including predictive an-
alytics in CI/CD pipelines: develop models that
identify potential build and deployment hang-ups
based on historical information from build logs
and test results. These models have impressive
accuracy at 85%, which is successful in detecting
failures before they happen in order to give teams
means to correct issues before things go wrong.
However, although the research will be on failure
prediction occurrence, it explores deploying pre-
dictive analytics only partially across the CI/CD
pipeline ranges-from enhancing build durations
to refining resource allotment [30]. Discussing
the way predictive analytics predicts numerous

Table 2. Methodology, and specific challenges in integrating machine learning in DevOps
Reference Focus area Methodology Challenges addressed

Hilton M, Tunnell T, Huang
K, Marinov D [21]

Operational anomaly
detection in DevOps

Unsupervised learning on
performance data, resource
use, and system logs

Proactive detection of operational
anomalies like system breakdowns
and performance issues

Rausch T, Hummer W,
Leitner P [22] Predictive maintenance Machine learning models on

historical infrastructure data
Anticipating hardware malfunctions
and ensuring system reliability

Pan R, Bagherzadeh M,
Ghaleb TA [23]

Predicting build/deployment
failures in CI/CD

Supervised ML model on
CI/CD data (build logs, test
results, deployment metrics)

Predicting failures with 82%
accuracy to enhance pipeline
reliability

Benjamin J, Mathew J [24] Microservices anomaly
detection

ML-based anomaly detection
in microservices using health
metrics and logs

Improving operational efficiency
through continuous monitoring at
the microservice level

Zydroń PW, Protasiewicz
J [25]

Predictive optimization in
CI/CD

Machine learning models to
forecast pipeline bottlenecks
like long build times

Enhancing CI/CD pipeline
efficiency by reducing build times
and optimizing resource use

Tecimer KA, Tüzün E,
Moran C [26] Predicting build failure ML-based anomaly detection Real-time anomaly detection

Zanjani MB, Kagdi H, Bird
C [27]

Predict potential system
failures

Unsupervised ML model on
CI/CD data

Unstructured and verbose nature
of software logs

113

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

metrics of software development including deliv-
ery schedules, rates of bugs identification, and the
team’s efficiency underlines many developments
in project planning and management of resources
using historic project data. However, the direct
purpose of this study does not focus on CI/CD
pipeline processes; it merely displays how, al-
though very common within software develop-
ment domains, its hidden potential is yet to be
extracted to be used in optimization for a CI/CD
pipeline process [31].

Specifically, honing in on utilizing predictive
analytics for optimizing the CI/CD pipeline fills a
void highlighted by previous studies. Designing a
machine learning model that forecasts inefficien-
cies within pipelines like sluggish builds or ex-
cessive test runs while proposing real-time opti-
mizations showcases how such analyses can cur-
tail construction times by 30% while augmenting
overall pipeline efficacy significantly. This study
stands out as one of the select few thoroughly ex-
ploring utilizing predictive analytics for optimiz-
ing CI/CD pipelines; affirming its underexplored
landscape yet immense capacity for enhancing
software delivery workflows. This paper seeks to
address this gap by integrating machine learning
into the CI/CD process to predict and alleviate
performance bottlenecks [32].

Machine learning strategies for optimizing
cross-platform CI/CD pipelines were investi-
gated. Their research developed a transfer learn-
ing approach designed to adapt machine learn-
ing models across various software development
environments. The key challenge was managing
the diversity of software development ecosys-
tems while creating flexible predictive models.
By implementing a sophisticated transfer learn-
ing framework, they achieved impressive per-
formance consistency across different techno-
logical stacks. Additionally, they introduced a
dynamic continuous learning model for optimiz-
ing CI/CD pipelines. Their methodology utilized
online machine learning algorithms that could
adjust in real time to evolving software devel-
opment patterns. The primary challenge was to
create a learning system that maintains its per-
formance while continuously updating its pre-
dictive capabilities. Their approach successfully
demonstrated a self-evolving machine learning
framework capable of adapting to emerging
development trends [33]. The study focused
on using machine learning techniques for de-
tecting security anomalies in CI/CD pipelines.

Researchers developed an advanced intrusion
detection system that utilizes deep learning al-
gorithms to identify potential security vulner-
abilities during continuous integration process-
es. One of the significant challenges faced was
creating a robust security mechanism capable
of detecting sophisticated attack patterns while
avoiding substantial computational overhead.

The research explored the computational
challenges associated with implementing ma-
chine learning in CI/CD pipelines. The meth-
odology aimed to develop lightweight machine
learning models that offer predictive insights
without consuming excessive resources. The pri-
mary objective was to strike a balance between
the computational complexity of machine learn-
ing algorithms and the need for efficient pipeline
performance. Ultimately, the team successfully
created optimized models with minimal impact
on performance [34].

Additionally, a holistic approach to CI/CD
pipeline optimization was presented, integrating
various machine learning techniques across dif-
ferent performance dimensions. This comprehen-
sive methodology combined predictive analytics,
resource allocation optimization, and continuous
learning strategies. The significant challenge was
creating a unified framework that could address
multiple performance aspects simultaneously
[35]. By developing an integrated machine learn-
ing ecosystem, they demonstrated a groundbreak-
ing approach to comprehensive pipeline manage-
ment. Table 3 shows the methods and challenges
addressed in each study related to Predictive Ana-
lytics for CI/CD Pipelines. Table 3 shows tabu-
lar summary of the methods and challenges each
author addressed:

SYSTEM STUDY

There are multiple stages in a typical CI/CD
pipeline such as source code check-ins, build,
testing and deployment. Challenges such as long
build times, test flakiness and deployment delays
are some of them, even though automation makes
these processes sleek. An effective way to do this
is by employing ML models that scans the his-
torical pipeline data, and highlights common anti-
patterns e.g. other modules causing tests to fail
too frequently, or eyeing a resource intensive test
which could be a likely offending one etc.

114

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

Table 3. Methods and challenges addressed in each study related to predictive analytics for CI/CD pipelines
Reference Focus area Methodology Challenges addressed

Testi M, Ballabio M, Frontoni
E, Iannello G. [28]

Predictive analytics in
manufacturing

Predictive models for machine
performance and equipment
failures

Reducing downtime by 25%
in manufacturing; lacks
application to CI/CD pipelines

Arachchi SAIBS, Perera I
[29]

Predictive analytics in cloud
infrastructure maintenance

Predictive models for hardware
and system failure forecasting

Minimizing system downtime
and enhancing performance,
with limited focus on CI/CD
optimization

Giorgio L, Nicola M, Fabio
S [30]

Predicting failures in CI/CD
pipelines

Models predicting build and
deployment failures using past
data

Predicting CI/CD failures with
85% accuracy but limited
to failure prediction, not full
pipeline optimization

Mazumder RK, Salman AM,
Li Y [31]

Predictive analytics in
software development
metrics

Forecasting delivery schedules,
bug rates, and team efficiency
based on historical data

Enhances project planning
and resource management but
not directly applied to CI/CD
processes

Casale G, Chesta C,
Deussen P, Di Nitto E [32]

CI/CD pipeline optimization
with predictive analytics

ML model predicting
inefficiencies in build and
test processes with real-time
optimization suggestions

Reducing build times by
30% and enhancing pipeline
efficiency, filling a gap in CI/
CD optimization research

Satapathy BS, Satapathy
SS, Chakraborty J [33]

Predicting failures in CI/CD
pipelines Transfer learning approach Continuously updating its

predictive capabilities
Lwakatare LE, Raj A, Bosch
J [34] Predictive analytics Developing lightweight machine

learning models
Balancing the computational
complexity of ML algorithms.

Kreuzberger D, Kühl N,
Hirschl S [35] CI/CD pipelines Combined predictive analytics,

resource allocation optimization Multiple performance

METHODOLOGY

The methodology for optimizing CI/CD pipe-
lines using machine learning (ML) techniques is
a structured approach that involves several key
stages. The proposed methodology consists of the
following stages.

Data collection

Data is gathered from existing CI/CD pipe-
lines, including logs, performance metrics, build
times, and failure rates. This initial step is crucial
as it lays the foundation for subsequent analysis
and model training.

Pre-processing

The collected data undergoes rigorous clean-
ing to remove noise and outliers. This step en-
sures that the dataset is reliable and relevant for
analysis. Techniques such as metric normaliza-
tion are applied to standardize the data.

Feature engineering

Key features are extracted from the prepro-
cessed data, focusing on metrics such as build
duration and test pass/fail rates. Statistical meth-
ods are employed for feature selection to retain

only those features that significantly contribute to
model performance.

Model training

A Support Vector Machine model is chosen
due to its exceptional performance on classifica-
tion tasks. The data set is split into training and
validation sets, and hyper parameters are adjusted
by cross-validation. During the prediction pro-
cess, the model’s accuracy is assessed.

Validation

After the model has been successfully trained
using the fresh data, this stage takes place. The
model’s predictions are compared to the real re-
sults of the CI/CD pipeline as part of the valida-
tion phase. This stage is crucial for evaluating
how well the model predicts failures and maxi-
mizes performance.

Performance analysis

The final stage analyses the CI/CD pipeline’s
performance before and after implementing the
ML model, including measurements of improve-
ments in build times, failure rates, and overall
efficiency. A working diagram representing this
methodology is shown in Figure 1

115

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

Data collection and pre-processing

Data is gathered from existing CI/CD sys-
tems, such as logs, performance metrics, build
times, and failure rates. This data is then pre-pro-
cessed to eliminate noise and outliers.

Feature engineering

Key features such as build duration, number
of code changes, and test pass/fail rates are ex-
tracted to train the ML models. Statistical tech-
niques are used for feature selection to ensure that
only the most relevant data is fed into the model.

Model selection

SVM is a non-parametric predictive model
that uses machine learning for regression and
classification problems. The reason why SVM can

be so accurate in predictions, especially in high-
dimensional processes, is due to its high accuracy.
It is highly valued for the precision in the clas-
sification of tasks, particularly failure prediction.

Training and validation

The dataset is divided into training and vali-
dation sets, and each model’s hyper parameters
are optimized via cross-validation. The models
are assessed using performance criteria like re-
call, accuracy, and precision.

RESULT ANALYSIS

An experimental study was carried out utiliz-
ing the publicly accessible Travis Torrent dataset
[36], which proved to be a valuable resource for
our research. Specifically, we made use of the
build data from this dataset.

Pipeline performance before ML integration

The baseline research evaluated the CI/CD
pipeline’s performance using a number of impor-
tant parameters. These included the test execution
time, which recorded the amount of time needed
to run the test suite; the build failure rate, which
monitored the proportion of builds that failed; and
the average build time, which calculated the length
of time spent on each build process. To assess the
effectiveness of system resources during build
activities, resource utilization metrics includ-
ing CPU and memory usage were also tracked.
The pipeline had several performance-related is-
sues and therefore had inefficiencies in the build
process. The average build time was 45 minutes,
which was devastatingly slow, not an optimal op-
timization strategy, and testing inefficiency. High
failure rate of 25% occurred when failing builds-
these builds were primarily due to test errors-
resulted in repeated builds and wasted time. Test
execution alone was taking 20 minutes, which was
the bottleneck and delaying the feedback loop of
developers. The CPU utilization has also reached
85%. It means resource overutilization, which is
most likely to affect the system’s overall perfor-
mance. Memory utilization was also high at 70%.
Again, bad resource management and slowing
down the build process are the indications. All
these factors are responsible for inefficiencies in

Figure 1. Study design

116

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

the pipeline and hinder productivity. Table 4 Pipe
Flow Performance before ML Integration

Pipeline performance after ML integration

A number of important performance mea-
sures were used to gauge advancements follow-
ing the incorporation of machine learning (ML)
models into the CI/CD pipeline. These included
the build failure rate, which tracked the propor-
tion of unsuccessful builds following ML integra-
tion, and the average build time, which represent-
ed the shorter duration of each build process. To
evaluate how quickly test suites ran, the test ex-
ecution time was also monitored. To assess how
effectively system resources were being used af-
ter ML-driven optimizations, resource utilization
measures, such as CPU and memory consump-
tion, were also evaluated.

After integrating machine learning (ML)
into the pipeline, significant improvements were
observed across key performance metrics. Table
5 shows the average build time was reduced by
33%, dropping from 45 minutes to 30 minutes,
due to ML optimizations that skipped unnecessary
tests and enhanced resource allocation. The build
failure rate saw a sharp decline, falling from 25%
to 10%, as ML models predicted potential failures
based on historical data, allowing teams to proac-
tively resolve issues. Test execution time improved
by 40%, shrinking from 20 minutes to 12 minutes,
thanks to ML algorithms that detected redundant
tests while maintaining test coverage quality. CPU
utilization decreased from 85% to 70%, reflecting

more efficient use of computational resources,
while memory utilization also improved, going
from 70% to 60%, ensuring smoother builds and
preventing resource bottlenecks. These optimiza-
tions collectively contributed to a faster, more reli-
able, and efficient pipeline.

The integration of Machine Learning into the
CI/CD pipeline brought considerable improve-
ments across all key metrics. The 33% reduction
in build time, 60% decrease in build failure rates,
and optimized resource usage demonstrate the
value of ML in enhancing pipeline performance
its shown in Figure 2.

Model performance

Now, after adding machine learning into the
CI/CD pipeline, the Precision, Recall, F1 Score
and Accuracy of those models that were used
for optimization of performance and also were
used for failure prediction was a lot higher. Sev-
eral metrics were tested, including model recall,
which shows that how many real failures it was
able to detect, and model precision, which was
used to calculate the percentage of actual failures
predicted. F1 score was tracked to keep recall and
precision in balance; therefore, the performance
of the model as a whole is well captured. Ad-
ditionally, the total accuracy rate of the models,
which indicates the extent to which the outcome
was classified correctly, was computed. The ef-
fectiveness of the model training procedure after
ML integration was measured by computing the
training time.

Table 4. Pipeline performance before ML integration
Metric Before ML integration Remarks

Average build time (mins) 45 minutes High build time due to inefficient testing and lack of optimization

Build failure rate (%) 25% High failure rate caused by undetected test errors

Test execution time (mins) 20 minutes Significant portion of build time spent on test execution

CPU utilization (%) 85% High CPU usage, indicating inefficiency

Memory utilization (%) 70% Inefficient memory use, causing delays

Table 5. Pipeline performance after ML integration
Metric Before ML integration After ML integration Improvement

Average build time (mins) 45 minutes 30 minutes 33% reduction in build time

Build failure rate (%) 25% 10% 60% reduction in build failures

Test execution time (mins) 20 minutes 12 minutes 40% reduction in test execution time

CPU utilization (%) 85% 70% 18% reduction in CPU utilization

Memory utilization (%) 70% 60% 14% reduction in memory usage

117

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

Figure 2. Pipeline performance before and after ML integration

The integration of machine learning improved
the performance of the model of failure predic-
tion. Results for model accuracy are shown in
Table 6. Model precision rose from 75% to 90%,
meaning that a bigger percentage of the failures
that could be predicted were correct ones. It re-
duced false positives and improved the reliability
of the model. Similarly, model recall increased
from 70% to 85%, and actual failures were also
better detected. This supported timely interven-
tion. A large increase was observed, in terms of

the score, of F1 balanced between precision and
recall between 72.5 up to 87.5, referring to the
fact that the efficiency of the model overall can
better classify failures with minor false alarms.
Accuracy of this model also improved, so from
76% up to 88%, indicating a rise in success ra-
tio for properly classifying results. The average
training time of the models was reduced by 50%
from 30 minutes to 15 minutes, and some optimi-
zations, such as better algorithms or reduced data
complexity, had made the training process more

Table 6. Model precision, recall, F1 score and accuracy
Metric Before ML integration After ML integration Improvement

Model precision (%) 75% 90% 20% improvement in precision

Model recall (%) 70% 85% 21.4% improvement in recall

F1 score 72.5 87.5 20.7% improvement in F1 score

Accuracy rate (%) 76% 88% 15.8% improvement in overall accuracy

Training time (mins) 30 minutes 15 minutes 50% reduction in training time

Figure 3. Model performance

118

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

efficient. Model performance shown Figure 3.
These altogether enhanced the effectiveness of
predictive analytics in the CI/CD pipeline.

The integration of Machine Learning into the
CI/CD pipeline not only improved the accuracy
of predictive models but also enhanced their ef-
ficiency in terms of training time. With notable
increases in precision, recall, F1 score, and over-
all accuracy, the ML models now provide more
reliable and actionable insights for optimizing
pipeline performance and reducing failures.

CONCLUSIONS

Further work in the realm of the applica-
tion of ML to optimise CI/CD pipelines will be
aimed at widening the domains of improvement
in models as well as perfecting their effective-
ness. Research will focus more on complex deep
learning models like Transformer, which can ef-
ficiently and effectively manage intricate data sets
and enhance time series forecasting ability. These
models improve performance due to the strength-
ening of anticipation of failure and optimizing
allocation of resources. Anomaly detection tech-
niques implemented in the pipeline in real time
will enable detection and correction of problems
before they escalate into significant build failures.
Reinforcement learning allows systems to learn
and adapt dynamically to immediate feedback,
which enables the pipeline to improve continu-
ously over time. Some critical future steps would
involve scaling CI/CD machine learning models
such that minimal latency and the maximum pos-
sible precision are offered through much bigger
frameworks. In order to engage with the industry,
there will be solutions tested with different envi-
ronments-both pure clouds and hybrid systems.

Performance gains were substantial when
machine learning was incorporated into the CI/
CD process. The integration of machine learning
into the CI/CD process resulted in significant per-
formance improvements. The average build time
decreased by 33%, from 45 to 30 minutes, as a
result of improved resource efficiency and the
elimination of unnecessary tests. The build fail-
ure rate dropped by 60%, from 25% to 10%, as a
result of teams being able to take proactive steps
to fix faults that ML models could identify earlier.
Test execution time was lowered from 20 minutes
to 12 minutes by finding and removing redundant
tests without compromising coverage.

Furthermore, CPU and memory usage
dropped by 18% and 14%, respectively, under-
scoring the improved resource management ef-
fectiveness. With precision rising to 90% and
recall hitting 85%, the ML models’ accuracy
also significantly increased, producing a more
trustworthy failure prediction. The enhancements
in model precision and predictive abilities further
underscore the transformative potential of ML in
reshaping DevOps methodologies. Nevertheless,
predictive optimization within CI/CD is still de-
veloping, offering avenues for future exploration.
Advanced deep learning models, real-time anom-
aly detection, and reinforcement learning prom-
ise to further boost pipeline efficiency and ensure
more resilient software development processes.
These findings demonstrate that machine learn-
ing can significantly optimize CI/CD pipelines by
improving build speed, reducing failure rates, and
enhancing resource utilization. This integration
not only boosts efficiency but also ensures more
reliable and faster software delivery processes.

REFERENCES

1. Camacho NG. Unlocking the potential of AI/ML in
DevSecOps: Effective strategies and optimal prac-
tices. Deleted Journal. 2024 Mar 2; 2(1): 79–89.
https://doi.org/10.60087/jaigs.v2i1.p89

2. Ska YPJ. A Study and analysis of continuous de-
livery, continius integration software development
environment, Journal of Emerging Technologies
and Innovative Research. 2019 Sep 1; 6(9): 96–107.
https://www.jetir.org/papers/JETIRDD06019.pdf

3. Malhotra A, Elsayed A, Torres R, Venkatraman
S. Evaluate canary deployment techniques using
Kubernetes, Istio, and Liquibase for cloud native
enterprise applications to achieve zero downtime
for continuous deployments. IEEE Access. 2024
Jan 1; 12: 87883–99. https://doi.org/10.1109/
access.2024.3416087

4. Chazhoor A, Mounika Y, Sarobin MVR, Sanjana
MV, Yasashvini R. Predictive maintenance using
machine learning based classification models. IOP
Conference Series Materials Science and Engi-
neering. 2020 Oct 1; 954(1): 012001. https://doi.
org/10.1088/1757-899x/954/1/012001

5. Mishra A, Otaiwi Z. DevOps and software quality:
A systematic mapping. Computer Science Review.
2020 Oct 3; 38: 100308. https://doi.org/10.1016/j.
cosrev.2020.100308

6. Laukkanen E, Itkonen J, Lassenius C. Problems,
causes and solutions when adopting continuous

119

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

delivery—A systematic literature review. Informa-
tion and Software Technology. 2016 Oct 16; 82:
55–79. https://doi.org/10.1016/j.infsof.2016.10.001

7. Van Belzen M, Trienekens JJM, Kusters RJ. Critical
success factors of continuous practices in a DevO-
ps context. Information and Software Technology.
2019 Aug 28;

8. Benjamin J, Mathew J. Enhancing continuous in-
tegration predictions: a hybrid LSTM-GRU deep
learning framework with evolved DBSO algo-
rithm. Computing. 2024 Nov 26; 107(1). https://
doi.org/10.1007/s00607-024-01370-2

9. Alnafessah A, Gias AU, Wang R, Zhu L, Casale G,
Filieri A. Quality-Aware DevOps Research: Where
Do We Stand? IEEE Access. 2021 Jan 1; 9: 44476–
89. https://doi.org/10.1109/access.2021.3064867

10. Mishra A, Otaiwi Z. DevOps and software quality:
A systematic mapping. Computer Science Review.
2020 Oct 3; 38: 100308. https://doi.org/10.1016/j.
cosrev.2020.100308

11. Lwakatare LE, Kilamo T, Karvonen T, Sauvola T,
Heikkilä V, Itkonen J, et al. DevOps in practice: A
multiple case study of five companies. Information
and Software Technology. 2019 Jun 25; 114: 217–
30. https://doi.org/10.1016/j.infsof.2019.06.010

12. Vassallo C, Proksch S, Zemp T, Gall HC. Every
build you break: developer-oriented assistance for
build failure resolution. Empirical Software Engi-
neering. 2019 Oct 9; 25(3): 2218–57. https://doi.
org/10.1007/s10664-019-09765-y

13. Ghaleb TA, Da Costa DA, Zou Y. An empirical
study of the long duration of continuous integra-
tion builds. Empirical Software Engineering. 2019
Mar 1; 24(4): 2102–39. https://doi.org/10.1007/
s10664-019-09695-9

14. Saidani I, Ouni A, Mkaouer MW. Improving the
prediction of continuous integration build failures
using deep learning. Automated Software Engineer-
ing. 2022 Jan 20; 29(1). https://doi.org/10.1007/
s10515-021-00319-5

15. Zampetti F, Vassallo C, Panichella S, Canfora G,
Gall H, Di Penta M. An empirical characterization
of bad practices in continuous integration. Empirical
Software Engineering. 2020 Jan 8; 25(2): 1095–135.
https://doi.org/10.1007/s10664-019-09785-8

16. Saidani I, Ouni A, Chouchen M, Mkaouer MW.
On the prediction of continuous integration build
failures using search-based software engineering.
Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. 2020 Jul 8; 313–4.
https://doi.org/10.1145/3377929.3390050

17. Zampetti F, Vassallo C, Panichella S, Canfora G,
Gall H, Di Penta M. An empirical characterization
of bad practices in continuous integration. Empirical
Software Engineering. 2020 Jan 8; 25(2): 1095–135.

https://doi.org/10.1007/s10664-019-09785-8
18. Vassallo C, Proksch S, Gall HC, Di Penta M. Auto-

mated Reporting of Anti-Patterns and Decay in Con-
tinuous Integration. Proceedings of the 41st Interna-
tional Conference on Software Engineering. 2019
May 1; https://doi.org/10.1109/icse.2019.00028

19. Vassallo C, Proksch S, Jancso A, Gall HC, Di
Penta M. Configuration smells in continuous de-
livery pipelines: a linter and a six-month study
on GitLab. Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of
Software Engineering. 2020 Nov 7; https://doi.
org/10.1145/3368089.3409709

20. Dileep Kumar SR, Mathew J. Ebola optimization
search algorithm for the enhancement of devops and
cycle time reduction. International Journal of Infor-
mation Technology. 2023 Mar 1; 15(3): 1309–17.
https://doi.org/10.1007/s41870-023-01217-7

21. Hilton M, Tunnell T, Huang K, Marinov D, Dig
D. Usage, costs, and benefits of continuous inte-
gration in open-source projects. 31st IEEE/ACM
International Conference on Automated Software
Engineering. 2016 Aug 25; 426–37. https://doi.
org/10.1145/2970276.2970358

22. Rausch T, Hummer W, Leitner P, Schulte S. An Em-
pirical Analysis of Build Failures in the Continuous
Integration Workflows of Java-Based Open-Source
Software. Proceeding of the 14th International Con-
ference on Mining Software Repositories. 2017 May
1; 345–55. https://doi.org/10.1109/msr.2017.54

23. Pan R, Bagherzadeh M, Ghaleb TA, Briand L. Test
case selection and prioritization using machine
learning: a systematic literature review. Empirical
Software Engineering. 2021 Dec 14; 27(2). https://
doi.org/10.1007/s10664-021-10066-6

24. Benjamin J, Mathew J. Enhancing the efficiency
of continuous integration environment in DevOps.
IOP Conference Series Materials Science and Engi-
neering. 2021 Feb 1; 1085(1): 012025. https://doi.
org/10.1088/1757-899x/1085/1/012025

25. Zydroń PW, Protasiewicz J. Enhancing code review
efficiency: automated pull request evaluation using
natural language processing and machine learning.
Advances in Science and Technology – Research
Journal. 2023 Aug 7; 17(4): 162–7. https://doi.
org/10.12913/22998624/169576

26. Tecimer KA, Tüzün E, Moran C, Erdogmus H.
Cleaning ground truth data in software task as-
signment. Information and Software Technology
[Internet]. 2022 May 25; 149: 106956. https://doi.
org/10.1016/j.infsof.2022.106956

27. Zanjani MB, Kagdi H, Bird C. Automatically rec-
ommending peer reviewers in modern code review.
IEEE Transactions on Software Engineering. 2015
Nov 12; 42(6): 530–43. https://doi.org/10.1109/

120

Advances in Science and Technology Research Journal 2025, 19(3), 108–120

tse.2015.2500238
28. Testi M, Ballabio M, Frontoni E, Iannello G, Moccia

S, Soda P, et al. MLOPs: A taxonomy and a meth-
odology. IEEE Access. 2022 Jan 1; 10: 63606–18.
https://doi.org/10.1109/access.2022.3181730

29. Arachchi SAIBS, Perera I. Continuous Integration
and Continuous Delivery Pipeline Automation for
Agile Software Project Management. 2022 Mo-
ratuwa Engineering Research Conference (MER-
Con). 2018 May 1; 156–61. https://doi.org/10.1109/
mercon.2018.8421965

30. Giorgio L, Nicola M, Fabio S, Andrea S. Continu-
ous defect prediction in CI/CD pipelines: A ma-
chine learning-based framework. In: Lecture notes
in computer science. 2022; 591–606. https://doi.
org/10.1007/978-3-031-08421-8_41

31. Mazumder RK, Salman AM, Li Y. Failure risk analysis
of pipelines using data-driven machine learning algo-
rithms. Structural Safety. 2020 Nov 12; 89: 102047.
https://doi.org/10.1016/j.strusafe.2020.102047

32. Casale G, Chesta C, Deussen P, Di Nitto E, Gou-
vas P, Koussouris S, et al. Current and future
challenges of software engineering for services
and applications. Procedia Computer Science.

2016 Jan 1; 97: 34–42. https://doi.org/10.1016/j.
procs.2016.08.278

33. Satapathy BS, Satapathy SS, Singh SI, Chakraborty
J. Continuous integration and continuous deploy-
ment (CI/CD) pipeline for the SaaS documenta-
tion delivery. In: Lecture notes in electrical en-
gineering [Internet]. 2023; 41–50. https://doi.
org/10.1007/978-981-99-5994-5_5

34. Lwakatare LE, Raj A, Bosch J, Olsson HH, Crnkov-
ic I. A taxonomy of software engineering challenges
for machine learning systems: An empirical inves-
tigation. In: Lecture notes in business information
processing [Internet]. 2019. p. 227–43. https://doi.
org/10.1007/978-3-030-19034-7_14

35. Kreuzberger D, Kühl N, Hirschl S. Machine learn-
ing operations (MLOps): Overview, definition, and
architecture. IEEE Access. 2023 Jan 1; 11: 31866–
79. https://doi.org/10.1109/access.2023.3262138

36. Beller M, Gousios G, Zaidman A. Travis torrent:
Synthesizing travis CI and GitHub for full-stack re-
search on continuous integration. In Proceedings of
the 14th International Conference on Mining Soft-
ware Repositories (MSR). 2017 May 1; https://doi.
org/10.1109/msr.2017.24

