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INTRODUCTION

The aviation industry has experienced sig-
nificant advancements, leading to highly reli-
able aircraft designs. Alongside the technological 
evolution, there has been a substantial growth in 
the legal and procedural frameworks governing 
the flight, diagnostics, and maintenance of an 
aviation machinery. Since World War II, the rapid 
pace of a technological advancement has often 
rendered new technologies obsolete shortly af-
ter the deployment, posing challenges in keeping 
regulatory and procedural frameworks up-to-date 
with innovations.

The human factor remains constant in this 
evolving field. Human adaptation to technologi-
cal environments occurs over generations consid-
erably slower than technological advancements, 
leading to focus on human error as the primary 

cause of aviation accidents. In response, artificial 
intelligence (AI) has been explored to support 
and enhance human decision-making processes in 
aviation. Advanced machine learning models like 
LLMs hold significant potential in the diagnostics 
and maintenance of aircraft propulsion systems. 
LLMs can contribute to increased safety and op-
erational efficiency in aviation by analyzing vast 
datasets, including telemetry data and flight re-
ports. LLMs are sophisticated AI tools designed 
to process and generate a human-like text based 
on their training data [1]. Although their applica-
tion in technical fields like aviation is emerging, 
LLMs have been extensively used in natural lan-
guage processing tasks [2]. The primary advan-
tage of LLMs lies in their ability to process large 
volumes of data and extract meaningful patterns 
and insights that can aid in the predictive mainte-
nance and diagnostics [3].
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This research investigates the role of LLMs in 
aviation, particularly their potential in predicting 
and preventing failures and optimizing mainte-
nance processes for aircraft propulsion systems. 
Utilizing synthetic data provided by NASA to 
simulate realistic scenarios, albeit simplified 
compared to the full complexity of actual oper-
ational data, this study aims to demonstrate the 
potential and capabilities of LLMs in the aviation 
diagnostics and maintenance.

REVIEW OF SCIENTIFIC ACHIEVEMENTS 
IN THE RESEARCH TOPIC AREA

The advancement of LLMs has opened new 
possibilities in various domains [4-7], including 
the aviation diagnostics and maintenance. Mod-
els like GPT-3.5 [8], GPT-4 [9], Falcon-180B, 
and Llama 2-7b, trained on extensive text cor-
pora, enable understanding and generating hu-
man-like language responses. These models are 
sophisticated AI tools designed to mimic human 
language processing capabilities, trained on vast 
datasets to comprehend context and generate co-
herent responses. In aviation, LLMs can analyze 
large sets of operational and diagnostic data to 
predict and prevent equipment failures, enhanc-
ing the safety and efficiency. These models can 
identify patterns and anomalies indicating po-
tential issues, by leveraging telemetry data and 
flight reports [10, 11].

Data conversion into a vector format, known 
as embedding (to be compatible with LLMs), is a 
significant challenge in utilizing LLMs for avia-
tion diagnostics. This involves transforming raw 
text data from various formats into numerical 
vectors that LLMs can process. Previous research 
has demonstrated the potential of LLMs in vari-
ous technical fields [12-14], interpreting the sen-
sor data, and providing diagnostic insights with-
out an extensive retraining. For instance, LLMs 
have been used in the manufacturing to predict 
equipment failures based on the sensor data and 
in healthcare to analyze patient records and sug-
gest potential diagnoses [15, 16].

The effectiveness of LLMs heavily depends 
on the quality and consistency of the input data 
[6, 17-19]. The high-quality and well-structured 
data enable more accurate and reliable predic-
tions, while the poor-quality or inconsistent data 
can lead to erroneous predictions, reducing an 
overall model effectiveness. Ensuring data quality 

is critical for implementing LLMs in technical 
fields, including aviation.

OUTLINING THE RESEARCH PROBLEM

The aviation industry constantly strives to 
improve the safety and operational efficiency by 
focusing on the diagnostics and maintenance of 
aircraft propulsion systems. The development 
of composite materials used in modern aviation 
enhances the safety and reliability of aircraft. 
Thera are plenty of scientific papers includ-
ing about practical usage of composite materi-
als [20]. Current methodologies for diagnosing 
and maintaining these systems are often labour-
intensive and require a significant human exper-
tise. Despite technological advances, the human 
factor remains important in the maintenance and 
operational processes, introducing challenges re-
sulting primarily from potential human error and 
limitations in processing large volumes of com-
plex data.

Traditional methods of the aircraft propulsion 
system maintenance rely heavily on scheduled 
inspections and a reactive maintenance. Sched-
uled inspections, based on predefined intervals, 
may not accurately reflect the actual condition of 
components, leading to unnecessary maintenance 
actions or delayed interventions, potentially 
threatening safety. The reactive maintenance ad-
dresses issues only after they occur, resulting in 
unscheduled downtimes and higher costs due to 
emergency repairs and potential secondary dam-
ages. The human error remains a leading cause of 
maintenance-related incidents in aviation.

The significant challenge in a modern avia-
tion diagnostics is effectively handling and ana-
lyzing vast amounts of data generated by aircraft 
systems. Traditional data processing methods are 
often insufficient for extracting meaningful in-
sights from this data. Key challenges include the 
data volume, the data variety and data quality. Ef-
ficient processing and analyzing large volumes of 
data in real time goes beyond the capabilities of 
traditional methods. Aircraft systems produce di-
verse data types, including sensor readings, main-
tenance logs and operational reports, making the 
integration of these disparate data types into a 
cohesive analysis framework complex. The ac-
curacy and reliability [21, 22] of insights derived 
from data analytics heavily depend on the input 
data quality. The inconsistent or poor-quality data 
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can lead to incorrect diagnostics and maintenance 
recommendations [23-28]. 

LLMs offer a promising solution to these 
challenges. Their ability to process and analyze 
the large volumes of text data can be leveraged to 
enhance diagnostics and maintenance processes 
in aviation. LLMs can aid in a predictive mainte-
nance by analyzing historical data and identifying 
patterns to predict potential failures before they 
occur, allowing proactive maintenance actions. 
They can enhance the diagnostics by comparing 
current data with historical data and known fail-
ure patterns, improving the accuracy and consis-
tency of a diagnostics. Additionally, LLMs can 
provide the maintenance personnel with insights 
and recommendations based on a comprehensive 
data analysis, supporting better decision-making 
and reducing the reliance only on a human judg-
ment [29]. 

Despite these potentials, challenges remain 
in implementing LLMs [30-32], including the 
data quality assurance, integrating LLMs with 
existing systems and managing the computa-
tional resources required for the LLM process-
ing. Addressing these challenges can lead to 
more efficient, reliable and safer aviation opera-
tions [33, 34]. 

THEORETICAL BASES IN THE SCIENTIFIC 
TOPIC

In this section, we will delve into the theo-
retical foundations of Large Language Mod-
els (LLMs), the specific models chosen for this 
study, and the basics of technical diagnostics and 
operation in aviation. This section is crucial for 
understanding how LLMs can be applied effec-
tively to improve the maintenance and diagnos-
tics of aircraft propulsion systems.

Basics of large language models

LLMs are advanced machine learning mod-
els designed to process and generate a human-like 
text based on vast amounts of training data [35, 
36]. These models have demonstrated remarkable 
capabilities in various natural language processing 
(NLP) tasks, such as the text generation, transla-
tion, summarization and question-answering [37, 
38]. LLMs like GPT-3.5 and GPT-4 are based on 
the transformer architecture, which allows them for 
understanding the context and generating coherent 
responses. These models are trained on extensive 
datasets containing diverse textual information, en-
abling them to capture nuanced language patterns 

Figure 1. Transformer architecture overview
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and contextual meanings (Figure 1). The transform-
er architecture, introduced by [39], consists of an 
encoder-decoder structure where the encoder pro-
cesses the input sequence and the decoder generates 
the output sequence. The key innovation of this ar-
chitecture is the self-attention mechanism, which al-
lows the model to weigh the importance of different 
words in a sentence when a response is generated.

Multidimensional vector spaces

LLMs rely heavily on the concept of embed-
dings, which transform words or phrases into 
numerical vectors in a high-dimensional space. 
These embeddings are critical for the model’s 
ability to understand and generate the human lan-
guage. Each dimension in this vector space repre-
sents a latent feature that captures some aspect of 
the word’s meaning or a usage context.

For example, in a 300-dimensional vector 
space, the word “aircraft” might be represented 
by a vector where each dimension corresponds to 
a specific characteristic of the word, such as its 
relation to “flight”, “mechanics” or “safety”. 

The process of creating these embeddings is 
complex and involves several steps:
 • Tokenization: Breaking down the text into 

smaller units (tokens) such as words or subor-
dinate words.

 • Vector representation: Assigning a high-di-
mensional vector to each token based on its 
context and usage in the training data.

 • Contextual adjustment: Using mechanisms 
like the attention to adjust these vectors based 
on surrounding words, thereby capturing the 
context-specific meaning of each token.

The visualization above shows how different 
words can be mapped in a high-dimensional vec-
tor space, where semantically similar words are 
located closer to each other (Figure 2) [40]. 

Chosen models

For this study, we selected GPT-4 by Ope-
nAI due to its advanced capabilities and ease of 
implementation. GPT-4 supports multiple lan-
guages, including Polish, making it suitable for 
analyzing the data in diverse linguistic contexts. 

Figure 2. Embedding space visualization

Table 1. Parameters for GPT-4 model configuration
Parameter Description

Temperature Controls the randomness of predictions

Maximum tokens Sets the limit on the response length

Top-p Nucleus sampling parameter

Repetition penalty Prevents repetitive text generation



308

Advances in Science and Technology Research Journal 2025, 19(2), 304–320

Additionally, GPT-4 provides APIs that facilitate 
the seamless integration with existing systems.

Example code: Integrating GPT-4 in Python

This code snippet demonstrates how to inter-
act with the GPT-4 model using the OpenAI API. 
The messages parameter allows you to set the 
context and user query, and the model responds 
based on its training data (Figure 3) [41, 42]. 

BASICS OF TECHNICAL DIAGNOSTICS 
AND EXPLOITATION

The technical diagnostics in aviation is a 
multidisciplinary field focused on assessing the 
condition of various systems and components of 
an aircraft. The primary goal is to ensure the safe 
and efficient operation of an aircraft by identify-
ing potential issues before they lead to failures. 
This section explores the fundamental concepts, 
methods and standards relevant to the technical 
diagnostics and operation in aviation [43-48]. 

Key concepts in technical diagnostics

Technical diagnostics: this involves identify-
ing the current, past and future states of technical 
systems. The primary objective is to determine 
the present condition of technical devices to pre-
dict their behaviour and performance. The main 
concepts include:

 • Condition: the current state of a system, influ-
enced by its history and necessary for predict-
ing its future behaviour.

 • Diagnostic signal: a signal representing changes 
over time in a specific physical quantity, provid-
ing information about the system’s condition.

 • Diagnostic model: a model used to interpret diag-
nostic signals and assess the system’s condition.

 • Diagnostic procedure: the process of using di-
agnostic models and signals to determine the 
system’s condition.

 • Diagnosis: the result of the diagnostic proce-
dure, indicating the current state of the system.

Key characteristics of diagnostic signals

Sensitivity: the ratio of a change in the diag-
nostic parameter (Δ𝑦𝑛(𝑢)) to the change in the 
state parameter (Δ𝑥𝑚(𝑢)) [49, 50]. 

  𝐾𝐾 =  ∆𝑦𝑦𝑛𝑛(𝑢𝑢)
∆𝑥𝑥𝑚𝑚(𝑢𝑢) (1) 

 

 𝜎𝜎 =  √1
𝑁𝑁 ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁

𝑖𝑖=1  (2) 
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(𝑃𝑃03
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)
𝛾𝛾−1

𝛾𝛾 −1
 (4) 

 

 (1)

Uniqueness: each state parameter value cor-
responds to a single diagnostic parameter value.

Stability: the diagnostic parameter should 
remain stable under consistent diagnostic condi-
tions. Ease of a measurement: the diagnostic sig-
nal should be measurable without a significant ef-
fort, such as disassembling the system or requir-
ing specialized tools.

Exploitation, as defined by the Polish standard 
PN-82/N-04001 [51], encompasses the set of orga-
nizational, technical, and economic actions taken 
with a technical object from its acceptance for use 
until its disposal. Various strategies are employed 

Figure 3. Data flow visualization
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to manage the exploitation of technical objects, 
each offering distinct advantages and challenges. 
The Run-to-Break Strategy is a common strategy, 
which involves operating an object until it fails. 
While this approach is simple, it can result in ex-
tended downtimes and high repair costs. The Pre-
ventive Maintenance is another approach, which 
entails regular inspections and maintenance to 
preserve the object’s functionality and to mini-
mize downtime. The condition-based maintenance 
(CBM) involves monitoring the object’s current 
condition and performing a maintenance based on 
the real-time data, optimizing maintenance efforts 
but requiring the detailed knowledge of the object 
and sophisticated monitoring tools. Additional ex-
ploitation strategies include:
 • exploitation based on resource (PE), which 

involves using the object within its designed 
lifespan and capabilities,

 • technical state-based exploitation, where deci-
sions are made based on the current technical 
state of the object,

 • mixed exploitation strategy, which combines 
various approaches to suit specific needs.

 • economic efficiency-based exploitation, fo-
cusing on minimizing costs while maximizing 
benefits.

 • reliability-centered maintenance (RCM), a 
modern strategy with an emphasis on the com-
prehensive risk analysis and a reliability.

In the field of a technical diagnostics, data ac-
quisition methods are crucial and can be catego-
rized into destructive and non-destructive testing. 
Destructive Testing involves methods that lead to 
the damage or destruction of the object, such as 
tensile tests, compression tests and impact tests. 
Non-Destructive Testing (NDT) methods assess 
the object’s condition without causing damage 
and include techniques such as the: ultrasonics, 
radiographic testing, magnetic particle testing, vi-
sual inspections, thermography, dye penetrant in-
spection, eddy current testing, acoustic emission 
testing and oil analysis.

Aircraft propulsion systems can be catego-
rized based on how they generate thrust: the di-
rect thrust generation, as seen in jet engines like 
turbojets and ramjets, and the indirect thrust gen-
eration, as in propeller and rotorcraft engines, in-
cluding piston and turboprop engines. Propulsion 
systems are subjected to various types of loads, 
including thermal loads, which can cause the de-
formation, thermal fatigue and oil degradation, 

and mechanical loads, which involve forces act-
ing on engine components during operation, lead-
ing to the material fatigue, the bearing wear and 
the shaft damage.

Effective diagnostics and maintenance strate-
gies are essential for ensuring the reliability and 
the safety of both direct and indirect thrust gen-
eration systems. Techniques such as the vibration 
analysis, the thermography and the oil condition 
monitoring help identify potential issues early 
and prevent catastrophic failures. By understand-
ing and applying these theoretical foundations, 
one can enhance the reliability, the efficiency and 
the safety of aircraft propulsion systems through 
the advanced diagnostics and exploitation strat-
egies [47, 52-54]. The flowchart above outlines 
the predictive maintenance process, highlighting 
the steps from the data acquisition to the mainte-
nance decision-making (Figure 4). 

MATHEMATICAL MODELS AND 
TECHNIQUES

In this subsection, the authors of this scien-
tific paper explore the mathematical models and 
techniques employed to analyze data and derive 
meaningful insights during the study. The appli-
cation of mathematical principles is crucial for 
processing diagnostic signals, predicting failures 
and optimizing maintenance schedules.

Standard Deviation and 2-Sigma Rule: the 
standard deviation (𝜎) and the 2-sigma rule (± 2σ) 
is one of the key statistical techniques used in this 

Figure 4. Flowchart of the predictive maintenance 
process
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study. This method helps to identify anomalies 
and to assess the reliability of the diagnostic data.

The standard deviation is calculated as: 
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 (2)

where: 𝑁 is the number of observations, 𝑥𝑖 repre-
sents each observation, 𝜇 is the mean of 
the observations.

Using the 2-sigma rule, data points that fall 
within ±2σ from the mean (𝜇) are considered to 
be within the normal range. This rule helps in the 
detection of outliers or anomalies, which could 
indicate potential issues in the system.

Root mean square (RMS) calculation: RMS 
is a statistical measure used to quantify the mag-
nitude of varying quantities, often applied in the 
vibration analysis of mechanical systems. For a 
set of values 𝑥1,𝑥2,...,𝑥𝑛, the RMS is given by: 
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This formula helps to assess the overall en-
ergy of vibrations, which can indicate the techni-
cal state of components like bearings and shafts.

Temperature and pressure ratios: In thermo-
dynamics, evaluating the efficiency of a compres-
sor or a turbine involves analyzing the tempera-
ture and pressure ratios. The isentropic efficiency 
𝜂𝑐 of a compressor is calculated as: 

 

 𝐾𝐾 =  ∆𝑦𝑦𝑛𝑛(𝑢𝑢)
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where: 𝑇02 and 𝑇03 are the stagnation tempera-
tures at the compressor inlet and outlet 
respectively, 𝑃02 and 𝑃03 are the stagna-
tion pressures at the compressor inlet and 
outlet respectively, γ is the specific heat 
ratio. 

This formula is essential for diagnosing the per-
formance and efficiency of propulsion systems under 
different operating conditions (Figure 5) [24, 55, 56]. 

EXPERIMENT DESIGN AND EXECUTION

In this chapter, the authors of this paper 
discuss the design and execution of the experi-
ment, including the methodologies used, the data 

Table 2. Common diagnostic parameters for aircraft engines
Parameter Unit Description

T02 °R Stagnation temperature at a compressor inlet

T03 °R Stagnation temperature at a compressor outlet

P02 MPa Stagnation pressure at a compressor inlet

P03 MPa Stagnation pressure at a compressor outlet

RMS m/s² Root Mean Square of a compressor bearing vibration

Figure 5. Diagram of the examined engine: 1–2 – inlet, 2–3 – compressor, 3–4 – combustion chamber, 
4–5 – turbine, 5–6 – exhaust nozzle, 6–7 – exhaust
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collection process and the analysis techniques ap-
plied. This structured approach ensures the reli-
ability and validity of the research findings.

The experiment was designed to evaluate the 
effectiveness of LLMs in diagnosing and predict-
ing maintenance needs for aircraft propulsion 
systems. The primary objective of the experiment 
was to determine whether LLMs can accurate-
ly identify anomalies and predict maintenance 
needs based on the historical and real-time data 
from aircraft propulsion systems. The tested hy-
pothesis was that LLMs, when trained on large 
datasets of the operational data, can achieve the 
high accuracy in diagnosing faults and predict-
ing maintenance requirements. Key variables 
considered in the experiment included types of 
the data input (e.g. the temperature, the pressure, 
the vibration data), the training dataset size, and 
LLM configurations (independent variables), and 
the accuracy of a fault diagnosis, the precision of 
maintenance predictions, and model performance 
metrics (dependent variables).

The data collection was a critical component 
of the experiment, ensuring that the models had 
the sufficient and relevant information to learn 
from and make accurate predictions. The data 
sources included the historical maintenance data, 
the real-time sensor data, and the synthetic data. 
The historical maintenance data, collected from 
aircraft maintenance logs, provided a record of 
previous faults, maintenance actions taken and 
the outcomes, offering a historical perspective 
essential for training the LLMs to recognize pat-
terns associated with various faults. The real-time 
sensor data from an aircraft, including the tem-
perature, pressure, and vibration readings, were 
streamed and recorded, crucial for testing the 
models’ ability to make real-time predictions and 
diagnose ongoing issues. Additionally, the syn-
thetic data generated by NASA was used to simu-
late various operational scenarios, augmenting 
the training dataset and providing more diverse 
examples for the models to learn from.

The experiment was executed in several phas-
es to test the hypothesis and to evaluate the per-
formance of the LLMs systematically. The first 
phase involved data pre-processing to ensure the 
consistency and quality. This included cleaning 
the data, handling missing values, normalizing 
the variables, and converting the raw data into 
suitable formats for model training. Following 
pre-processing, the LLMs were trained using the 
pre-processed data. The training process involved 

feeding the models with input data, adjusting 
their parameters and optimizing their perfor-
mance through iterative learning. Hyper param-
eters such as the learning rate, the batch size, and 
the number of epochs were fine-tuned to achieve 
optimal results.

The data was split into training, validation 
and test sets to evaluate the models’ performance. 
The validation set was used to tune the models 
during training, while the test set was used for 
the final evaluation. Performance metrics such 
as the accuracy, the precision, the recall, and the 
F1-score were calculated to assess the models’ ef-
fectiveness. The trained models were then used 
to detect anomalies in the real-time sensor data 
and predict maintenance needs. These predic-
tions were compared against actual maintenance 
records to determine the accuracy and reliability 
of the models.

Several analysis techniques were employed to 
interpret the results and draw meaningful conclu-
sions from the experiment. Statistical methods, 
including descriptive statistics and hypothesis 
testing, were used to analyze the data distributions 
and test the significance of the results. This helped 
to understand the underlying patterns and to vali-
date the experiment’s findings. Data visualization 
tools were utilized to represent the data and model 
predictions graphically. Visualizations such as his-
tograms, scatter plots and time-series graphs pro-
vided insights into the data trends and the model 
performance. Additionally, an error analysis was 
conducted to identify the types and sources of er-
rors in the models’ predictions. This involved ex-
amining false positives, false negatives and other 
misclassifications to understand the limitations 
and potential areas for the improvement.

The aim of the research was to provide the 
robust and reliable evidence on the efficacy of 
LLMs in the aircraft propulsion system diagnos-
tics and maintenance through a meticulous design 
and execution of the experiment. The insights 
gained from this study can inform future develop-
ments and applications of AI in the aviation main-
tenance [57-59]. 

Experiment procedure

Step 1: Data import - The experiment begins 
with importing and verifying the consistency of the 
data provided by the user. These data include vari-
ous formats such as Excel, PDF, Word, and TXT.
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Step 2: Data analysis - using tools like Py-
thon, Pandas, and NumPy, the data are analyzed 
for consistency and readiness for further process-
ing. This process includes segregating the data 
according to defined experimental scenarios.

Step 3: Creating characteristics with Matplot-
lib, characteristics for each scenario are created. 
These characteristics illustrate the relationships 
between various operational parameters, consid-
ering the boundaries for states “Operationally 
Fit”, “Fit but Not Operational” and “Not Fit and 
Not Operational”.

Step 4: Creating and analyzing correlations 
- the next step involves creating correlations 
between parameters, excluding cycles and time. 
These correlations aim to identify patterns and 
dependencies that may be crucial for assessing 
the technical condition of the propulsion systems.

Step 5: Technical condition assessment - in 
this step, the highest parameter values from each 
scenario are compared to the established thresh-
old values for the states “Fit but Not Operational” 
and “Not Fit and Not Operational”. If any param-
eter exceeds the threshold for “Fit but Not Opera-
tional” and/or “Not Fit and Not Operational”, the 
entire object is automatically classified according 
to the highest exceeded threshold. This analysis 
allows for assessing the overall technical condi-
tion of the propulsion systems.

Step 6: Verdict - a verdict regarding the tech-
nical condition of the propulsion systems is for-
mulated based on the collected data and conduct-
ed analyses. This verdict includes the classifica-
tion of each parameter and the overall assessment 
of the propulsion system’s condition.

Step 7: Conclusions - conclusions from the 
analysis are formulated finally. These conclusions 
summarize the key observations and recommen-
dations that can be used for further engineering 
actions and operational decisions.

By following this detailed procedure, the ex-
periment provides the comprehensive and sys-
tematic approach to assessing the effectiveness of 
LLMs in diagnosing and predicting maintenance 
needs for aircraft propulsion systems. The results 

provide valuable insights and practical recom-
mendations for improving maintenance strategies 
in aviation.

Datasets and verification process

In this chapter, the authors detail the datasets 
used in the experiment and the process of verifying 
their consistency and suitability for the analysis. 
Ensuring the quality and reliability of data is criti-
cal for the validity of the experiment’s outcomes. 
The datasets used in this experiment were diverse 
and comprehensive, encompassing the historical 
maintenance data, the real-time sensor data and 
the synthetic data. These datasets provided a rich 
foundation for training and testing the LLMs. The 
historical maintenance data were sourced from 
aircraft maintenance logs. These logs included re-
cords of previous faults, maintenance actions tak-
en and the outcomes of those actions. The histori-
cal data provided a valuable context for the LLMs 
to learn from past incidents and to recognize pat-
terns associated with various faults.

The real-time data were collected from vari-
ous sensors installed on an aircraft. These sensors 
measured critical parameters such as the tempera-
ture, pressure and vibration levels. The real-time 
data were essential for testing the models’ ability 
to make immediate predictions and to diagnose 
ongoing issues accurately.

The synthetic data generated by NASA were 
used to complement the real-world data. These 
data simulated a wide range of operational scenar-
ios, helping to broaden the training dataset and to 
introduce more variability. The synthetic data were 
particularly useful in creating scenarios that were 
not encountered in the historical data frequently.

The verification process was critical to ensure 
that the data used in the experiment were consis-
tent, accurate and suitable for the analysis. This 
process involved several steps to validate the in-
tegrity and readiness of the data for further pro-
cessing. The experiment began with importing 
and verifying the consistency of the data provided 
by the user. These data included various formats 

Table 3. Data summary
Data Type Source Description

Historical maintenance Maintenance logs Records of past faults, maintenance actions and outcomes

Real-time sensor data Aircraft sensors Measurements of the temperature, pressure and vibration levels collected in 
real-time

Synthetic data NASA simulations Simulated operational scenarios to introduce variability and broaden the 
training dataset
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such as Excel, PDF, Word, and TXT. The veri-
fication process involved checking for the com-
pleteness, removing duplicates and ensuring that 
all necessary parameters were present. Inconsis-
tencies and missing values were addressed using 
appropriate data cleaning techniques.

The data were analyzed for consistency and 
readiness for further processing using tools like 
Python, Pandas and NumPy. This process includ-
ed segregating the data according to defined ex-
perimental scenarios. Each scenario was carefully 
constructed to represent different operational con-
ditions and potential faults.

Characteristics for each scenario were created 
with Matplotlib. These characteristics illustrated 
the relationships between various operational pa-
rameters, considering the boundaries for states 
“Operationally Fit”, “Fit but Not Operational”, 
and “Not Fit and Not Operational”. This step was 
essential for visualizing the data and identifying 
any patterns or anomalies.

The next step involved creating correlations 
between parameters, excluding cycles and time. 
These correlations aimed to identify patterns and 
dependencies that might be crucial for assessing 
the technical condition of the propulsion systems. 
By analyzing these correlations, the study aimed 
to uncover insights that could improve the diag-
nostic accuracy.

In assessing the technical condition, the high-
est parameter values from each scenario were 
compared to the established threshold values for 
the states “Fit but Not Operational” and “Not Fit 
and Not Operational”. If any parameter exceeded 

the threshold for “Fit but Not Operational” and/
or “Not Fit and Not Operational”, the entire ob-
ject was automatically classified according to 
the highest exceeded threshold. This analysis al-
lowed for assessing the overall technical condi-
tion of the propulsion systems.

A verdict regarding the technical condition of 
the propulsion systems was formulated based on the 
collected data and conducted analyses. This verdict 
included the classification of each parameter and the 
overall assessment of the propulsion system’s con-
dition. Finally, conclusions from the analysis were 
formulated, summarizing the key observations and 
recommendations that could be used for further en-
gineering actions and operational decisions.

By following this detailed procedure, the ex-
periment ensured a comprehensive and systematic 
approach to evaluate the effectiveness of LLMs in 
diagnosing and predicting maintenance needs for 
aircraft propulsion systems. The results provided 
valuable insights and practical recommendations 
for improving maintenance strategies in aviation. 

RESULTS AND DISCUSSION

After applying the LLM model to the provid-
ed data, the model presented the following results: 
parameters Measured - Compressor #3.xlsx Af-
ter importing, the files will undergo consistency 
checks and then the analysis. The data has been 
successfully imported. The files have been ana-
lyzed correctly - based on them, I am ready to 
generate the necessary characteristics:

Table 4. Parameters table
Parameter Unit Unfit Faulty Parameter description

T02 °R 540.0 648.0 Temperature at a compressor inlet

T03 °R 720.0 864.0 Temperature at a compressor outlet

P02 MPa 0.860 1.20 Pressure at a compressor inlet

P03 MPa 2.236 3.12 Pressure at a compressor outlet

RMS m/s² 20.0 22.0 RMS of a compressor bearing

Table 5. Cycles data
Cycles T02 T03 P02 P03 RMS v Compression

1 493.110 732.381581 0.50 1.996400 19.992801 270.000000 3.992801

2 502.972200 747.119358 0.49 1.957299 19.994487 270.000000 3.994487

3 493.110 728.935759 0.52 2.042266 19.927435 267.975000 3.927435

4 478.316700 709.108968 0.51 2.023304 19.967263 269.984813 3.967263

5 488.326833 730.195094 0.48 1.962413 20.088360 271.334737 4.088360
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− Parameter T02 vs. Cycles 
− Parameter T03 vs. Cycles 
− Parameter P02 vs. Cycles 
− Parameter P03 vs. Cycles
− Parameter RMS vs. Cycles
− Parameter v vs. Cycles
− Parameter Compression vs. Cycles

Explanation

 • Parameters table:
− T02 and T03 represent the temperatures at the 

inlet and outlet of the compressor, respec-
tively, measured in degrees Rankine (°R).

− P02 and P03 represent the pressures at the 
inlet and outlet of the compressor, respec-
tively, measured in Megapascals (MPa).

− RMS is the root mean square value of the 
vibrations of the compressor bearing, mea-
sured in meters per second squared (m/s²) 
(Table 4).

 • Cycles data:
− Each row represents a measurement cycle.
− For each cycle, parameters such as the tem-

perature (T02, T03), the pressure (P02, P03), 
RMS, the velocity (v), and the compression 
ratio (Compression) are recorded (Table 5).

Process

 • Data import and consistency check: the data 
is imported and checked for the consistency.

 • Data analysis: after successful import and con-
sistency checks, the data is analyzed.

 • Characteristics Generation: Based on the ana-
lyzed data, the following characteristics will 
be generated:
− T02 vs. Cycles
− T03 vs. Cycles
− P02 vs. Cycles
− P03 vs. Cycles
− RMS vs. Cycles
− v vs. Cycles
− Compression vs. Cycles (Figures 6–13)

Proceeding to create the characteristics.
Comparison of parameter values to reference 

values:
 • T02 > Operational
 • T03 > Unfit
 • P02 > Operational
 • P03 > Faulty
 • RMS > Faulty
 • v > Operational
 • Compression > Faulty

The object is considered Faulty because the 
parameters T03, P03, RMS, and Compression ex-
ceed the values for the Faulty state.

Observed anomalies:
No anomalies observed. Proceeding to for-

mulate conclusions.
Conclusion 1: High values for the parameters 

T03, P03, RMS, and Compression indicate serious 
issues with the compressor’s operation, requiring 
the immediate intervention.

Conclusion 2: A strong correlation between 
the temperature parameters (T02 and T03) and pres-
sure parameters (P02 and P03) may indicate that 

Figure 6. Characteristic of T02 vs. Cycles generated by the LLM model
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Figure 8. Characteristic of P02 vs. Cycles generated by the LLM model

Figure 9. Characteristic of P03 vs. Cycles generated by the LLM model

Figure 7. Characteristic of T03 vs. Cycles generated by the LLM model
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Figure 10. Characteristic of RMS vs. Cycles generated by the LLM model

Figure 11. Characteristic of v vs. Cycles generated by the LLM model

Figure 12. Characteristic of Compression vs. Cycles generated by the LLM model
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these parameters depend on common operational 
or structural factors of the compressor.

Conclusion 3: Stable values for the parameters 
T02 and P02 suggest that the problems do not occur 
at the compressor’s inlet but may be related to pro-
cesses occurring within its interior or at the outlet.

Conclusion 4: A more thorough diagnostic of 
the compressor is necessary, particularly in the 
areas indicated by the parameters T03, P03, RMS, 
and Compression, to identify the causes of the 
faults and to plan appropriate corrective actions.

The experiment utilized synthetic diagnostic 
data prepared by NASA. Such data offers a range 
of advantages as well as certain limitations. The 
primary advantage lies in the ease of access and 
verification of the data, along with the ability to 
simulate specific conditions required for testing. 
This allows researchers to conduct controlled ex-
periments and analyze performance under ideal 
or hypothetical scenarios without the constraints 
of real-world variability.

However, one of the significant drawbacks of 
using synthetic data is the inability, or substantial 

difficulty, to replicate the noise and anomalies that 
naturally occur during the actual operation of the 
equipment. These real-world irregularities, often 
caused by wear, environmental factors, or unpre-
dictable operational conditions, are critical for 
comprehensive diagnostics. Consequently, synthet-
ic data may not fully capture the complexity and 
variability of real-world systems, which can limit 
the accuracy of predictions and the robustness of 
diagnostic models when applied to live scenarios.

CONCLUSIONS

After analyzing the results provided by the 
model, it is evident that LLMs demonstrate sig-
nificant capabilities in handling and processing 
the complex matrix data. The model transformed 
data into graphical representations efficiently and 
derived linguistically and substantively accurate 
conclusions. Although the drawn conclusions 
were not at an advanced technical level, it is im-
portant to note that the model operated without 

Figure 13. Characteristic of T02 vs. Cycles generated by the LLM model
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additional domain-specific information related 
to the turbine engine diagnostics and operations, 
relying solely on its embedded knowledge base.

The conclusions indicate that LLMs can pro-
cess and analyze data effectively even in special-
ized fields where they have not been specifically 
trained. The model’s ability to generate correct 
interpretations based on a foundational database 
suggests a strong potential for broader applications 
in various technical domains. Moreover, the model 
demonstrated an impressive capacity for self-op-
timization and error correction during the experi-
ment. This adaptive behaviour reduced the time re-
quired for research and analysis significantly. The 
model identified and rectified its own errors in real-
time, showcasing its utility in streamlining and en-
hancing the efficiency of analytical processes.

In summary, LLMs are very promising in the 
field of the data analysis, capable in processing 
of complex datasets, in generating visual repre-
sentations, and in providing accurate conclusions. 
Their potential to adapt and optimize their func-
tioning autonomously underscores their value in 
both academic and practical applications. Future 
studies and researches could involve integrating 
more specialized knowledge into LLMs to en-
hance their capability for the advanced technical 
analysis and diagnostics.
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