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INTRODUCTION

The reliability of rotating machinery plays a 
pivotal role in numerous industrial applications, 
as it has a direct impact on operational efficiency, 
safety, and maintenance expenses. In any ma-
chinery, components such as bearings and gears 
endure substantial wear and tear, alongside the 
risk of operational failures [1–4]. These critical 
elements function under challenging conditions, 
where variables such as friction, fluctuations 
in temperature, and load stresses may contrib-
ute to their gradual deterioration over time. The 

incessant operational cycle of machinery ex-
erts significant strain on these parts, culminat-
ing in progressive degradation. Therefore, it is 
imperative to routinely monitor and assess their 
performance. The early identification of wear or 
potential faults can avert catastrophic failures, 
thereby ensuring efficient operation and extend-
ing the lifespan of the equipment. Appropriate 
maintenance strategies should be employed to 
mitigate these risks and preserve the integrity of 
these essential components. State-of-the-art ap-
proach, including the IELM in conjunction with 
the HOA, offer innovative strategies to enhance 
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the predictive accuracy of reliability assessments. 
By incorporating these advanced techniques, we 
can substantially elevate our capacity to detect 
potential failures and optimise maintenance ap-
proaches, thereby ensuring the durability and per-
formance of rotating machinery across various 
operational settings.

The traditional approach to fault diagnosis 
predominantly utilises analytical redundancy and 
gradient-based learning techniques, including 
feedforward neural networks that modify their 
parameters through iterative methods. This strat-
egy frequently results in prolonged training times 
and can give rise to overfitting due to the intri-
cacy of the models used. Moreover, conventional 
feature extraction techniques often necessitate 
specialised knowledge, thereby constraining their 
applicability in various diagnostic investigations 
[5, 6]. Such methods typically encounter diffi-
culties associated with limited data and imbal-
anced datasets, especially in industrial contexts 
where certain fault states are under-represented 
[7]. Additionally, traditional feature selection 
methodologies may produce larger subsets of 
features that are less relevant, thereby diminish-
ing diagnostic efficacy [8]. The shortcomings 
of these conventional approaches have led to 
an increasing enhancement or replacement of 
methods by data-driven strategies that leverage 
artificial intelligence to boost efficiency. This 
has spurred the investigation of more effective 
alternatives, such as the ELM, which provides 
rapid learning and enhanced generalisation ca-
pabilities, thus addressing the deficiencies inher-
ent in conventional techniques [9, 10].

The ELM method, introduced by Huang et al. 
in 2006, has attracted significant attention from 
various researchers and practitioners [11]. This 
interest can be attributed to its ability to resolve 
shortcomings associated with traditional ma-
chine learning algorithms, such as artificial neu-
ral networks (ANN) and support vector machines 
(SVM). The ELM method has been thoroughly in-
vestigated and applied across numerous domains, 
including medicine [12], structural engineering 
[13], geology [14], and rotating machinery [15]. 
Nevertheless, the performance and stability of the 
ELM approach can suffer when its three critical 
parameters—input weights, biases, and the num-
ber of hidden neurons—are inaccurately specified. 
Consequently, a range of optimisation techniques 
have been integrated into ELM to enhance its sta-
bility and classification precision. For instance, 

Meng et al. and Guo et al. employed genetic al-
gorithms (GA) to optimise ELM for bearing diag-
nostics [16, 17]. Isham et al. optimised the ELM 
method through different studies, using the geo-
metric mean optimiser (GMO) and the whale op-
timisation algorithm (WOA) for diagnosing gears 
and bearings [18, 19]. Wang et al. introduced an 
ELM framework enhanced by improved particle 
swarm optimisation (PSO) for bearing diagnos-
tics [20]. Similarly, Sun et al. utilised the GWO to 
optimise ELM parameters for machinery fault de-
tection based on vibration signals [21]. Research 
into ELM parameter optimisation remains ongo-
ing, with numerous new optimisation algorithms 
and meta-heuristic methods being incorporated to 
evaluate their effectiveness.

Consequently, this study introduces a novel 
and effective optimisation technique for determin-
ing the optimal parameters of the ELM through a 
recently developed meta-heuristic method referred 
to as the HOA, also identified as IELM-HOA. The 
HOA is a novel meta-heuristic algorithm inspired 
by the hunting behaviour of hippos in their natu-
ral habitat. Designed for efficiency and robustness, 
HOA aims to optimise various parameters in com-
plex problems by mimicking the strategies em-
ployed by these animals during foraging. Research 
on the HOA method continues to be limited, as it 
is a relatively new technique. This study seeks to 
employ the HOA method to identify and determine 
the optimal parameters for the ELM, with the aim 
of enhancing its performance and improving the 
consistency of classification outcomes. The pro-
posed Integrated ELM-HOA (IELM-HOA) will 
be assessed using two distinct datasets concerning 
bearings, which will be thoroughly presented and 
analysed within this paper. Therefore, the aims of 
this paper are: 1) to make a substantial contribution 
to the field of fault diagnosis by introducing an in-
novative approach to the reliability assessment of 
rotating machinery, referred to as IELM-HOA, and 
2) to further the discipline of machine learning by 
refining the conventional ELM method to achieve 
increased stability and efficacy.

This paper is structured as follows. First, a 
brief overview of the Hippopotamus optimisa-
tion algorithm will be provided. Next, the pro-
posed IELM-HOA will be detailed, followed by 
a comprehensive description of the experimen-
tal setup and results. Finally, a discussion of the 
findings will be presented, and the paper will 
conclude with a summary and suggestions for 
future research.
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THEORETICAL BACKGROUND

Hippopotamus optimization algorithm

The Hippopotamus optimization algorithm 
is a novel approach inspired by the behavior 
and habitat of hippopotamuses. This algorithm 
is designed to address optimization problems by 
simulating the natural movement and foraging 
behaviors of these animals in their ecosystems. 
HOA utilizes a population-based method where 
potential solutions are represented as a group 
of hippos. The algorithm’s initialization phase 
involves randomly distributing these hippos in 
the solution space, allowing them to explore 
various regions. Throughout the optimization 
process, hippos interact with one another, shar-
ing information about their respective positions 
and the quality of their solutions. the initializa-
tion stage of the HO involves generating ran-
domized initial solutions. During this phase, 
the vector of decision variables is formulated 
using the subsequent formula presented as Eq. 
1, where Xi  represent the position of the candi-
date solution, r is a random number in the range 
of 0 to 1, N is a population size, and m is a prob-
lem dimension.
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 (1)

The algorithm incorporates various strategies 
such as migration and local search, which en-
hance the search capabilities by allowing hippos 
to move toward better solutions while maintain-
ing diversity within the population. This balance 
between exploration and exploitation is crucial 
for avoiding local optima and improving over-
all solution quality. Phase 1 for exploration, the 
dominant male hippopotamuses are determined 
through an objective function value iteration pro-
cess, ensuring territory and herd protection, while 
expelled males must either attract females or 
compete for dominance to establish their status. 
Equation 2 mathematically represents the spatial 
positioning of male hippopotamus individuals 
within the herd in a lake or pond environment, 
where Xi

Mhippo
 is a male hippopotamus position, 

Dhippo is the dominant hippopotamus position.
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Equation 3 quantify the positioning of female 
or immature hippopotamuses within the herd, 

indicating that a T value exceeding 0.6 signifies a 
notable separation from their mothers, typically re-
sulting from curiosity-driven behaviour. Equation 
4 illustrate the positional adjustments of both male 
and female, as well as juvenile, hippopotamuses 
within the herd, where Fi is an objective function.
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Phase 2 for exploration where hippopotamus-
es protect themselves from predators. Equation 5 
represent the predator’s position in search space 
and Eq. 6 is a distance between hippopotamus 
with the predator respectively.
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2 ] (9) 

 
𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡
2  (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡

2  (11) 

 

 (5)

 

 
𝑋𝑋𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 
𝑖𝑖 = 1,2 … , 𝑁𝑁, 𝑗𝑗 = 1,2, … , 𝑚𝑚 

(1) 

 
𝑋𝑋𝑖𝑖

𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖
𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼1𝑥𝑥𝑖𝑖𝑖𝑖), 

𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … , [𝑁𝑁
2]  𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, … 𝑚𝑚 

(2) 

 
𝑋𝑋𝑖𝑖

𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑋𝑋𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= {𝑥𝑥𝑖𝑖𝑖𝑖 + ℎ1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼2𝑀𝑀𝐺𝐺𝑖𝑖)𝑇𝑇 > 0.6
𝛯𝛯 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒

 

 

(3) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(4) 

. 
𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟: 𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 = 

= 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟8. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 𝑗𝑗 = 1,2, . . . , 𝑚𝑚 (5) 

�⃗⃗⃗�𝐷 = |𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖| (6) 

 
𝑙𝑙𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑗𝑗
𝑡𝑡 , 𝑢𝑢𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 

=
𝑢𝑢𝑙𝑙𝑖𝑖

𝑃𝑃 , 𝑃𝑃 = 1,2, … , 𝜏𝜏 
 

(7) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(8) 

 
. 

𝑂𝑂𝑙𝑙𝑗𝑗. 𝐹𝐹𝑢𝑢𝑎𝑎𝐹𝐹𝑃𝑃𝑖𝑖𝑓𝑓𝑎𝑎 =  100 − 

− [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%) + 𝑇𝑇𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%)
2 ] (9) 

 
𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡
2  (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡

2  (11) 

 

 (6)

Phase 3 pertains to the exploitation stage, 
characterized by the hippopotamus evading its 
predator. In response to encountering a group of 
predators or being unable to effectively defend 
itself, a hippopotamus typically seeks refuge in 
nearby lakes or ponds, where it can evade threats 
from spotted lions and hyenas, thereby improving 
its local search capabilities as reflected in Phase 
Three of the HO results. These presented in Equa-
tions 7 and 8 respectively.

 

 
𝑋𝑋𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 
𝑖𝑖 = 1,2 … , 𝑁𝑁, 𝑗𝑗 = 1,2, … , 𝑚𝑚 

(1) 

 
𝑋𝑋𝑖𝑖

𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖
𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼1𝑥𝑥𝑖𝑖𝑖𝑖), 

𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … , [𝑁𝑁
2]  𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, … 𝑚𝑚 

(2) 

 
𝑋𝑋𝑖𝑖

𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑋𝑋𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= {𝑥𝑥𝑖𝑖𝑖𝑖 + ℎ1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼2𝑀𝑀𝐺𝐺𝑖𝑖)𝑇𝑇 > 0.6
𝛯𝛯 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒

 

 

(3) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(4) 

. 
𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟: 𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 = 

= 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟8. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 𝑗𝑗 = 1,2, . . . , 𝑚𝑚 (5) 

�⃗⃗⃗�𝐷 = |𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖| (6) 

 
𝑙𝑙𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑗𝑗
𝑡𝑡 , 𝑢𝑢𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 

=
𝑢𝑢𝑙𝑙𝑖𝑖

𝑃𝑃 , 𝑃𝑃 = 1,2, … , 𝜏𝜏 
 

(7) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(8) 

 
. 

𝑂𝑂𝑙𝑙𝑗𝑗. 𝐹𝐹𝑢𝑢𝑎𝑎𝐹𝐹𝑃𝑃𝑖𝑖𝑓𝑓𝑎𝑎 =  100 − 

− [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%) + 𝑇𝑇𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%)
2 ] (9) 

 
𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡
2  (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡

2  (11) 

 

 (7)

 

 
𝑋𝑋𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 
𝑖𝑖 = 1,2 … , 𝑁𝑁, 𝑗𝑗 = 1,2, … , 𝑚𝑚 

(1) 

 
𝑋𝑋𝑖𝑖

𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖
𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼1𝑥𝑥𝑖𝑖𝑖𝑖), 

𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … , [𝑁𝑁
2]  𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, … 𝑚𝑚 

(2) 

 
𝑋𝑋𝑖𝑖

𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑋𝑋𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= {𝑥𝑥𝑖𝑖𝑖𝑖 + ℎ1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼2𝑀𝑀𝐺𝐺𝑖𝑖)𝑇𝑇 > 0.6
𝛯𝛯 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒

 

 

(3) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(4) 

. 
𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟: 𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 = 

= 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟8. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 𝑗𝑗 = 1,2, . . . , 𝑚𝑚 (5) 

�⃗⃗⃗�𝐷 = |𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖| (6) 

 
𝑙𝑙𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑗𝑗
𝑡𝑡 , 𝑢𝑢𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 

=
𝑢𝑢𝑙𝑙𝑖𝑖

𝑃𝑃 , 𝑃𝑃 = 1,2, … , 𝜏𝜏 
 

(7) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖
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In summary, the HOA combines biological 
inspiration with computational techniques to ef-
ficiently tackle complex optimization challenges. 
Its unique approach provides a fresh perspective 
in the field of optimization algorithms. The flow-
chart of the HOA algorithm presented in Figure 1.

The proposed IELM-HOA algorithm

Extreme learning machine represents a 
straightforward yet highly effective learn-
ing methodology specifically designed for 
single-hidden layer feedforward neural net-
works (SLFNs), thereby offering a practical 
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and efficient alternative to traditional artificial 
neural networks (ANNs) as well as support 
vector machines (SVMs). Within the conven-
tional ELM framework, the input weights and 
hidden layer biases are randomly assigned val-
ues within a specified range of 0 to 1 during 
the computational process, which can influ-
ence overall performance. Moreover, the num-
ber of hidden neurons is generally determined 
in relation to the number of input features, as 
has been established by various researchers in 
the field. Unfortunately, these predetermined 
sets of parameters have often led to notable 
performance degradation and inconsistencies 
in results. To address these challenges and 
enhance the overall performance of the ELM 
method, the HOA is employed to systematical-
ly optimize the values that will be utilized for 

input weights, biases, and the configuration of 
hidden neurons. The detailed flowchart of the 
proposed methodological approach is expedi-
ently presented in Figure 2.

This study utilizes two distinct sets of bear-
ing datasets, namely the CWRU bearing datas-
ets, which are sourced from online repositories, 
and experimental datasets. These datasets were 
organized into signal samples, from which sta-
tistical features were subsequently extracted 
from each sample. The extracted features for 
each signal sample were then arranged into two 
configurations intended for the optimization and 
classification processes. Equation 9 details the 
objective function for the HOA.
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Figure 1. HOA flowchart
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Figure 2. IELM-HOA flowchart

Figure 3. (a) CWRU datasets and (b) experimental datasets

METHODOLOGY

This study employs two categories of vi-
bration datasets: (1) the Case Western Reserve 
University (CWRU) bearing datasets, and (2) 

experimental bearing datasets. The CWRU bear-
ing datasets are publicly available and consist of 
four distinct conditions of ball bearing vibra-
tions: healthy, ball fault, inner race fault, and 
outer race fault, as illustrated in Figure 3a. The 
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motor operates at a speed of 1797 RPM with a 
sampling frequency of 12 kHz, and the fault size 
is approximately 0.040 inches (around 1.0 mm). 
This study used an experimental dataset that in-
cluded four distinct conditions: healthy, ball fault, 
inner race fault, and outer race fault. The test rig 
utilized was the SpectraQuest Machinery Fault 
and Rotor Dynamics Simulator (MFS-RDS), with 
the complete experimental setup and configura-
tion, including sensors and analyzer, illustrated in 
Figure 3b. The experiment was conducted with 
the motor operating at a speed of 1800 RPM, a 
sampling frequency of 25.6 kHz, and a fault size 
of approximately 1.5 mm. The complete experi-
mental setup is shown in Figure 4, respectively.

Then, all the vibration signals from each da-
taset are sampled according to their revolution 
per second. The eight time-domain statistical 
features listed in Table 1 were then extracted 
from each signal sample, where 𝑥(𝑖) is a time-se-
ries signal. Table 2 summarizes the distribution 
of the signal sample data for training and testing. 
Configuration D1 and D3 are specifically for 
fault classification and diagnosis using CWRU 
datasets and experimental datasets, respectively. 
The configurations D2 and D4 are specifically 
for parameter optimization purposes. This is due 
to the objective function for the HOA algorithm, 
which reflects the accuracy of the ELM method 
as presented in Equation 9.

Figure 4. Experimental setup

Table 1. Vibration time-domain statistical features
Statistical feature Equation Statistical feature Equation

Range max(xi) –min(xi) Crest factor

RMS Shape factor

Skewness Impulse factor

Kurtosis Margin factor
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RESULS

Parameter optimization for ELM

The ELM parameters, which are input 
weight, bias, and hidden neurons, will be op-
timized in this section based on the HOA algo-
rithm. Signal configuration presented in Table 
2, D2 (CWRU datasets) and D4 (experimental 
dataset) are used for this purpose. In order to 
run the HOA algorithm, the initial information 
is required as described in Table 3. The problem 
dimension reflects the numbers of parameters to 
be optimized. The upper and lower limit sets for 
input weight and bias are 0 to 1, and the upper 
and lower limit sets for the number of hidden 
neurons are 2 to 200. The optimizer will assign 
default values to other parameters as required. 
The HOA optimization result had been compared 
with commonly used optimizers, which are ge-
netic algorithm (GA), particle swarm optimiza-
tion (PSO), and whale optimization algorithm 
(WOA). Figure 5 shows the optimization results 
for CWRU datasets using the D2 configuration. 
The GA optimizer was able to find the minimum 
solution at 32 iterations, PSO optimizer found 
the minimum solution at 31 iterations, WOA 

Table 2. Signal sample data distribution for training and testing
Configuration Training sample Testing sample Condition Label

D1

120 × 8
120 × 8
120 × 8
120 × 8

30 × 8
30 × 8
30 × 8
30 × 8

Healthy
Inner race fault
Outer race fault

Ball fault

0.2
0.4
0.6
0.8

D2

60 × 8
60 × 8
60 × 8
60 × 8

15 × 8
15 × 8
15 × 8
15 × 8

Healthy
Inner race fault
Outer race fault

Ball fault

0.2
0.4
0.6
0.8

D3

160 × 8
160 × 8
160 × 8
160 × 8

40 × 8
40 × 8
40 × 8
40 × 8

Healthy
Inner race fault
Outer race fault

Ball fault

0.2
0.4
0.6
0.8

D4

80 × 8
80 × 8
80 × 8
80 × 8

20 × 8
20 × 8
20 × 8
20 × 8

Healthy
Inner race fault
Outer race fault

Ball fault

0.2
0.4
0.6
0.8

optimizer found the minimum solution at 23 it-
erations, and HOA optimizer found the solution 
at 26 iterations. The HOA optimizer provides 
competitive performance with the WOA opti-
mizer in finding the minimum solution for the 
CWRU dataset. The same optimizer parameter 
value described in Table 3 is used in order to 
find the minimum solution for experimental da-
tasets using configuration D4 (see Table 2). The 
result is shown in Figure 6.

Based on the result, the HOA optimizer out-
performed the other optimizer by finding the 
minimum solution at 18 iterations, while GA 
found the minimum solution at 59 iterations, 
PSO found the minimum solution at 42 itera-
tions, and WOA found the minimum solution 
at 31 iterations. The optimized ELM parameter 
values were then extracted from the optimizer 
accordingly and summarized in Table 4. All 
these values were then set in the ELM and run 
for fault classification. For conversion from inte-
ger into matrix for input weight and bias, Equa-
tions 10 and 11 were used.
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𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡
2  (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡

2  (11) 

 

 (10)

 

 
𝑋𝑋𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 
𝑖𝑖 = 1,2 … , 𝑁𝑁, 𝑗𝑗 = 1,2, … , 𝑚𝑚 

(1) 

 
𝑋𝑋𝑖𝑖

𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑥𝑥𝑖𝑖𝑖𝑖
𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼1𝑥𝑥𝑖𝑖𝑖𝑖), 

𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2, … , [𝑁𝑁
2]  𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 1,2, … 𝑚𝑚 

(2) 

 
𝑋𝑋𝑖𝑖

𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑋𝑋𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= {𝑥𝑥𝑖𝑖𝑖𝑖 + ℎ1. (𝐷𝐷ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐼𝐼2𝑀𝑀𝐺𝐺𝑖𝑖)𝑇𝑇 > 0.6
𝛯𝛯 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒

 

 

(3) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(4) 

. 
𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟: 𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 = 

= 𝑙𝑙𝑙𝑙𝑖𝑖 + 𝑟𝑟8. (𝑢𝑢𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑖𝑖), 𝑗𝑗 = 1,2, . . . , 𝑚𝑚 (5) 

�⃗⃗⃗�𝐷 = |𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑃𝑃𝑓𝑓𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖| (6) 

 
𝑙𝑙𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑗𝑗
𝑡𝑡 , 𝑢𝑢𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = 

=
𝑢𝑢𝑙𝑙𝑖𝑖

𝑃𝑃 , 𝑃𝑃 = 1,2, … , 𝜏𝜏 
 

(7) 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝐹𝐹𝑖𝑖

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 < 𝐹𝐹𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 ≥ 𝐹𝐹𝑖𝑖

 
(8) 

 
. 

𝑂𝑂𝑙𝑙𝑗𝑗. 𝐹𝐹𝑢𝑢𝑎𝑎𝐹𝐹𝑃𝑃𝑖𝑖𝑓𝑓𝑎𝑎 =  100 − 

− [𝑇𝑇𝑟𝑟𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%) + 𝑇𝑇𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑎𝑎𝑇𝑇 𝐴𝐴𝐹𝐹𝐹𝐹. (%)
2 ] (9) 

 
𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =

𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡
2  (10) 

𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡 × 2 𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 =
𝑙𝑙𝑖𝑖𝑖𝑖𝑡𝑡

2  (11) 

 

 (11)

Fault classification result

This section employs the proposed IELM-
HOA for fault classification purposes. The re-
sult will also be compared with conventional-
ELM methods and recent methods, which are 
ELM-GA, ELM-PSO, and ELM-WOA, ac-
cordingly. All the optimized value in Table 

Table 3. HOA parameter value
Description Value

Number of search agent 500
Problem dimension 3

Upper limit [1 1 200]

Lower limit [0 0 2]

Number of iterations 100
Others Deafult values
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Figure 6. Experimental optimization result for GA, PSO, WOA and HOA

Figure 5. CWRU optimization result for GA, PSO, WOA and HOA

7 and 8 present the results for CWRU datasets 
and experimental datasets. Based on the result, 
the classification results for IELM-HOA show 

4 and configurations D1 and D3 were used in 
the IELM-HOA setup. We ran all the diagnos-
tic approaches in this study 30 times. Figures 
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competitive performance with other optimized-
ELM approaches using GA, PSO, and WOA. As 
compared with conventional ELM, it provides 

almost 5–10% better classification performance. 
This result was expected, as the CWRU datas-
ets considered clean signals, as the differences 

Table 4. The optimized ELM parameters values
Datasets Optimizer Input weight Bias No. of hidden neurons

CWRU

GA 0.98 0.28 183

PSO 0.42 0.51 106

WOA 0.10 0.41 85

HO 0.80 0.71 194

Experiment

GA 0.94 0.50 188

PSO 0.50 0.10 159

WOA 0.50 0.61 197

HO 0.66 0.45 195

Figure 7. Classification accuracy for different diagnostic approaches for CWRU datasets

Figure 8. Classification accuracy for different diagnostic approaches for experimental datasets
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Table 5. Classification accuracy for different diagnosis approaches for CWRU datasets

Run
Approaches

A_Tr A_Te B_Tr B_Te C_Tr C_Te D_Tr D_Te E_Tr E_Te

1 88.8 81.0 100 100 100 100 100 100 100 100

2 87.4 82.0 100 100 100 100 100 100 100 100

3 86.8 81.0 100 100 100 100 100 100 100 100

4 89.8 77.0 100 100 100 100 100 100 100 100

5 90.0 82.0 100 100 100 100 100 100 100 100

6 90.6 84.0 100 100 100 100 100 100 100 100

7 90.0 84.0 100 100 100 100 100 100 100 100

8 86.8 82.0 100 100 100 100 100 100 100 100

9 89.2 83.0 100 100 100 100 100 100 100 100

10 90.2 84.0 100 100 100 100 100 100 100 100

11 84.4 79.0 100 100 100 100 100 100 100 100

12 80.4 78.0 100 100 100 100 100 100 100 100

13 89.0 79.0 100 100 100 100 100 100 100 100

14 90.2 83.0 100 99.2 100 100 100 100 100 100

15 89.6 81.0 100 100 100 100 100 100 100 100

16 89.0 81.0 100 100 100 100 100 100 100 100

17 82.6 74.0 100 100 100 100 100 100 100 100

18 89.4 81.0 100 100 100 100 100 100 100 100

19 91.0 81.0 100 100 100 100 100 100 100 100

20 86.4 83.0 100 100 100 100 100 100 100 100

21 90.2 86.0 100 100 100 100 100 100 100 100

22 88.8 78.0 100 100 100 100 100 100 100 100

23 87.8 76.0 100 100 100 100 100 100 100 100

24 86.4 83.0 100 100 100 100 100 100 100 100

25 91.6 84.0 100 100 100 100 100 100 100 100

26 86.4 83.0 100 100 100 100 100 100 100 100

27 88.2 77.0 100 100 100 100 100 100 100 100

28 88.6 80.0 100 99.2 100 100 100 100 100 100

29 87.6 80.0 100 100 100 100 100 100 100 100

30 90.6 83.0 100 100 100 99.2 100 100 100 100

Average 88.3 81.0 100 99 100 99 100 100 100 100

Overall 84.7 99.5 99.5 100 100

between signals seem significant, which en-
able the classification to go from nearly 99% to 
100% classification accuracy for training, test-
ing, and overall using the ELM-GA, ELM-PSO, 
ELM-WOA, and IELM-HOA approaches.

For experimental datasets, IELM-HOA 
is also able to compete with other optimized 
ELM approaches and provide significant im-
provement as compared with conventional 
ELM with 15–20% better classification perfor-
mance. For IELM-HOA compared with ELM-
GA, ELM-PSO, and ELM-WOA, the proposed 
method is able to provide around 1–2% better 

performance. Figure 9, Table 5, and Table 6 
present the details of accuracy recorded for each 
approach for both datasets, where A represents 
conventional-ELM, B represents ELM-GA, 
C represents ELM-PSO, D represents ELM-
WOA, and E represents IELM-HOA accord-
ingly. The terms Tr and Te represent the training 
and testing accordingly.

Overall, the CWRU datasets did not show 
any significant difference in terms of classifica-
tion accuracy performance between ELM-GA, 
ELM-PSO, ELM-WOA, and IELM-HOA, as 
all of these approaches provided almost 100% 
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Table 6. Classification accuracy for different diagnosis approaches for experimental datasets

Run
Approaches

A_Tr A_Te B_Tr B_Te C_Tr C_Te D_Tr D_Te E_Tr E_Te

1 88.8 81.0 95.6 92.5 97.5 93.1 98.1 93.1 96.4 92.5

2 87.4 82.0 97.5 93.1 97.8 93.1 97.7 93.1 97.7 93.8

3 86.8 81.0 97.3 93.8 97.5 92.5 98.4 95.0 97.5 93.1

4 89.8 77.0 96.9 93.1 98.0 93.8 97.7 94.4 97.8 93.1

5 90.0 82.0 96.6 93.1 97.8 92.5 98.0 94.4 97.3 93.1

6 90.6 84.0 97.2 93.1 97.7 92.5 98.1 95.0 98.3 92.5

7 90.0 84.0 97.0 91.9 97.3 91.9 98.0 93.1 97.0 92.5

8 86.8 82.0 96.6 94.4 97.8 93.1 98.1 93.1 97.8 93.1

9 89.2 83.0 96.9 93.1 97.7 94.4 98.1 94.4 97.7 92.5

10 90.2 84.0 97.2 93.1 97.7 92.5 97.8 92.5 97.8 93.8

11 84.4 79.0 97.2 93.8 97.5 93.8 98.0 93.1 98.0 95.0

12 80.4 78.0 96.7 93.1 97.3 94.4 98.3 95.6 97.7 93.8

13 89.0 79.0 97.2 93.1 97.3 92.5 98.1 92.5 97.8 93.8

14 90.2 83.0 97.3 93.1 97.8 92.5 97.8 93.8 97.5 93.1

15 89.6 81.0 97.3 95.0 97.5 93.8 97.8 93.8 97.3 93.1

16 89.0 81.0 97.2 92.5 98.1 94.4 97.8 93.1 98.0 94.4

17 82.6 74.0 97.3 91.9 97.2 94.4 98.3 92.5 97.7 94.4

18 89.4 81.0 97.7 93.1 97.3 93.1 98.4 93.1 97.2 93.8

19 91.0 81.0 97.0 93.1 97.7 94.4 98.0 96.3 97.0 94.4

20 86.4 83.0 97.2 93.1 97.2 94.4 98.3 94.4 97.5 91.9

21 90.2 86.0 97.3 93.1 97.7 92.5 97.5 92.5 98.7 94.4

22 88.8 78.0 97.2 91.9 97.8 93.1 98.4 95.0 98.0 93.8

23 87.8 76.0 97.5 92.5 97.3 93.8 98.3 93.1 97.5 95.0

24 86.4 83.0 97.0 93. 97.7 93.8 97.5 92.5 97.8 94.4

25 91.6 84.0 97.3 93.8 97.8 93.8 98.1 93.1 96.9 93.8

26 86.4 83.0 97.7 91.9 97.5 93.8 97.7 93.1 97.3 94.4

27 88.2 77.0 97.5 93.8 97.7 93.1 98.0 93.1 97.0 94.4

28 88.6 80.0 97.3 94.4 97.8 94.4 97.8 93.1 97.3 93.8

29 87.6 80.0 97.0 93.8 98.0 93.8 97.8 93.1 97.7 93.8

30 90.6 83.0 97.2 93.1 97.8 95.0 98.0 93.1 97.0 93.8

Average 88.3 81.0 97.2 93.2 97.6 93.5 98.0 93.6 98.5 93.6

Overall 84.7 95.2 95.6 95.8 96.1

classification accuracy, but this approach shows 
significant improvement compared to conven-
tional-ELM with an overall improvement in 
classification accuracy of 15 %. The experimen-
tal datasets also did not show any significant dif-
ference between ELM-GA, ELM-PSO, ELM-
WOA, and IELM-HOA, but these approaches 
significantly outperform the conventional ELM 
with an overall improvement in classification 
accuracy of 10 %. Compared to other diagno-
sis approaches, the IELM-HOA achieved the 
highest classification accuracy of 96.1%. Based 
on these results, the optimization of the ELM 

parameters is crucial to enhance and improve 
the overall performance of the ELM method

CONCLUSIONS

This paper presents a novel approach to ma-
chine reliability assessment, utilizing enhanced 
ELM, which is founded on the HOA method. 
The HOA method was used to select the param-
eters for the ELM method, particularly the input 
weight, bias, and number of hidden neurons. A 
simplified machinery equipment was used for 
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Figure 9. Overall comparison of the diagnosis approaches

experiments, and the proposed method was also 
tested with online CWRU bearing datasets. Here 
is a summary of the study’s findings:
 • The HOA method proved its capability to op-

timize the ELM method by selecting an accu-
rate input weight, bias, and hidden neurons.

 • The proposed IELM-HOA provides an ef-
fective and efficient rotating machinery fault 
diagnosis approach as compared with con-
ventional-ELM and competitive performance 
with approximately 5–15% better classifica-
tion performance.

We could test the proposed IELM-HOA on 
various components, including blades and shafts, 
in future work. We will also test our proposed 
method’s capability and suitability to be imple-
mented in transfer learning studies.
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