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ABSTRACT
This paper introduces a new low-computational method for approximating the skew-symmetric and 
skew-Hermitian matrix exponential. Our method belongs to the splitting methods, which we modify and 
combine with new low-cost analytic formula for sparse skew-symmetric and skew-Hermitian matrix ex-
ponential, similar to the Euler-Rodrigues formula, well known for the skew-symmetric matrices in  ℝ3. 
Our new approximation procedure for skew-symmetric (skew-Hertmitian) matrix exponential that we 
use is computationally very cheap, which ensures high speed of algorithms using this operation in their 
structure. To evaluate this approximation method we used it for the optimization problem of Indepen-
dent Component Analysis (ICA) type. The results are compared to other known ICA algorithms such as 
well known Infomax and JADE. The average increase in convergence speed in the studied range of the 
number of source images was approximately 7% compared to the second fastest ICA algorithm using the 
standard and universal matrix exponential formula. High quality of separation was also obtained, com-
parable to well-known ICA algorithms such as Infomax or JADE. Obtained results confirm the effective-
ness of the proposed method in technical applications and indicate potential use in on-line applications. 
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INTRODUCTION

Consider the ordinary differential equation (ODE) with constant coefficient and the standard Cauchy 
problem 

�̇�𝑥 = 𝐴𝐴𝑥𝑥, 𝑥𝑥(0) = 𝑥𝑥0 ∈ 𝔲𝔲(𝑛𝑛) (1) 

where: 𝐴𝐴 ∈ 𝔲𝔲(𝑛𝑛) is a given, fixed, complex skew-Hermitian matrix. A solution vector 𝑥𝑥(𝑡𝑡) is given by 
𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥0, where 𝑒𝑒𝑡𝑡𝑡𝑡 is an element of unitary group U(𝑛𝑛) and can be expressed by the convergent 
power series. 

𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐼𝐼 + 𝑡𝑡𝐴𝐴 + 1
2 𝑡𝑡

2𝐴𝐴2 + 1
6 𝑡𝑡

3𝐴𝐴3 +⋯ ∈ U(𝑛𝑛) (2) 

In a real case, 𝑦𝑦0, 𝐴𝐴 ∈ 𝔰𝔰𝔰𝔰(𝑛𝑛) are skew-symmetric matrices and 𝑒𝑒𝑡𝑡𝑡𝑡 is a special orthogonal matrix. 
This type of ordinary differential equation and the related exponentiation of skew-Hermitian matrix arise 
in many areas of sciences, engineering or control theory. Problems related with dynamical systems and 
rigid body dynamics as, for example, robotics can be modeled by this type of differential equations. 
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In [1] authors develop the basic theory and applications of mechanics with an emphasis on the role of 
symmetry in a context of dynamical systems and the use of geometric methods and new applications to 
integrable and chaotic systems, control systems, stability and bifurcation. In [2] the general concept of 
Be´zier curves to curved spaces is presented, and this generalization is illustrated with an application in 
kinematics problem of trajectory generation or motion interpolation for a moving rigid body. In [3] authors 
present an algorithm for generating a twice-differentiable curve on the rotation group SO(3) that interpo-
lated a given ordered set of rotation matrices at their specified knot times. The paper [4] addresses the 
problem of generating smooth trajectories between an initial and a final position and orientation in space. 
The authors use the notions of Riemannian metric and covariant derivative from differential geometry and 
formulate the problem as a variational problem on the Lie group of spatial rigid body displacements. 

The motion, in which one point of the rigid body remains constant, is known as the spherical mo-
tion. This type of motion is described by the equation (1), where matrix 𝐴𝐴, in this case is the skew-
symmetric part of the velocity gradient tensor 

= [
0 −𝜔𝜔3 𝜔𝜔2
𝜔𝜔3 0 −𝜔𝜔1

−𝜔𝜔2 𝜔𝜔1 0
] ∈ 𝔰𝔰𝔬𝔬       (3) 

Assuming �⃗⃗�𝜔 = (𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) ∈ ℝ3 is a vector of the angular velocity of the rigid body then 𝑥𝑥(𝑡𝑡) =
𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥0 = 𝑅𝑅𝑥𝑥0 means the rotation of the point 𝑥𝑥0 of the rigid body by the angle 𝑡𝑡𝜔𝜔 around the axis 
defined by �⃗⃗�𝜔  and the matrix 𝑅𝑅 = 𝑒𝑒𝑡𝑡𝑡𝑡 is the rotation matrix. 

Important practical field of application of skew-Hermitian matrix exponential is optimization with 
unitarity constraints, which occurs e.g. in Independent Component Analysis ICA. ICA has found many 
practical applications in such areas as signal processing, machine learning, sound and image processing, 
pattern recognition [5], biomedical signal processing [6; 7], financial and astronomical data analysis [8; 
9; 10; 11]. The authors using standard ICA algorithms obtain interesting results of source separation in 
this type of data. On the other hand complex ICA ranges from biomedical signal processing such as 
extracting spatial maps and time courses from functional magnetic resonance imaging (fMRI) data to 
communication areas of applications in Multi-Input Multi-Output wireless communication systems [12]. 
A wide range of applications of complex ICA finds in time-frequency analysis. In this context, there is 
currently great interest in the use of blind source separation methods including ICA in the diagnostic of 
technical systems where the on-line detection of fault signals plays a crucial role [13; 14; 15]. As demon-
strated in [16; 17] it is possible to separate sources using ICA on magnitude of the Fourier representation 
of single mixed signal, i.e. on spectrogram only.  

In the Lie group methods the search direction is typically chosen as a negative skew-Hermitian 
gradient of the cost function. This gradient matrix belongs to the Lie algebra space of the unitary U(𝑛𝑛) 
group. In each iteration step, the skew-Hermitian matrix is mapped by the exponentiation operation into 
the Lie group U(𝑛𝑛) and thereby to ensure the continuous presence on the optimization surface i.e., on 
the Lie group SO(𝑛𝑛). Lie group optimization techniques are very efficient, stable and universal [18; 19; 
20]. Every Lie group methods require a number of matrix exponentials i.e., mapping a Lie algebra 𝔤𝔤 to 
a Lie group 𝐺𝐺. This operation however needs to be approximated to the order of the underlain ODE 
solving method. This approximation should reside in the Lie group 𝐺𝐺 associated to the Lie algebra 𝔤𝔤. 
This fundamental requirement in general is not fulfilled by many standard approximations methods un-
less it is calculated exactly. In the well-known work [21], the authors present nineteen methods to com-
pute the exponential of a matrix. In [22] and in [23] authors presents exact methods to compute the 
matrix exponential. 

Exact formula for matrix exponential of any matrix is given by (2) [24]. Some simple approxima-
tion methods for a low dimensional skew-symmetric matrix are given in [25; 26; 27]. The well known 
formula for 3 × 3 skew-symmetric matrices (4) 

𝑒𝑒𝑡𝑡 = 𝐼𝐼 + sin(𝛼𝛼)
𝛼𝛼 𝐴𝐴 + 1

2 (
sin(𝛼𝛼

2)
𝛼𝛼
2

)
2
𝐴𝐴2       (4) 

where: 𝛼𝛼 = 1
2 ‖𝐴𝐴‖𝐹𝐹 and ‖∙‖𝐹𝐹 is a Frobenius matrix norm are known as the Euler-Rodrigues formula 

and calculate exponential exactly. 
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Cayley-Hamilton theorem [28] gives another exact method of approximation of skew-symmetric 
matrix exponentials. However this is well known that, first, it requires high computational cost of high 
powers of matrix and second it use direct the characteristic polynomial of the matrix so it may lead to 
some computational instabilities. 

Standard approximants based on Padé and Chebyshev rational approximation generally do not re-
side on the Lie group 𝐺𝐺 associated with Lie algebra 𝔤𝔤. In case of skew-Hermitian or skew-symmetric 
approximation only diagonal Padé approximation maps Lie algebras 𝔲𝔲(𝑛𝑛) and 𝔰𝔰𝔬𝔬(𝑛𝑛) to underlying Lie 
group U(𝑛𝑛) and SO(𝑛𝑛) [29] but this property is not satisfied in the case of the 𝔰𝔰𝔩𝔩(𝑛𝑛). It can be shown 
that the only analytic function 𝑓𝑓, that maps 𝔰𝔰𝔩𝔩(𝑛𝑛) into SL(𝑛𝑛), consistently with the exponential func-
tion is the exponential itself. 

Splitting the matrix 𝐴𝐴 into a sum of low-rank bordered matrices 𝐴𝐴𝑖𝑖 belonging to 𝔤𝔤 is another very 
effective method of approximation of matrix. In [29; 30; 31] authors present some methods for the ap-
proximation of the matrix exponential in a Lie‐algebraic setting. Splitting methods can be applied in 
different fields for example in: the partial differential equations context [24], constructing volume-pre-
serving methods [32] and constructing symplectic methods [33]. Some excellent studies of the splitting 
methods can be found in [34]. 
The Strang-type splitting of the form (5) 

𝑒𝑒𝑡𝑡𝑡𝑡 ≈ 𝐹𝐹(𝑡𝑡𝐴𝐴) = 𝑒𝑒
1
2𝑡𝑡𝑡𝑡1𝑒𝑒

1
2𝑡𝑡𝑡𝑡2 ⋯𝑒𝑒

1
2𝑡𝑡𝑡𝑡𝑘𝑘−1𝑒𝑒𝑡𝑡𝑡𝑡𝑘𝑘𝑒𝑒

1
2𝑡𝑡𝑡𝑡𝑘𝑘−1 ⋯𝑒𝑒

1
2𝑡𝑡𝑡𝑡2𝑒𝑒

1
2𝑡𝑡𝑡𝑡1    (5) 

where: 𝐴𝐴 = ∑ 𝐴𝐴𝑖𝑖𝑘𝑘
𝑖𝑖=1  is well know splitting methods and approximate 𝑒𝑒𝑡𝑡𝑡𝑡  to second order. As long as 

𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑘𝑘 ∈ 𝔤𝔤 it follows at once from the definition of Lie group that the approximation resides in 𝐺𝐺 [35]. 

Generally, using a splitting methods it is possible to express 𝑒𝑒𝑡𝑡𝑡𝑡 for 𝐴𝐴 ∈ 𝔤𝔤 and small 𝑡𝑡 as (6) 

𝑒𝑒𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑔𝑔1(𝑡𝑡)𝑡𝑡1𝑒𝑒𝑔𝑔2(𝑡𝑡)𝑡𝑡2 … . 𝑒𝑒𝑔𝑔𝑚𝑚(𝑡𝑡)𝑡𝑡𝑚𝑚       (6) 

where: 𝑔𝑔𝑖𝑖(𝑡𝑡) is the scalar function analytic at the origin and 𝑋𝑋 = {𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑘𝑘} be a basis of 𝔤𝔤 and 
dim𝔤𝔤 = 𝑚𝑚. This splitting is known as a canonical coordinate of the second kind and was pioneered by 
Owren and Marthinsen [36] in the context of general Lie group methods. A properly selected base 𝑋𝑋 of 
the Lie algebra 𝔤𝔤 leads to robust and affordable algorithms. 

In this paper we present some fast approximation of skew-symmetric and skew-Hermitian matrix 
exponential based on splitting methods and its application in optimization problem. Often, in some tech-
nical applications, e.g. in on-line optimization algorithms, the speed of the algorithm is more important 
than the quality of the approximation. Our motivation is to explore fast methods of matrix exponential 
in context of the balance between quality and speed of approximation. 

BACKGROUND THEORY ON SPLITTING METHODS 

The basic idea of splitting methods relies on decomposition of 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴 ∈ 𝔤𝔤 in the form (7) 

        𝐴𝐴 = ∑ 𝐴𝐴𝑖𝑖𝑘𝑘
𝑖𝑖=1        (7) 

The 𝑒𝑒𝑡𝑡𝑡𝑡 can be approximated by (8) 

    𝐹𝐹(𝑡𝑡𝐴𝐴) = e𝑡𝑡𝑡𝑡1∙ … ∙ e𝑡𝑡𝑡𝑡𝑘𝑘        (8) 
 

Splitting 𝐴𝐴 ∈ 𝔤𝔤 into appropriate low rank terms 𝐴𝐴𝑖𝑖 ∈ 𝔤𝔤 so that the cost of computing every e𝑡𝑡𝑡𝑡𝑖𝑖 
is small enough compared to 𝑒𝑒𝑡𝑡𝑡𝑡 is the main idea of splitting methods. The simplest choice of splitting 
of 𝐴𝐴 ∈ 𝔲𝔲(n) is columnwise decomposition. Taking 𝐴𝐴0 = 𝐴𝐴 we let (9) 

𝐴𝐴1 = 𝑎𝑎1
(0)𝑒𝑒1𝑇𝑇 − 𝑒𝑒1 (𝑎𝑎1

(0))
𝐻𝐻
∈ 𝔲𝔲(𝑛𝑛)      (9) 

where: 𝑎𝑎1
(0)  is the first nonzero column of 𝐴𝐴0  and 𝑒𝑒1  is canonical base of ℝ𝑛𝑛 . In general taking 

𝐴𝐴𝑖𝑖+1 = 𝐴𝐴𝑖𝑖−1 − 𝐴𝐴𝑖𝑖 for 𝑖𝑖 = 1,… , 𝑛𝑛 − 1 and (10) 
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𝐴𝐴𝑖𝑖+1 = 𝑎𝑎𝑖𝑖+1
(𝑖𝑖) 𝑒𝑒𝑖𝑖+1

𝑇𝑇 − 𝑒𝑒𝑖𝑖+1 (𝑎𝑎𝑖𝑖+1
(𝑖𝑖) )

𝐻𝐻
∈ 𝔲𝔲(𝑛𝑛)     (10) 

 
where: 𝑎𝑎𝑖𝑖+1

(𝑖𝑖)  is the first nonzero column of 𝐴𝐴𝑖𝑖 and 𝑒𝑒𝑖𝑖+1 is (𝑖𝑖 + 1)-th canonical basis vector of ℝ𝑛𝑛. 
This type of approximation is order one [29]. 

Using the same kind of splitting, the function (11) 

𝐹𝐹(𝑡𝑡𝐴𝐴) = 𝑒𝑒
1
2𝑡𝑡𝐴𝐴1𝑒𝑒

1
2𝑡𝑡𝐴𝐴2 ∙ … ∙ 𝑒𝑒

1
2𝑡𝑡𝐴𝐴𝑘𝑘−1𝑒𝑒𝑡𝑡𝐴𝐴𝑘𝑘𝑒𝑒

1
2𝑡𝑡𝐴𝐴𝑘𝑘−1 ∙ … ∙ 𝑒𝑒

1
2𝑡𝑡𝐴𝐴2𝑒𝑒

1
2𝑡𝑡𝐴𝐴1    (11) 

known as the generalized Strang splitting is the second-order approximant of e𝑡𝑡𝐴𝐴 [30]. Moreover as 
long as 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑘𝑘 ∈ 𝔤𝔤 the approximant 𝐹𝐹(𝑡𝑡𝐴𝐴) resides in 𝐺𝐺. The general rule is that more than 𝑘𝑘 
multiplications of exponentials e𝑡𝑡𝐵𝐵𝑖𝑖 are needed to obtain an approximation of order higher than one. 
Using the technique known as canonical coordinate of the second kind [37] it can be increase the order 
of approximation without increasing the number of evaluation and multiplication of the term e𝑡𝑡𝐴𝐴𝑖𝑖 . This 
method approximates e𝑡𝑡𝐴𝐴 as a composition of exponentials of the form 𝑒𝑒𝑔𝑔𝑖𝑖(𝑡𝑡)𝑋𝑋𝑖𝑖, where {𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑘𝑘} 
is a basis of 𝔤𝔤 and 𝑔𝑔𝑖𝑖(𝑡𝑡) for 𝑖𝑖 = 1,… , 𝑛𝑛 − 1 are the scalar functions analytic in the origin. Clever 
choice of the function 𝑔𝑔𝑖𝑖(𝑡𝑡) and bases {𝑋𝑋𝑖𝑖} which exploit the Lie-algebraic structure can reduce the 
computational cost by several orders and leads to robust and affordable algorithms. This method makes 
very good use of matrix sparsity. For sparse tridiagonal (12) 

𝐴𝐴 =

[
 
 
 
 0 𝛽𝛽1

−𝛽𝛽1 0
0 … 0
𝛽𝛽2 ⋮

0 −𝛽𝛽2
⋮

⋱ 0
0 𝛽𝛽𝑛𝑛−1

0 ⋯0 −𝛽𝛽𝑛𝑛−1 0 ]
 
 
 
 
= ∑ 𝛽𝛽𝑘𝑘

𝑛𝑛−1
𝑘𝑘=1 𝐹𝐹𝑘𝑘,𝑘𝑘+1 ∈ 𝔰𝔰𝔬𝔬(𝑛𝑛)       (12) 

 
and 𝑛𝑛 − 1 dimensional basis 𝑋𝑋𝑘𝑘 = 𝐹𝐹𝑘𝑘,𝑘𝑘+1 = 𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘+1

𝑇𝑇 − 𝑒𝑒𝑘𝑘+1𝑒𝑒𝑘𝑘
𝑇𝑇 for 𝑘𝑘 = 1,… , 𝑛𝑛 − 1, the first-order ap-

proximant 𝐹𝐹(𝑡𝑡𝐴𝐴) needs only 𝑛𝑛 − 1 multiplications of exponentials 𝑒𝑒𝑡𝑡𝛽𝛽𝑘𝑘𝐹𝐹𝑘𝑘,𝑘𝑘+1 with very simple form 
(13) 

𝐴𝐴 =

[
 
 
 
 
 1 …

⋮ ⋱
cos(𝑡𝑡𝛽𝛽𝑘𝑘)

… 0
⋮

sin(𝑡𝑡𝛽𝛽𝑘𝑘)
− sin(𝑡𝑡𝛽𝛽𝑘𝑘)

⋮
0 …

cos(𝑡𝑡𝛽𝛽𝑘𝑘)
⋱ ⋮
… 1 ]

 
 
 
 
 

     (13) 

and with very small computational cost. The first-order approximation takes the form (14) 

𝐹𝐹(𝑡𝑡𝐴𝐴) = 𝑒𝑒𝑡𝑡𝛽𝛽1𝐹𝐹1,2 ∙ … ∙ 𝑒𝑒𝑡𝑡𝛽𝛽𝑛𝑛−1𝐹𝐹𝑛𝑛−1,𝑛𝑛      (14) 

Second-order approximation 𝐹𝐹(𝑡𝑡𝐴𝐴) uses matrices of the form 𝐹𝐹𝑘𝑘,𝑘𝑘+2 and takes the form (15) [29; 30]  

𝐹𝐹(𝑡𝑡𝐴𝐴) = 𝑒𝑒𝑡𝑡𝛽𝛽𝑛𝑛−1𝐹𝐹𝑛𝑛−1,𝑛𝑛 ∙ 𝑒𝑒𝑡𝑡𝛽𝛽𝑛𝑛−2𝐹𝐹𝑛𝑛−2,𝑛𝑛−1 ∙ 𝑒𝑒
1
2𝑡𝑡

2𝛽𝛽𝑛𝑛−2𝛽𝛽𝑛𝑛−1𝐹𝐹𝑛𝑛−2,𝑛𝑛 ∙ … ∙ 𝑒𝑒𝑡𝑡𝛽𝛽2𝐹𝐹2,3 ∙ 𝑒𝑒
1
2𝑡𝑡

2𝛽𝛽2𝛽𝛽3𝐹𝐹2,4 ∙∙ 𝑒𝑒𝑡𝑡𝛽𝛽1𝐹𝐹1,2 ∙ 𝑒𝑒
1
2𝑡𝑡

2𝛽𝛽1𝛽𝛽2𝐹𝐹1,3 

(15) 
The Strang-type splitting in this case needs 2(𝑛𝑛 − 1) multiplications of the form (16) 

𝐹𝐹(𝑡𝑡𝐴𝐴) =  𝑒𝑒
1
2𝑡𝑡𝛽𝛽1𝐹𝐹1,2 ∙ … ∙ 𝑒𝑒

1
2𝑡𝑡𝛽𝛽𝑛𝑛−2𝐹𝐹𝑛𝑛−2,𝑛𝑛−1 ∙ 𝑒𝑒𝑡𝑡𝛽𝛽𝑛𝑛−1𝐹𝐹𝑛𝑛−1,𝑛𝑛 ∙ 𝑒𝑒

1
2𝑡𝑡𝛽𝛽𝑛𝑛−2𝐹𝐹𝑛𝑛−2,𝑛𝑛−1 ∙ … ∙ 𝑒𝑒

1
2𝑡𝑡𝛽𝛽1𝐹𝐹1,2      (16) 

GEODESIC-FLOW OPTIMIZATION METHODS IN INDEPENDENT COMPONENT  
ANALYSIS  

The basic concepts of Independent Component Analysis relies on estimating a sequence of 𝑛𝑛 latent 
variables 𝑠𝑠 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛)𝑇𝑇 (source signals) from their linear mixtures 𝑥𝑥 = (𝑥𝑥1,… , 𝑥𝑥𝑛𝑛)𝑇𝑇. The main as-
sumption of this method is the statistical independence of 𝑠𝑠𝑖𝑖, i.e., Independent Components (ICs). The 
observed mixed signal 𝑥𝑥 can be modeled (17) 
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𝑥𝑥 = 𝐴𝐴𝑠𝑠                                     (17) 
where: 𝐴𝐴 ∈ Gl(𝑛𝑛) is the 𝑛𝑛 × 𝑛𝑛 real or complex unknown invertible mixing matrix. 

A solution for the ICA problem consists in finding the demixing (or filtration) matrix 𝑊𝑊 ≅ 𝐴𝐴−1. Inde-
pendent components 𝑠𝑠𝑖𝑖 are obtained from (18) 

s ≅ �̂�𝑠 = 𝑊𝑊𝑥𝑥                                   (18) 
where: �̂�𝑠 is the estimator of a source signal 𝑠𝑠. Given 𝑁𝑁 observations of 𝑥𝑥, the goal of ICA is to esti-
mate the demixing matrix 𝑊𝑊 and thereby recover the source signal 𝑠𝑠.  

The basic ICA model assumes that the number 𝑚𝑚 of ICs 𝑠𝑠𝑖𝑖 is known and equal to the number 𝑛𝑛 
of observed mixed signal 𝑥𝑥i. Although, in general ICA model, this assumption do not have to be met 
and an ICA model where 𝑚𝑚 ≠ 𝑛𝑛 is also considered. In the extreme case, when only one observed signal 
is given, the ICA problem is called as single channel source separation. This challenging problem is also 
possible to solve [16; 17; 38; 39]. 

In all very approach to solve ICA problem there are two main concepts: optimization of cost func-
tion and algebraic modification of demixing matrix 𝑊𝑊. In the first class a nonlinear cost function is 
optimized. This function represents a measure of statistical independence of estimated ICs. In Maximum 
Likelihood approach the negative log-likelihood cost function is used and takes the form (19) 

𝑓𝑓(𝑊𝑊) = − log 𝑝𝑝(𝑥𝑥) = −log|det (𝑊𝑊)| − ∑ log 𝑝𝑝𝑖𝑖(𝑤𝑤𝑖𝑖𝑥𝑥)𝑛𝑛
𝑖𝑖=1                (19) 

where: 𝑤𝑤𝑖𝑖 is the i-th row of demixing matrix 𝑊𝑊 and 𝑝𝑝𝑖𝑖(∙) is the pdf function of i-th source signal 𝑠𝑠𝑖𝑖. 

Another very important method in this class of ICA is the Negentropy Maximization approach. 
This method uses some non-Gaussianity measure as a cost function [40]. In basic concept this function 
is the negative entropy, commonly called as negentropy. This function is a natural measure of entropic 
distance of pdf of estimated source from variable with standard Gaussian distribution. Negentropy can 
be defined as (20) 

𝐽𝐽(𝑊𝑊) ≜ 𝐻𝐻(𝜈𝜈) − 𝐻𝐻(𝑠𝑠)                           (20) 
where: 𝐻𝐻(∙) ≜ −𝐸𝐸{𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(∙)} is the differential entropy of the given probability distribution and 𝜈𝜈 is 
the Gaussian variable with the same variance as source 𝑠𝑠 . Since 𝐻𝐻(𝜈𝜈) = const, then maximizing 
negentropy 𝐽𝐽(𝑊𝑊) leads to minimization of entropy 𝐻𝐻(𝑠𝑠). The main drawback in this concept relies on 
difficulty connected with negentropy calculation. Definition requires knowledge of the pdf function. 
This information is a priori unknown and in practice certain approximations of negentropy are consid-
ered, such as the Taylor, Gram-Charlier and Edgeworth expansions. However in certain cases these 
expansions can leads to a rather poor approximation of negentropy with high sensitivity to outliers. To 
overcome this problem a non-polynomial expansions are used, which leads to an approximation of the 
form (21) 

𝐽𝐽(𝑊𝑊) ≈ 1
2 ∑ 𝐸𝐸{𝐺𝐺𝑖𝑖(𝑊𝑊𝑥𝑥)}2𝑛𝑛

𝑖𝑖=1                         (21) 

where: 𝐺𝐺𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛 is any set of orthonormal nonquadratic function. 

In general the demixing matrix 𝑊𝑊 belongs to general linear group Gl(𝑛𝑛), i.e., matrix 𝑊𝑊 satisfies 
only invertibility property det 𝑊𝑊 ≠ 0. The whitening (or sphering) of observed mixed signal reduces 
the problem complexity. Assuming, without losing the generality, that the source signal is zero-mean 
and with unit-variance, i.e., E{𝑠𝑠𝑠𝑠𝐻𝐻} = 𝐼𝐼, the whitening process decorrelate signal using eigendecompo-
sition of the correlation matrix, i.e., 𝐶𝐶𝑥𝑥 = E{𝑥𝑥𝑥𝑥𝐻𝐻} = 𝑈𝑈Λ𝑈𝑈𝐻𝐻, where 𝑈𝑈 is the unitary matrix with eigen-
vectors of 𝐶𝐶𝑥𝑥 as a column of 𝑈𝑈 and Λ is diagonal matrix with eigenvalues on main diagonal. Trans-
formed signal 𝑦𝑦 = 𝛬𝛬−1/2𝑈𝑈𝐻𝐻x  has following property: E{𝑦𝑦𝑦𝑦𝐻𝐻} = E{𝛬𝛬−1/2𝑈𝑈𝐻𝐻𝑥𝑥𝑥𝑥𝐻𝐻𝑈𝑈𝛬𝛬−1/2} =
𝛬𝛬−1/2𝑈𝑈𝐻𝐻E{𝑥𝑥𝑥𝑥𝐻𝐻}𝑈𝑈𝛬𝛬−1/2 = 𝐼𝐼, i.e., the whitened signal 𝑦𝑦 is decorrelated and has unit variance. It means 
that new mixing matrix �̃�𝐴, defined as 𝑦𝑦 = 𝑉𝑉𝑥𝑥 = 𝑉𝑉𝐴𝐴𝑠𝑠 = �̃�𝐴𝑠𝑠, has unitarity property, i.e., E{𝑦𝑦𝑦𝑦𝐻𝐻} =
�̃�𝐴E{𝑠𝑠𝑠𝑠𝐻𝐻}�̃�𝐴H = �̃�𝐴�̃�𝐴𝐻𝐻 = 𝐼𝐼, so a new demixing matrix �̃�𝑊 = �̃�𝐴−1 has also the unitarity property �̃�𝑊�̃�𝑊𝐻𝐻 =
𝐼𝐼. In optimization context it also means that whitening process simplifies the ICA problem from opera-
tion on general linear group Gl(𝑛𝑛) to operation on unitary group U(𝑛𝑛). 

Let 𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡): 𝑡𝑡 → U(𝑛𝑛) be a carve in U(𝑛𝑛) generated by left invariant tangent vector 𝑋𝑋 and ema-
nating from 𝐼𝐼. This carve define the one-parameter subgroup in U(𝑛𝑛), which satisfies the condition 
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𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡)𝐻𝐻𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡) = 𝐼𝐼 . Differentiating this equation the tangent space 𝑇𝑇𝑊𝑊U(𝑛𝑛)  at the point 𝑊𝑊(𝑡𝑡) =
𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡) can be defined as (22) 

𝑇𝑇𝑊𝑊U(𝑛𝑛) = {𝑋𝑋 ∈ ℂ𝑛𝑛×𝑛𝑛|𝑋𝑋𝐻𝐻𝑊𝑊 +  𝑊𝑊𝐻𝐻𝑋𝑋 = 0}                  (22) 

The Lie algebra 𝔲𝔲(𝑛𝑛) is obtained by substituting 𝑊𝑊 = 𝐼𝐼 in (22) and is given by (23) 

𝔲𝔲(𝑛𝑛) = 𝑇𝑇𝐼𝐼U(𝑛𝑛) = {𝑋𝑋 ∈ ℂ𝑛𝑛×𝑛𝑛|𝑋𝑋𝐻𝐻 + 𝑋𝑋 = 0}                  (23) 

This algebra is a set of skew-Hermitian matrices. The contravariant gradient ∇̂W∗𝑓𝑓 of the cost function 
𝑓𝑓 on Riemannian manifold U(𝑛𝑛) at the point 𝑊𝑊 can be expressed as (24)  

∇̂W∗𝑓𝑓 = ∇W∗𝑓𝑓 − 𝑊𝑊∇W∗H 𝑓𝑓𝑊𝑊 ∈ 𝑇𝑇𝑊𝑊U(𝑛𝑛)                   (24) 

where: ∇W∗𝑓𝑓 is a gradient vector calculated in Euclidean space ℂ𝑛𝑛×𝑛𝑛. Using an exponential map [41] 
a carve 𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡) can be expressed as (25) 

𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡) = exp(𝑡𝑡𝑋𝑋) ∈ U(𝑛𝑛)                        (25) 

This carve defines the geodesic line, i.e., the carve minimizing length between two points on Riemannian 
manifold. Using left translation the geodesic emanating from 𝑊𝑊 takes the form (26) 

𝛾𝛾𝑋𝑋,𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝛾𝛾𝑋𝑋,𝐼𝐼(𝑡𝑡) = 𝑊𝑊exp (𝑡𝑡𝑋𝑋)                     (26) 

The optimization procedure that uses this expression of geodesic line is known as geodesic flow method. 
The search direction 𝛺𝛺 in these methods are chosen as negative gradient −∇̂W∗𝑓𝑓 at point 𝑊𝑊 (defined 
in (24)) translated to the identity, i.e., into Lie algebra 𝔲𝔲(𝑛𝑛) by expression (27) 

𝛺𝛺 = 𝑊𝑊−1∇̂𝑊𝑊∗𝑓𝑓 = 𝑊𝑊𝐻𝐻∇̂𝑊𝑊∗𝑓𝑓 = 𝑊𝑊𝐻𝐻∇𝑊𝑊∗𝑓𝑓 − ∇𝑊𝑊∗H 𝑓𝑓𝑊𝑊 ∈ 𝔲𝔲(𝑛𝑛)              (27) 

Therefore the optimization procedure is conducted by geodesic line defined as (28) 

𝛾𝛾(𝑡𝑡) = 𝑊𝑊exp (−𝑡𝑡𝛺𝛺)                                 (28) 

and the optimization scheme has the form (29) 

𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘𝑅𝑅𝛺𝛺𝑘𝑘 = 𝑊𝑊𝑘𝑘exp (−𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝛺𝛺𝑘𝑘)                     (29) 

where: 𝑘𝑘 is the number of iteration and 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 is the value of 𝑡𝑡 that minimizes 𝑓𝑓 on geodesic 𝛾𝛾(𝑡𝑡) in 
every iteration step. 
 

FORMULA FOR APPROXIMATION OF SPARSE SKEW-SYMMETRIC AND  
SKEW-HERMITIAN MATRIX EXPONENTIAL 

In some technical areas there is no need to use the full structure of skew-Hermitian matrices. An 
optimization problem of the search for the extreme of the function 𝑓𝑓(𝑊𝑊), 𝑊𝑊 ∈ ℂ𝑛𝑛×𝑛𝑛 with the constraint 
𝑊𝑊𝑊𝑊𝐻𝐻 = 𝐼𝐼𝑛𝑛 e.g. in the ICA problem, can be solved using a skew-symmetric matrix that approximates 
the gradient of the function 𝑓𝑓, built only from one row and one column [42]. The simple structure of 
this type of matrix makes it possible to create an analytical exponentiation formula with a low compu-
tational cost. Appropriate construction of such matrix ensures a solution to the optimization problem 
with a faster convergence rate compared to conventional algorithms using the full form of the skew-
Hermitian gradient matrix of function 𝑓𝑓. 

In [43] an analytical Rodrigues-like formula for approximation of skew-symmetric matrices is 
given. This formula requires however, the Schur decomposition, which introduces an additional com-
putational cost. Therefore, in some practical applications with speed priority, the exponential procedure 
using skew-Hermitian matrices directly, i.e., without any preprocessing would be exceptionally useful. 
In [42] the author presents a simple formula for exponentiation of skew-symmetric matrices with one 
row and one column. This formula, using the 2-norm ‖∙‖2 comes down to the well-known Rodrigues-
like formula. 

Theorem 1. Consider a sparse skew-symmetric matrix C of the form (30) 
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𝐶𝐶 =
[
 
 
 
 0 ⋯
⋮ ⋱

× … 0
× ⋮

× ×
⋮

0 × ×
× ⋱ ⋮

0 ⋯× ⋯ 0]
 
 
 
 

𝑖𝑖

𝑖𝑖 ∈ 𝔰𝔰𝔬𝔬(𝑛𝑛)                         (30) 

with only 𝑛𝑛 − 1 free variables. The exact exponential of matrix 𝐶𝐶 takes the Euler-Rodrigues-like form 
(31) 

exp𝐶𝐶 = 𝐼𝐼𝑛𝑛 + sin𝛼𝛼
𝛼𝛼 𝐶𝐶 + 1

2 (sin𝛼𝛼
2

𝛼𝛼
2

)
2
𝐶𝐶2                        (31) 

 
Proof. See [44] 
In a complex the analogous formula comes from: 

Theorem 2. Consider a sparse skew-Hermitian matrix 𝐶𝐶 of the form (32) 

𝐶𝐶 =

[
 
 
 
 0 ⋯

⋮ ⋱
𝑐𝑐1 … 0
⋮ ⋮

−𝑐𝑐1
∗

⋮
𝑖𝑖|𝑐𝑐𝑚𝑚| −𝑐𝑐𝑛𝑛

∗

⋮ ⋱ ⋮
0 ⋯𝑐𝑐𝑛𝑛 ⋯ 0 ]

 
 
 
 
∈ 𝔲𝔲(𝑛𝑛)                     (32) 

The 4th-order approximation of exponential of matrix 𝐶𝐶 takes the form (33) 

exp𝐶𝐶 = 𝐼𝐼𝑛𝑛 + sin𝛼𝛼
𝛼𝛼 (𝐶𝐶 + 𝑐𝑐𝑚𝑚𝐸𝐸𝑚𝑚) + 1

2 (sin𝛼𝛼
2

𝛼𝛼
2

)
2
(𝐶𝐶2 + 𝑐𝑐𝑚𝑚

2 𝐸𝐸𝑚𝑚) + 𝑅𝑅4           (33) 

where the residual matrix 𝑅𝑅4 takes the form (34) 

𝑅𝑅4 = − 𝑐𝑐𝑚𝑚
6 𝑃𝑃𝑃𝑃𝐻𝐻 − (𝑐𝑐𝑚𝑚2

6 + 𝑐𝑐𝑚𝑚𝛼𝛼2+𝑐𝑐𝑚𝑚3

24 ) (𝑃𝑃 − 𝑃𝑃𝐻𝐻) − (𝑐𝑐𝑚𝑚 + 𝑐𝑐𝑚𝑚2

2 −    2𝑐𝑐𝑚𝑚2 𝛼𝛼2+𝑐𝑐𝑚𝑚4

24 )𝐸𝐸𝑚𝑚        (34) 

where: 𝑃𝑃 is the matrix containing only 𝑖𝑖-th column of 𝐶𝐶 such that 𝐶𝐶 = 𝑃𝑃 − 𝑃𝑃𝐻𝐻 − 𝑐𝑐𝑚𝑚𝐸𝐸𝑚𝑚, and 𝐸𝐸𝑚𝑚 is a 
zero matrix with only one (𝑚𝑚,𝑚𝑚)-th element equal to 1. 
Proof.See [44] 

As you can see, this formula contains an Euler-Rodrigues-like term similar to the real case but with 
a modified (𝑚𝑚,𝑚𝑚)-th element of 𝐶𝐶  and 𝐶𝐶2 . The residual matrix 𝑅𝑅4  modifies the main Euler-Ro-
drigues component in different way. The first term with 𝑃𝑃𝑃𝑃𝐻𝐻 modifies each element of the result ma-
trix, the second term with 𝑃𝑃 − 𝑃𝑃𝐻𝐻 only 𝑚𝑚-th row and 𝑚𝑚-th column, and the third expression with 𝐸𝐸𝑚𝑚 
modifies only (𝑚𝑚,𝑚𝑚)-th element of the result matrix. 
 

IMPLEMENTATION OF THE ALGORITHM AND COMPLEXITY 

The proposed above formulas can be used for approximation of exponential of any skew-symmetric 
and skew-Hermitian matrix. The proposed strategy consists in decomposition of the matrix 𝐴𝐴 in incom-
plete form (35) 

�̃�𝐴 = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖∈{𝑖𝑖𝑝𝑝} = 𝐴𝐴 − 𝑅𝑅                                 (35) 

where: the matrices 𝐶𝐶𝑖𝑖 takes the form (30) or (32), index 𝑖𝑖 ∈ {𝑖𝑖𝑝𝑝} ∈ (1,… , 𝑛𝑛 − 1) denotes the number 
of column of matrix 𝐴𝐴, taking part in the splitting procedure (35) and 𝑅𝑅 = 𝐴𝐴 − �̃�𝐴 is the residual matrix. 
The desired approximation accuracy is achieved by appropriate selection of the number of 𝐶𝐶𝑖𝑖 matrices 
involved in splitting (35). This selection involves determining the size of the index set {𝑖𝑖𝑝𝑝} as well as 
selecting its elements. In this second aspect, a selection strategy was adopted based on the decreasing 
value of the norm of columns 𝑣𝑣𝑖𝑖 of matrix 𝐴𝐴. For example, for 𝑝𝑝 = 3 and selecting the set of indices 
{𝑖𝑖𝑝𝑝} = {𝑘𝑘, 𝑙𝑙, 𝑟𝑟}  for which ‖𝑣𝑣𝑘𝑘‖ ≥ ‖𝑣𝑣𝑙𝑙‖ ≥ ‖𝑣𝑣𝑟𝑟‖  and ‖𝑣𝑣𝑘𝑘‖ = max

𝑗𝑗
(‖𝑣𝑣𝑗𝑗‖), 𝑗𝑗 = 1,… , 𝑛𝑛 − 1 , the pro-

posed splitting procedure takes the form (36) 
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�̃�𝐴 = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖∈{𝑘𝑘,𝑙𝑙,𝑟𝑟} = 𝐶𝐶𝑘𝑘 + 𝐶𝐶𝑙𝑙 + 𝐶𝐶𝑟𝑟 = (𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑘𝑘
𝑇𝑇) + (𝑃𝑃𝑙𝑙 − 𝑃𝑃𝑙𝑙

𝑇𝑇) + (𝑃𝑃𝑟𝑟 − 𝑃𝑃𝑟𝑟
𝑇𝑇)   

[
 
 
 
 
 
 0 ×
× × ×

×

× ×
× × ×
× ×

0
×

× × ×
×

× × ×

× × ×
× ×
× × ×

×

×
0 × × × 0 ]

 
 
 
 
 
 

 𝑘𝑘 𝑙𝑙 𝑟𝑟 

𝑘𝑘

𝑙𝑙

𝑟𝑟
                       

(36) 

where: 𝑃𝑃𝑘𝑘 = [
0 ⋯
⋮

×
×

⋯ 0
⋮

⋮
0 ⋯

×
×

⋮
⋯ 0

]

𝑘𝑘

; 𝑃𝑃𝑙𝑙 = [
0 ⋯
⋮

×
×

⋯ 0
⋮

⋮
0 ⋯

×
×

⋮
⋯ 0

]

𝑙𝑙

; 𝑃𝑃𝑟𝑟 = [
0 ⋯
⋮

×
×

⋯ 0
⋮

⋮
0 ⋯

×
×

⋮
⋯ 0

]

𝑟𝑟

 

and 𝑃𝑃𝑙𝑙(𝑙𝑙, 𝑘𝑘) = 0, 𝑃𝑃𝑟𝑟(𝑙𝑙, 𝑟𝑟) = 0, 𝑃𝑃𝑟𝑟(𝑘𝑘, 𝑟𝑟) = 0 

We have used the notation used in [45]. The symbol '×' denotes a matrix element different from zero. 
The remaining elements are all equal to zero. Below we describe the proposed procedure in more detail. 
 
Algorithm 
% Purpose – Approximation of the exponential with splitting skew-symmetric or  
% skew-Hermitian matrix 𝐴𝐴 in incomplete form (35) with column selection. 
% In – 𝐴𝐴: 𝑛𝑛 × 𝑛𝑛 skew-symmetric or skew-Hermitian matrix 
% Out – Approximation of exp 𝑡𝑡𝐴𝐴 ≈ 𝐹𝐹(𝑡𝑡𝐴𝐴) = exp𝐶𝐶𝑖𝑖1 exp𝐶𝐶𝑖𝑖2 … exp𝐶𝐶𝑖𝑖𝑚𝑚 and exp𝐶𝐶𝑖𝑖𝑝𝑝  is  
% computed by formula (31) or (33) 
for𝑖𝑖 = 1: 𝑛𝑛 
 𝛼𝛼(𝑖𝑖) = ‖𝑣𝑣𝑖𝑖‖2 =  𝐴𝐴(: , 𝑖𝑖)𝑇𝑇𝐴𝐴(: , 𝑖𝑖) 
end 
[~, 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖]  =  𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝛼𝛼); 
for𝑖𝑖 = 1:𝑚𝑚 
𝑃𝑃𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠(𝑛𝑛); 
𝑘𝑘 = 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖); 
𝑃𝑃𝑖𝑖 (: , 𝑖𝑖) = 𝑡𝑡𝐴𝐴(: , 𝑖𝑖); 
for ℎ =  1: (𝑘𝑘 − 1) 
𝑃𝑃𝑖𝑖(𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖 − ℎ), 𝑘𝑘) = 0; 
end 
𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖

𝑇𝑇; 
𝑖𝑖𝑖𝑖𝑒𝑒 𝐶𝐶𝑖𝑖; (equation (31) or (33)) 
𝑖𝑖𝑖𝑖𝑒𝑒(𝑡𝑡𝐴𝐴) ≈ 𝐹𝐹(𝑡𝑡𝐴𝐴) = 𝑖𝑖𝑖𝑖𝑒𝑒𝐶𝐶1 𝑖𝑖𝑖𝑖𝑒𝑒 𝐶𝐶2 …𝑖𝑖𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖 ; 
end 

The main computational cost of the proposed algorithm consist of 𝑚𝑚-times evaluation of exp𝐶𝐶𝑖𝑖 
from equation (31) or (33) and (𝑚𝑚 − 1)-times multiplying the results exp𝐶𝐶1 exp𝐶𝐶2 …exp𝐶𝐶𝑖𝑖. The cost 
of computing exp𝐶𝐶𝑖𝑖  from formula (31) or (33) is 2𝑛𝑛2 + 4𝑛𝑛 + 2 + 2𝑐𝑐sin flops in the real case and 
4(3𝑛𝑛2 + 6𝑛𝑛 + 14 + 2𝑐𝑐sin) flops in the complex case, where 𝑐𝑐sin is the computational cost of the built-
in Matlab sin function. In the complex case, the estimation assumes that 1 complex multiplication is 
equal to 4 real floating point operations [46]. The multiplication stage costs (𝑚𝑚 − 1)𝑛𝑛3  flops and 
4(𝑚𝑚 − 1)𝑛𝑛3 flops in real and complex case, respectively. In summary, the total cost of the proposed 
algorithm can be estimated as (𝑚𝑚 − 1)𝑛𝑛3 + (2𝑚𝑚 + 1)𝑛𝑛2 + 6𝑚𝑚𝑛𝑛 + +2(𝑐𝑐sin + 1)𝑚𝑚 flops in the real 
case and 4[(𝑚𝑚 − 1)𝑛𝑛3 + 𝑛𝑛2 + 𝑚𝑚(3𝑛𝑛2 + 7𝑛𝑛 + 14 + 2𝑐𝑐sin)] flops in the complex case. 
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It is clear from this analysis that computa-
tional cost depends significantly on the number 
of m columns used. When only one column m = 1 
is used, the computational cost of the proposed 
method is only of the order O(n2). For 2 ≤ m ≤ 
n–1 the prevailing term in the computational cost 
is (m–1)n3 flops and with full splitting the cost is 
(n–1)n3 + O(n2).

NUMERICAL EXPERIMENTS AND 
APPLICATIONS

In the experiment, the proposed algorithm 
(denoted as ICCS) of approximation of skew-
symmetric matrix exponential was used in ICA 
problem with geodesic flow method of optimiza-
tion. In all simulations the natural monochrome 
images were used as a source signal, each having  
pixels. Six images (pixel matrix) was transformed 
into a row vector, normalized and combined into 
a 6-row matrix. A random non-orthogonal mixing 
matrix was used to create a linear combination 
of the pictures vector, i.e. a multichannel input 
signal. Figures 1 (a), (b) and (c) show the source 
signals (images), the mixed signals and recovered 
images, respectively.

The negentropy function, defined in (21), was 
chosen as the classical measure of statistical signal 
independence and was used in all the algorithms 
studied [40]. The step size  of each iteration was 
chosen experimentally. Geodesic-flow algorithm 
with proposed approximation of matrix exponen-
tial was compared with the same geodesic-flow 
algorithm (denoted as Exp) but with built-in Mat-
lab function expm and other approximation meth-
ods of matrix exponential. We used General Polar 
Decomposition (denoted as GPD) [47], 1-order 

approximation of the form (14) ad 2-order ap-
proximation of Strang type defined in (16) both 
with Lanczos tridiagonalization in preprocessing 
stage. The built-in function expm uses the diagonal 
(1,1)-Padé approximation and calculates the expo-
nential to nearly machine accuracy. We also used 
in simulation a classical ICA method as Infomax 
(with Euclidean Steepest Descent optimization 
scheme) and JADE. The proposed algorithm was 
carried out for the optimal number of column m* 
obtained in [44]. As a stopping criterion we used 
a condition of cost function convergence in the 
form: if Jk – Jk-1< ε = 10-4 break. The simulation was 
carried out in Matlab 7.9 on a PC (Intel i7 2.8 GHz 
CPU, 8GB RAM). The mixing matrix  was cho-
sen randomly using built-in Matlab function rand. 
Simulation was carried out with a different number 
of sources (images) from n = 2 to n = 8. The re-
sults were averaged over 500 trials. The summary 
of the averaged convergence times obtained in the 
experiment are shown in the Figure 2.

Collected results of average convergence 
times are the shortest for each  for the proposed 
ICCS algorithm (red line in Figure 2). The largest 
speed increase was observed for larger numbers of 
source images, i.e. for n ≥ 6. The average increase 
in convergence speed in the studied range of the 
number of source images was approximately 7% 
compared to the second fastest algorithm Exp. 

The performance of separation was measured 
by the Amari Performance Index (API) defined as 
[48] (37)
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Figure 1. Separation results using four natural images of 128×128 pixels in size (a) original source images, 
(b) mixed images, (c) recovered sources using the proposed agorithm

a)

b)

c)
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where: pij is (i, j)-th element of the global matrix 
P = WA-1. The average values of API pa-
rameters for individual ICA algorithms 
used in the experiment are presented in 
Table 1.

It should be emphasized that high separa-
tion quality was obtained using only one (m = 1) 
column (with the maximum norm). This means 
that, from the optimization point of view, a single 
column (with the maximum norm) of the skew-
symmetric matrix can well define the search di-
rection. Using of only a single column results in 
an increase in the number of iterations by only 
about 3–5 iterations. A small increase in the 

number of iterations of the optimization process 
with a reduced computational cost of exponentia-
tion approximation explains the high speed of the 
proposed algorithm. 

CONCLUSIONS

In this paper, the new approximation algo-
rithm for skew-symmetric and skew-Hermitian 
matrix exponential has been introduced and test-
ed. The algorithm uses a new low-cost analytical 
formula for cross-type single-column skew-sym-
metric and skew-Hermitian matrix exponential. 
In our new approach we use the splitting method 

Figure 2. Average convergence time (runing time of the algorithms) of ICA algorithms used in experiment with 
respect to number of sources

Table 1. Averaged Amari Performace Index for algorithms used in simulation
ICA algorithm ICCS Infomax Exp 1-order Strang GPD JADE

API [dB] -24.8 -25.0 -24.0 -23.7 -24.2 -23.6 -24.7
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in incomplete form for reducing computational 
complexity of exponential stage. The proposed 
algorithm was used and tested in the Independent 
Component Analysis problem. In the simula-
tion test, a geodetic flow type cost function op-
timization method was used, where the proposed 
algorithm and classic matrix exponential meth-
ods were used in the exponential stage. With the 
optimal selection of the number of columns  the 
average increase in convergence speed in the 
studied range of the number of source images 
was approximately 7% compared to the second 
fastest algorithm with a high separation quality 
comparable to well-known ICA algorithms such 
as Infomax or JADE. It should also be added that 
high separation quality was also obtained using 
only a single column of the matrix (with the larg-
est norm) in approximation with only a slight in-
crease in the number of iterations. The obtained 
results of average convergence times and their 
comparison with classical methods confirm the 
high effectiveness of the proposed method and its 
potential application in online applications.
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